Глава 16
Платоновы тела
Равносторонний треугольник – это геометрическая фигура, состоящая из трех равных между собой отрезков, пересекающихся под углом 60°. Квадрат – фигура, состоящая из четырех равных между собой отрезков, пересекающихся под углом 90°. Это примеры правильных многоугольников – фигур, состоящих из равных между собой прямых отрезков, пересекающихся под равными углами. На рисунке изображен правильный семиугольник (гептагон).
Некоторые дорожные знаки (например, знак «Движение без остановки запрещено») имеют форму правильного восьмиугольника (октагона).
Задумавшись на секунду, мы поймем, что правильных многоугольников бесконечно много: существует правильный n-угольник при любом натуральном n ≥ 3.
Мы вычерчиваем многоугольники на плоскости. А как насчет родственных им фигур в трехмерном пространстве?
Многогранники
«Перешедшие на следующий уровень» многоугольники в трехмерном пространстве называют многогранниками (или полиэдрами). Многогранник – это пространственная фигура с плоскими гранями, каждая из которых представляет собой многоугольник. Среди наиболее известных многогранников – треугольная призма и пирамида с квадратным основанием. Треугольная призма состоит из трех прямоугольников и двух треугольников. Пирамида состоит из четырех треугольников и одного квадрата.
Как расширить идею правильного многоугольника на пространственные фигуры? Правильный многогранник имеет конгруэнтные грани и углы.
Расширение до трех измерений требует, чтобы все части многогранника были конгруэнтны между собой. Таким образом:
– все ребра многогранника равны между собой;
– все углы, под которыми пересекаются два ребра, равны между собой;
– в каждой вершине пересекается одинаковое число ребер;
– все углы между соседними гранями равны между собой.
Из первых двух условий следует, что все грани правильного многогранника конгруэнтны и представляют собой правильные многоугольники.
Наверное, самый известный правильный многогранник – это куб, состоящий из шести граней, каждая из которых представляет собой правильный четырехугольник (квадрат). На рисунке изображены еще четыре правильных многогранника.
• Тетраэдр состоит из 4 равных между собой треугольников.
• Октаэдр состоит из 8 равных между собой треугольников (вообразите, что вы склеили две пирамиды с квадратным основанием).
• Додекаэдр образован 12 правильными пятиугольниками.
• Икосаэдр состоит из 20 равносторонних треугольников.
На рисунке изображены развертки правильных многогранников. Вы можете перерисовать эти фигуры, вырезать их и склеить бумажные модели. В продаже бывают наборы для изготовления правильных многогранников.
Пять правильных многогранников известны под названием платоновы тела. Существуют ли другие правильные многогранники?
На рисунке вы видите звездчатый икосаэдр, чьи грани представляют собой равносторонние треугольники, однако эта пространственная фигура не является правильным многогранником, потому что не все грани пересекаются под равными углами, и не во всех вершинах пересекается одинаковое число ребер (при острых углах пересекаются три ребра, а в звездчатом центре – десять ребер).
Найти другие правильные многогранники нам поможет чудесная формула, названная в честь Леонарда Эйлера (мы впервые познакомились с ним в главе 7).
Формула Эйлера для многогранников
У многоугольника столько же углов, сколько сторон. Ситуация с многогранниками сложнее: у них есть вершины, ребра и грани. В таблице указано, сколько каких элементов есть у многогранников, с которыми мы познакомились в этой главе:
Изучите таблицу повнимательней. Видите ли вы взаимосвязь между количеством вершин, ребер и граней? Она есть, и достаточно простая. Ответ вы найдете ниже, но гораздо интереснее вывести формулу самостоятельно. Обозначьте количество вершин, ребер и граней буквами V, E и F соответственно.
А пока вы размышляете над выводом формулы соотношения между V, E и F, я сверю данные в таблице. Для простой пространственной фигуры (например, для пирамиды) посчитать количество составляющих ее частей несложно: пять вершин (четыре у основания и одна сверху), восемь ребер (опять-таки четыре у основания и еще четыре, ведущие наверх) и пять граней (четыре треугольника, один квадрат). Тетраэдр и призма тоже не вызывают затруднений. О кубе и говорить нечего – все мы с ним знакомы. У куба восемь вершин (четыре снизу, четыре сверху), 12 ребер (четыре внизу, четыре вверху и четыре вертикальных), 6 граней (мы все играли в кости).
