Книга: Путеводитель для влюбленных в математику
Назад: Глава 14 Пифагор и ферма
Дальше: Глава 16 Платоновы тела

Глава 15
Окружности

Окружности изящны и красивы. Глава 15 содержит россыпь любопытных фактов об этих основополагающих геометрических фигурах.
Точное определение
Математики избегают туманных определений, им подавай точность! Окружность – это множество точек на плоскости, равноудаленных от некоторой точки. Давайте распутаем этот клубок.
Прежде всего, окружность представляет собой множество точек. Естественно, не любое множество точек образует окружность. Речь идет лишь об избранных точках. Избранных по какому принципу? Окружность – это множество точек, заданных двумя условиями: положительным числом r и точкой X. Как вы знаете, точку X мы называем центром окружности, а число r – радиусом.

 

 

При построении (чернилами на бумаге или пикселями на экране) окружность имеет некоторую толщину, но с математической точки зрения толщина окружности равна нулю.
Окружности – близкие родственники сфер. А что такое сфера? Это множество точек в пространстве, равноудаленных от некоторой точки. Обратите внимание: два определения почти одинаковы, за исключением того, что окружность находится в плоскости.
Уравнение окружности
Точки на плоскости задаются двумя координатами: x и y. Если мы записываем уравнение с двумя переменными, множество точек, чьи координаты удовлетворяют этому уравнению, задают какую-нибудь геометрическую фигуру.
Например, уравнению x² + y² = 1 удовлетворяют некоторые, но не все точки плоскости. Скажем, точка с координатами (1, 0) удовлетворяет уравнению, потому что 1² + 0² = 1. Точно так же точка (3/5, 4/5) тоже удовлетворяет уравнению:

 

 

С другой стороны, точка (1/2, 1/2) не удовлетворяет уравнению, потому что

 

 

Что можно сказать о точках, удовлетворяющих уравнению x² + y² = 1? Они задают окружность с центром в начале координат и радиусом 1.
Почему? Давайте подумаем о точке (x, y). Она задает прямоугольный треугольник. Проведем перпендикуляры к осям абсцисс и ординат и соединим отрезком нашу точку с началом координат, как показано на рисунке.

 

 

Длины катетов треугольника равны x и y, и по теореме Пифагора (см. главу 14) длина гипотенузы равна Это не что иное, как расстояние от точки (x, y) до точки (0, 0).
Если мы ищем точки, удаленные от начала координат на расстояние 1, они должны удовлетворять условию:

 

 

Возведем обе части в квадрат и получим x² + y² = 1!
В общем случае, если центр окружности c радиусом r расположен не в начале координат, а в точке (a, b), она задается уравнением:
(x – a)² + (y – b)² = r².
Треугольники прямо внутри
Любые две несовпадающие точки задают прямую, а вот три точки не обязательно принадлежат одной прямой. Но есть всего одна окружность, которая включает все три точки, не лежащие на одной прямой. Вы узнали из главы 13, что точка пересечения срединных перпендикуляров к сторонам треугольника является центром описанной окружности, так как эта точка равноудалена от всех трех вершин треугольника.

 

 

Вопрос: как вписать треугольник в полуокружность, чтобы одна из его сторон совпадала с диаметром окружности?
Вот отличный ответ: треугольник можно вписать в полуокружность исключительно в том случае, если один из его углов прямой (то есть речь идет о прямоугольном треугольнике).

 

Теорема Птолемея
Расставим на окружности четыре точки: A, B, C и D. Они задают четыре величины: длины сторон четырехугольника |AB|, |BC|, |CD|, |AD| и длины двух его диагоналей d1 и d2.

 

 

Теорема Птолемея изящно связывает эти величины:
d1 × d2 = |AB| × |CD| + |BC| × |AD|.
И наоборот, если длины сторон и диагоналей четырехугольника удовлетворяют этой формуле, его вершины лежат на одной окружности.
Упаковка
Насколько плотно можно упаковать круги? Будем считать, что все круги имеют один радиус (скажем, 1) и мы хотим упаковать на значительном участке плоскости максимальное их число (представьте поднос, на котором нужно уместить как можно больше консервных банок).
Простейшая идея заключается в группировании кругов по четыре так, чтобы их центры образовывали квадрат. Тогда каждый круг, расположенный внутри, касается четырех соседних, а те, что на границе, касаются трех соседних:

 

 

Насколько эффективна такая упаковка? Один из критериев – измерить, какую часть плоскости покрывают все эти круги.
Посмотрим повнимательней на четыре круга, чьи центры лежат в вершинах квадрата. Радиусы кругов равны 1, потому сторона квадрата равна 2, а его площадь – 4. Квадрат не полностью покрыт областями, находящимися внутри кругов. Его перекрывает ровно четверть каждого из четырех кругов; таким образом, общая площадь кругов и квадрата равна площади одного круга, то есть π.

