В настоящее время нейронные сети могут дать правильный ответ на вопрос, но не объяснить, как к нему пришли. Например, пациент находится в приемном отделении «скорой помощи» с острой болью в груди. Инфаркт миокарда, требующий немедленной помощи, или тяжелое расстройство желудка? Обученная сеть может поставить диагноз точнее, чем врач. Но без объяснения, как она это сделала, начинаешь сомневаться, а можно ли доверять ей. Врачи тоже учатся следовать алгоритмам, проводить серии тестов перед принятием решения, и обычно это работает. Проблема в том, что есть редкие случаи, к которым нельзя применить стандартный алгоритм, однако сеть, обученная на гораздо большем количестве примеров, чем среднестатистический врач видел за свою практику, может распознать их и верно поставить диагноз. Вы бы доверяли совету врача, который все подробно растолковал, или нейронной сети, которая по статистике лучше, но не дала объяснений? На самом деле у врачей, которые могут очень точно поставить диагноз даже в редком случае, как правило, большой опыт, и они применяют именно распознавание образов, а не алгоритмы. Этим способом, вероятно, пользуются эксперты самого высокого уровня во всех областях.
Точно так же, как можно обучить сети ставить диагнозы на уровне эксперта, должна быть возможность обучить сети давать объяснения, как если бы они были частью обучающего набора. Вероятно, это даже улучшит диагноз. Сложность в том, что многие объяснения врачей неполные, упрощенные или неправильные. Медицинская практика сильно меняется от поколения к поколению, потому что строение тела гораздо сложнее, чем мы себе представляем. Если бы нам удалось проанализировать внутреннее состояние сетевых моделей, чтобы извлечь причинные объяснения, это привело бы к новым выводам и гипотезам, которые можно было бы протестировать для совершенствования медицины.
Возражение, что нейронная сеть – «черный ящик», выводы которого нельзя понять, применимо и к мозгу, ведь люди, владея одинаковой информацией, могут делать совершенно разные выводы. И мы пока не знаем наверняка, как мозг принимает решения, используя опыт. Как показано в главе 3, выводы не всегда основаны на логике, к тому же возможны когнитивные искажения. Более того, часто мы приводим лишь обоснованные или правдоподобные объяснения. Нельзя исключать, что какая-то огромная генеративная сеть заговорит, и мы сможем попросить у нее объяснений. Стоит ли нам ждать, что они будут лучше и рациональнее, чем те, что дают люди? Напомним, что сознание не имеет доступа к внутренней работе мозга. Сети глубокого обучения обычно предоставляют не один, а несколько основных прогнозов в порядке убывания, что дает некоторую информацию о достоверности вывода. Показывать вероятность разных ответов более наглядно, чем говорить «да» или «нет».
Контролируемые нейронные сети могут решать только те проблемы, которые попадают в диапазон данных, использованных для обучения сети. Обученная на схожих примерах, нейронная сеть должна хорошо справиться с новыми случаями, распространив на них имеющий опыт. Однако если новые входные данные выходят за пределы обучающего набора, экстраполяция опасна. Это не удивительно, ведь то же ограничение относится и к людям: не следует ожидать, что эксперт в одной из областей физики даст хороший совет по политическому вопросу или даже по вопросу из другой области физики. Однако до тех пор, пока обучающий набор достаточно велик, чтобы охватить весь спектр потенциальных входных данных, обобщение будет хорошо на них распространяться. На практике люди склонны использовать сходство для переноса опыта с области, в которой они разбираются, на новую, но если области коренным образом различаются, это может привести к ложным аналогиям.
Еще одно возражение: нейронная сеть может оптимизировать выгоду в ущерб справедливости. Например, представитель недопредставленного меньшинства обращается за ипотекой и получает отказ от нейронной сети, обученной на миллионах заявок. Входные данные включают текущий адрес и другую связанную с этим меньшинством информацию. Таким образом, хотя и существует закон о запрете явной дискриминации меньшинств, сеть может использовать скрытую информацию против них. Проблема не в нейросети, а в функции стоимости, которую мы дали ей оптимизировать. Если единственная цель сети – получение прибыли, то она будет использовать любую информацию, чтобы ее максимизировать. Решить эту проблему можно, включив равноправие как еще одно условие в функцию затрат. Тогда оптимальным итогом будет баланс между прибылью и справедливостью. Кроме того, компромисс должен быть четко сформулирован в функции затрат, которая требует, чтобы кто-то определил вес каждой цели. В основе этих компромиссов должен лежать этический подход гуманитарных и социальных наук. Но имейте в виду, что у выбора функции затрат, который кажется справедливым, могут быть непредвиденные последствия.
Есть ли у природы функция стоимости? Оптимизация затрат в эволюции называется приспособляемость, но это понятие имеет смысл только для конкретного набора ограничений либо со стороны окружающей среды, либо со стороны ищущей выгодной решение системы. В мозге от рождения «запрограммирована» потребность в пище, тепле, безопасности, кислороде и продолжении рода, влияющая на поведение. Но есть ли функция стоимости, которая регулирует внимание? Мы лучше запоминаем то, что привлекло наше внимание, но что управляет им? Если ответим «мы», то попадем в замкнутый круг.