Другие многогранники сложнее себе представить. Ради простоты можно расплющить их следующим образом: представьте, что многогранник пустой изнутри и мы вырезаем ножницами одну из граней, а потом растягиваем многогранник, пока он не станет плоским. На рисунке показано, что получится в итоге.
Начнем с октаэдра. На рисунке ясно видно: V = 6. Во время подсчета граней легко ошибиться и сказать, что их семь, но не будем забывать об одной вырезанной грани. Таким образом, F = 8.
А вот маленький трюк для подсчета ребер. Пометьте штрихом ребра, сходящиеся у каждой вершины, таким образом:
Сколько штрихов на рисунке? У каждой вершины сходятся по четыре ребра, поэтому количество штрихов в четыре раза больше количества вершин: 4 × V = 4 × 6 = 24. С другой стороны, на каждом ребре по два штриха, и если количество штрихов равно 2E, то E = 12.
Продолжим в том же духе с икосаэдром. На плоском рисунке мы видим три вершины у острых углов, шесть, образующих правильный шестиугольник, и еще три в центре. Итого V = 3 + 6 + 3 = 12. Посчитаем грани: 9 треугольников на плоском рисунке имеют вершины при острых углах, вершины еще 9 совпадают с вершинами шестиугольника, плюс еще один треугольник лежит в сердцевине. Итого 9 + 9 + 1 = 19, и не будем забывать про вырезанную грань; таким образом, F = 20. Для подсчета ребер мы используем трюк со штрихами. Пометив ребра, сходящиеся у вершин, мы нанесем в общей сложности 5 × 12 = 60 штрихов, по пять около каждой вершины. Поскольку на каждом ребре оказалось по два штриха, E = 30.
Пришло время вернуться к великолепной формуле, показывающей соотношение вершин, ребер и граней многогранников; впервые она была открыта Эйлером, а теперь (я надеюсь) ее заново открыли вы.
Отмечу, что сумма количества вершин и граней на 2 больше количества ребер. Например, у куба V = 8, а F = 6, следовательно, V + F = 14, что на 2 больше E = 12. Таким образом, V + F = E + 2. Обычно формулу Эйлера записывают следующим образом:
V – E + F = 2. (A)
Посмотрим, как это работает.
Мы расплющили наши многогранники, вынув одну грань и растянув то, что осталось. Количество областей на плоском рисунке в точности равно количеству граней F: вынутая грань соответствует всему контуру целиком, другие грани соответствуют контурам внутри. Таким образом, количество вершин, ребер и областей равно V, E и F соответственно. Алгебраическое выражение V – E + F имеет определенное числовое значение; сейчас я постараюсь убедить вас, что оно неизменно равно 2.
Для начала я сотру одно ребро. Что произойдет с количеством вершин, ребер и областей? Количество вершин не поменялось – я всего лишь стер ребро. Количество ребер, естественно, уменьшилось на 1. А что произошло с количеством граней? Как можно видеть на рисунке, две грани по обе стороны исчезнувшего ребра слились в одну грань, так что количество граней уменьшилось на единицу.
Обозначим количество вершин/ребер/граней на новом рисунке через V', E' и F'. Что мы имеем?
V' = V,
E' = E – 1,
F' = F – 1.
Следовательно, V' – E' + F' = V – (E – 1) + (F – 1) = V – E + F.
Если я докажу, что V' – E' + F' = 2, то и V – E + F = 2.
Моя стратегия такова: я стану стирать всё новые и новые ребра. Всякий раз количество ребер и количество граней будет уменьшаться на единицу. Но мне следует проявить осторожность. Рано или поздно я дойду до ребра, слева и справа от которого будет одна и та же область; поглядите на жирную черточку на рисунке. Я не должен стирать ребра таким образом, чтобы рисунок оказался разбит на несколько не связанных между собою замкнутых областей.
Сколько бы ребер я ни стер, число V – E + F (чему бы оно ни было равно) останется неизменным.
В конце концов все области сольются в одну (в наших обозначениях F = 1), и я не смогу безболезненно извлечь больше ни одного ребра (посмотрите на рисунок). После этого я перейду ко второй части своих разрушительных поисков.