 

 

Соотношение между покрытой и непокрытой частями плоскости равно Мы можем усеять всю плоскость такими вот четверками окружностей, и они покроют примерно 78,5 % плоскости.
Неплохо, но можно сделать и лучше. Пусть теперь центры шести окружностей совпадают с вершинами правильного шестиугольника, а седьмая окружность располагается внутри него:

 

 

При таком подходе круги накрывают больше 90 % плоскости. Подумайте, как это вычислить. Ответ – в конце главы.
Гексагональная упаковка кругов на плоскости – самая плотная.
Естественно, возникает вопрос: а как насчет трех измерений? Ответ, вероятно, был известен уже в античности, но со всей строгостью его сформулировал Иоганн Кеплер в начале XVII века. Кеплер утверждал, что наиболее плотная упаковка шаров такая, что при сечении плоскостью, проходящей через центры шаров в одном ряду, выясняется, что центры шести соседних шаров лежат на вершинах правильного шестиугольника, а центр седьмого шара совпадает с центром этого шестиугольника (см. рисунок выше). Тогда шары покрывают примерно 74 % пространства.
Сложность состояла в том, чтобы доказать, что это действительно наиболее плотная упаковка и нет никаких альтернатив. С задачей на плоскости разобрались довольно быстро, но решение пространственной задачи потребовало 400 лет. Лишь в 1990-е годы Томас Хэйлс опубликовал сверхсложное доказательство, включающее теоретические выкладки и массу вычислений. Независимые эксперты дотошно изучили доказательство Хэйлса и не обнаружили там никаких погрешностей.
Окружности целуются
Если вы начертите три окружности, которые попарно касаются друг друга, в пространстве между ними уместится четвертая окружность, касающаяся всех трех. Вот как выглядят четыре касающиеся друг друга окружности:

 

 

Как соотносятся размеры этих четырех окружностей? Иначе говоря, если мы знаем радиус трех окружностей, можем ли мы вычислить радиус четвертой?
Рене Декарт опубликовал решение этой задачи в начале XVII века. Разберем его результат в простейшем виде. Нам понадобится определение кривизны окружности: это величина, обратная радиусу. Например, окружность с радиусом 2 имеет кривизну 1/2.
Декарт пришел к следующему выводу: если кривизны «целующихся» окружностей равны k1, k2, k3, k4, то соотношение между ними укладывается в формулу:

 

 

Например, если три большие окружности имеют радиус/кривизну 1, а кривизна малой окружности равна c, то из формулы (*) следует:

 

 

Решение квадратного уравнения дает
Таким образом,

 

 

Отрицательное число нам не подходит, ведь как радиус/кривизна окружности может быть меньше нуля? Таким образом, кривизна малой окружности равна примерно 6,464, а радиус – примерно 0,1547.
Четыре окружности могут «поцеловаться» иначе. Начертим снова три окружности, касающиеся друг друга, но вместо малой окружности внутри опишем большую окружность, касающуюся всех трех окружностей снаружи:

 

 

Хорошая новость: решение Декарта по-прежнему остается в силе. Фокус состоит в том, чтобы взять отрицательный корень квадратного уравнения с обратным знаком!
Например, давайте снова рассмотрим три окружности с радиусом 1. Формула (*) вновь приводит нас к двум ответам. Но теперь большая окружность имеет кривизну где-то 0,464 и радиус где-то 2,1547.
Иначе говоря, формула Декарта работает и в том случае, когда мы вычисляем радиус малой окружности внутри трех, касающихся друг друга, и в том случае, когда мы ищем радиус большой окружности, охватывающей эти три.
Если корень уравнения отрицательный, речь идет об описанной окружности; в случае положительного корня речь идет о вписанной окружности. А теперь другой вопрос: что означает нулевая кривизна? Сама формулировка подсказывает, что «окружность» с нулевой кривизной представляет собой прямую линию.
Решение Декарта в 1930-е годы заново открыл Фредерик Содди. Он был настолько поражен элегантностью формулы, что сочинил стихотворение под названием «Прицельный поцелуй». Вот вторая строфа, где зарифмована формула (*):
Окружности четыре
Сошлись для поцелуя,
Пригожая малютка
Скривилась больше всех.
А если единичку
На радиус делю я,
То это будет кривизна.
Невиданный успех!
Евклид буквально онемел…
Дружок, скорей берись за мел:
Коль нулевая кривизна,
То линия прямая;
Коль минус перед кривизной,
Целуйся, обнимая.
«Сложи криви́зны, возведи
В квадрат всю эту сумму,
И на два ну-ка подели!» –
Кричу я тугодуму. –
«Теперь все это приравняй
К величине другой:
Криви́зны возведи в квадрат,
Сплюсуй, мой дорогой».
Две суммы в точности равны,
И все от радости пьяны:
Целуются, милуются,
Собой не налюбуются!

Есть еще один вариант поцелуя четырех окружностей. На сей раз они будут касаться друг друга попарно, выстроившись в кольцо. Иными словами, касаются первая и вторая окружности, вторая и третья, третья и четвертая, четвертая и первая. Итого мы имеем четыре точки соприкосновения.
Удивительно, но факт: эти четыре точки всегда будут лежать на другой окружности, пятой по счету.

 

Теорема Паскаля о шестиугольнике
Я завершу эту главу теоремой, доказанной Блезом Паскалем.
Расставим на окружности шесть точек: A, B, C, D, E и F. Соединим их отрезками, чтобы возник перекрученный шестиугольник:
ADBFCEA.
Теорема Паскаля говорит о том, что три точки, в которых пересекаются пары отрезков DB и CE, AD и FC, BF и EA (на чертеже они отмечены буквами X, Y, Z соответственно) всегда будут лежать на одной прямой!

 

 

Отмечу, что теорема Паскаля верна и в случае шести точек, лежащих на эллипсе.
Плотность гексагональной упаковки кругов
Предположим, все круги имеют радиус 1. Центры четырех соседних кругов расположены на вершинах ромба со стороной 2.
Ромб состоит из двух равносторонних треугольников. Высота равностороннего треугольника со стороной 2 равна √3. Таким образом, площадь треугольников равна
Площадь ромба вдвое больше: 2√3
Теперь давайте подумаем, какой процент площадей кругов покрывает ромб. Два круга покрыты на 1/6 и еще два – на 1/3. Все вместе дает площадь одного круга с радиусом 1, то есть π.
Соотношение покрытой кругами площади к общей площади равно
Назад: Глава 14 Пифагор и ферма
Дальше: Глава 16 Платоновы тела