На рисунке больше нет замкнутых областей. Я возьму любую вершину наугад и отправлюсь в вояж по ребрам и вершинам. Этот путь не сможет привести меня в исходную вершину, поскольку замкнутых областей больше нет; рано или поздно он закончится (так как количество вершин конечно), в некоторой вершине он зайдет в тупик. Эту вершину называют лист.
Я начну срывать листья и отламывать «ветки», на которых они держатся. Что произойдет с числом V – E + F? Количество вершин будет уменьшаться на 1 (сорванный лист), количество ребер тоже будет уменьшаться на 1 (сорванная «ветвь»), а количество граней останется неизменным (у нас всего одна грань). Иными словами,
V' = V – 1,
E' = E – 1,
F' = F = 1.
Таким образом, V' – E' + F' = (V – 1) – (E – 1) + F = V – E + F. Чему бы ни было равно число V – E + F, после уничтожения очередного листа и ребра оно останется прежним.
Сколько бы листов и соответствующих им ребер я ни стирал, замкнутых областей на рисунке не появится. Я буду выбирать новый лист, стирать его и соответствующее ребро и т. д. В конце концов на графе останется всего одна вершина. Но число V – E + F не поменяется.
Подведу итог. Я расплющил многогранник. Удалил ребра таким образом, чтобы замкнутые области не оставались изолированными друг от друга; в конце концов число замкнутых областей свелось к нулю; значения V, E и F менялись, но число V – E + F оставалось неизменным. Дальше я стал срывать листья и стирать соответствующие им ребра, пока не осталась одна-единственная уцелевшая вершина. И вновь значения V, E и F менялись, но число V – E + F прошло без потерь сквозь все катаклизмы. Итак, у меня есть одна вершина, одна область (ничем не ограниченное пространство вокруг этой вершины) и ни одного ребра. Иными словами, в финале моих деструктивных операций V = 1, E = 0, F = 1. Если я подставлю эти числа в формулу V – E + F, то получу 2. Так я подтвердил тождество (A) – формулу Эйлера для многогранников!
Есть там кто еще?
Мы познакомились с пятью правильными многогранниками: тетраэдром, кубом, октаэдром, додекаэдром и икосаэдром. С помощью формулы (A) я покажу, что других правильных многогранников не существует.
Я буду использовать пять букв для параметров правильного многогранника. Первые три вам хорошо знакомы: V – количество вершин, E – количество ребер и F – количество граней. Все грани правильного многогранника – правильные многоугольники; обозначим количество сторон каждой из граней буквой n. В каждой вершине сходится одинаковое число ребер; обозначим его буквой r.
Вот параметры для платоновых тел:
Давайте проработаем алгебраические взаимосвязи между этими числами.
Во-первых, напомню формулу Эйлера:
V – E + F = 2. (A)
Во-вторых, мы будем использовать прием со штрихами, чтобы выяснить соотношение между E, V и r. Пометим штрихом оба конца каждого ребра. Общее количество штрихов – 2E. Кроме того, мы нанесем r штрихов возле каждой вершины, обозначив сходящиеся там ребра; всего у нас будет rV штрихов. Если все проделать аккуратно, оба числа совпадут:
2E = rV. (B)
В-третьих, выясним соотношение между E, F и n. Нам снова поможет прием со штрихами, но на сей раз мы станем наносить их, постепенно двигаясь по граням. Будем поочередно помечать штрихом ребра каждой грани. Как и раньше, на каждом ребре окажется по два штриха (так как оно отделяет две грани). Итак, с одной стороны, количество штрихов 2E, а с другой стороны, количество штрихов nF (n штрихов на каждой из F граней). Таким образом,
2E = nF. (C)
Давайте убедимся, что формулы (A), (B) и (C) верны для додекаэдра:
V – E + F = 20–30 + 12 = 2;
2E = 2 × 30 = 60 = 3 × 20 = rV;
2E = 2 × 30 = 60 = 5 × 12 = nF.
Сделаем еще кое-что.
Исходя из (B), мы имеем
а исходя из (C), мы получаем
Подставим эти значения в формулу (A):
Поделим на 2E:
Прибавим к обеим частям 1/2:
Эту формула нам скоро понадобится.
Соотношение (D) показывает, что
r и
n не могут быть слишком большими числами. Например, нет такой ситуации, при которой
r =
n = 5, потому что тогда
что не больше 1/2. Давайте подумаем над возможными значениями
r и
n.
Вначале отметим, что r и n должны быть равны по меньшей мере 3. Грани – это многоугольники, и первая фигура в ряду n-угольников – треугольник. Многогранник – пространственная фигура; если r = 2, то в одной вершине встречаются всего два ребра; в случае с объемной фигурой необходимо r ≥ 3.
Переберем все возможные значения n:
Итак, есть всего 5 пар (n, r): (3, 3), (3, 4), (3, 5), (4, 3) и (5, 3).
Обладая значениями
n и
r, мы можем вычислить значение
E (исходя из формулы
и затем вывести
V и
F, используя формулы (B) и (C). Вот выкладки для всех пяти случаев:
Исходя из (B), 2E = rV. Следовательно, 12 = 3V, и V = 4.
Исходя из (C), 2E = nF. Следовательно, 12 = 3F, и F = 4.
Вывод: (n, r) = (3, 3) означает, что (V, E, F) = (4, 6, 4). Единственная возможность склеить четыре равносторонних треугольника в пространственную фигуру – это тетраэдр;
Исходя из (B), 2E = rV. Следовательно, 24 = 4V, и V = 6.
Исходя из (C), 2E = nF. Следовательно, 24 = 3F, и F = 8.
Вывод: (n, r) = (3, 4) означает, что (V, E, F) = (6, 12, 8). Единственный способ склеить восемь равносторонних треугольников в пространственную фигуру так, чтобы в каждой вершине сходились четыре ребра, – это октаэдр;
Исходя из (B), 2E = rV. Следовательно, 60 = 5V, и V = 12.
Исходя из (C), 2E = nF. Следовательно, 60 = 3F, и F = 20.
Вывод: (n, r) = (3, 5) означает, что (V, E, F) = (12, 30, 20). Единственный способ склеить 20 равносторонних треугольников так, чтобы в каждой вершине сходились пять ребер, – это икосаэдр;
– (n, r) = (5, 3): вычисления опять-таки похожи; (V, E, F) = (20, 30, 12). Единственный способ склеить 12 правильных пятиугольников так, чтобы в каждой вершине сходились 5 ребер, – это додекаэдр.
С помощью великолепной формулы Эйлера и незамысловатых алгебраических выкладок мы доказали, что не существует других правильных многогранников, кроме пяти платоновых тел!
Архимедовы тела
Грани правильного многогранника должны быть одинаковыми правильными многоугольниками, но если мы ослабим это условие, обнаружится новая разновидность многогранников. Пусть грани будут по-прежнему правильными многоугольниками, но не обязательно одинакового типа. Вместо этого введем условие симметрии: многогранник должен выглядеть одинаково, какую вершину ни возьми. Будем называть такие многогранники полуправильными.
Например, мы можем изготовить призму из двух равносторонних треугольников и четырех квадратов. Вершины призмы ничем не отличаются друг от друга: в каждой сходятся два квадрата и один треугольник.
Мы можем изготовить и другие призмы. Например, соединить два правильных пятиугольника, лежащих в параллельных плоскостях, четырьмя квадратами.
Таким образом, семейство полуправильных многогранников оказывается бесконечно большим.
Есть и другое бесконечное семейство. Возьмем два правильных n-угольника (например, два пятиугольника), лежащих в параллельных плоскостях, но слегка повернутых друг относительно друга. Соединим их вершины зигзагом и получим хоровод треугольников. Если мы правильно рассчитаем расстояние между двумя основаниями, треугольники будут равносторонними. Многогранники, построенные таким образом, называют антипризмами.
Одно из платоновых тел – призма, еще одно – антипризма. Догадываетесь, какие именно? Ответ будет в конце главы.
Призмы, антипризмы и платоновы тела – не единственные полуправильные многогранники. Ко всему прочему есть тринадцать архимедовых тел. Вы легко найдете в интернете, как все они выглядят; сейчас же мы поговорим всего лишь об одном из них.
Если срезать угол икосаэдра, сечение будет иметь форму правильного пятиугольника, потому что в каждой вершине встречаются пять треугольников. Если мы срежем все 12 углов, 20 треугольных граней превратятся в шестиугольники. Если делать срезы аккуратно, стороны шестиугольников окажутся равны между собой. В итоге мы получим усеченный икосаэдр. Если мы сошьем из кожи усеченный икосаэдр, раскрасим шестиугольники белым, а пятиугольники черным и закачаем внутрь воздух, то получится футбольный мяч!