Тригонометрия и окружность
Пока что наши знания о тригонометрических функциях ограничиваются прямоугольными треугольниками. Для решения повседневных задач этого, в принципе, более чем достаточно. Но разве вам не интересно узнать, как они ведут себя в других углах, а не только в тех, значения которых колеблются исключительно в диапазоне от 0° до 90° (ведь в прямоугольном треугольнике один из углов всегда прямой, а два оставшихся – острые)? Конечно, интересно, и именно этим мы и займемся в этом разделе – посмотрим на тригонометрические функции через призму единичного круга и разберемся в особенностях поведения синусов, косинусов и тангенсов углов других типов.
Надеюсь, вы не забыли, что единичным называется такой круг, радиус которого равен 1, а центр расположен в точке начала координат (0, 0). Для него отлично работает уравнение x² + y² = 1, которое получилось у нас в прошлой главе из теоремы Пифагора.
Давайте попробуем найти некую точку (x, y), расположенную на окружности выше и левее точки (1, 0) и образующую с центром круга и осью x острый угол A:
Для того чтобы найти x и y, нам нужно начертить прямоугольный треугольник и применить к нему наши формулы косинусов и синусов:
Другими словами, значения координат (x, y) составят (cos A, sin A). Если обобщать, то при радиусе, равном r, (x, y) = (r cos A, r sin A).
Для любого угла A нам нужно определить (cos A, sin A), то есть место расположения на окружности его вершины. При этом cos A будет соответствовать значению координаты по оси x, а sin A – по оси у, вот так:
А вот еще одно общее представление. Только теперь мы разделим единичный круг на много углов с шагом 30° (и сделаем один шаг в 45° для большей наглядности) – так мы получим углы из уже очень хорошо знакомых нам треугольников. Помните, я советовал вам выучить значения косинусов и синусов для углов 0°, 30°, 45°, 60° и 90°?
К углам этим можно прийти с помощью простого отражения значений, содержащихся в первой четверти окружности.
Прибавление или вычитание 360° на величину угла никак не повлияет (мы просто обойдем вокруг него с одной или другой стороны), а значит, для любого ∠A
sin (A ± 360°) = sin A cos (A ± 360°) = cos A
Имея дело с отрицательными значениями углов, мы двигаемся по окружности слева направо: так, угол, равный –30°, ничем, по сути, не отличается от угла, равного 330°. Обратите внимание, что сдвиг на A градусов по часовой стрелке приводит нас к той же x-координате, что и сдвиг на те же A градусов против часовой стрелки. Y-координата же при этом сменит знак на противоположный. Другими словами, для любого значения угла A
cos (–A) = cos A sin (–A) = –sin A
Например,
cos (–30°) = cos 30° = √3/2 sin (–30°) = –sin 30° = –1/2
Обратное происходит, когда мы «отзеркаливаем» ∠A через ось y. Значение y-координаты получившегося таким образом дополнительного угла 180 – A остается неизменным, а значение x-координаты меняет знак на противоположный. То есть
cos (180 – A) = –cos A sin (180 – A) = sin A
Скажем, при A = 30°
cos 150° = –cos 30° = –√3/2 sin 150° = sin 30° = 1/2
Остальные тригонометрические функции определяются по старой схеме (например, tan A = sin A/cos A).
Оси x и y «разрезают» поверхность окружности на четыре сектора-квадранта. Пронумеруем их римскими цифрами по часовой стрелке – I, II, III и IV, – начиная с правой верхней, то есть с диапазона углов от 0° до 90°. Квадрант II, таким образом, охватит диапазон от 90° до 180°, квадрант III – от 180° до 270°, а квадрант IV – от 270° до 360°. Обратите внимание, что в разных квадрантах разные тригонометрические функции будут вести себя по-разному: положительные значения синуса мы получим в квадрантах I и II, косинуса – в квадрантах I и IV, тангенса – в квадрантах I и III. Чтобы это запомнить, некоторые из моих учеников любят повторять «Все студенты таскают калькуляторы» (посмотрите на первые буквы в каждом слове этой «запоминалки»: «в» – «все функции» в квадранте I, «с» – «синусы» в квадранте II, «т» – «тангенсы» в квадранте III, «к» – «косинусы» в квадранте IV).
Ну и еще немного терминологии. Для определения неизвестных значений углов нужны обратные тригонометрические (циклометрические, круговые) функции. Например, обратным синусом 1/2 будет sin–1(1/2). Такого рода функция говорит нам, что мы имеем дело с неким ∠A, синус которого равен 1/2. А так как мы знаем, что sin 30° = 1/2, получаем
sin–1(1/2) = 30°
Функция sin–1 (которая также называется арксинусом) всегда даст нам угол в диапазоне от –90° до 90°, но мы-то с вами знаем, что есть и другие углы с тем же значением синуса – синус 150°, например, будет также равен 1/2. То же происходит и с любым кратным 360° значением, прибавляемым к 30° или 150° – синусы будут равны.
Для треугольника с длинами сторон 3, 4 и 5 (см. рисунок) калькулятор может рассчитать ∠A тремя различными способами, каждый из которых будет основан на своей обратной функции:
∠A = sin–1(3/5) = cos–1(4/5) = tan–1(3/4) ≈ 36,87° ≈ 37°
Самое время применять все эти знания на деле. В «геометрической» главе мы доказали теорему Пифагора, с помощью которой можно вычислить длину гипотенузы прямоугольного треугольника, зная длины его катетов. Здесь же, в главе «тригонометрической», мы можем сделать практически то же самое для любого треугольника. В этом нам поможет закон косинусов.
Теорема (закон косинусов): Длина стороны c любого треугольника ABC, в котором стороны a и b образуют ∠C, соответствует
c² = a² + b² – 2ab cos C.
Для примера взгляните на изображенный ниже треугольник ABC. Между двумя его сторонами с длинами 21 и 26 лежит угол 15°. Согласно закону косинусов, длина третьей стороны с составит
c² = 21² + 26² – 2(21)(26) cos 15°
А так как cos 15° ≈ 0,9659, уравнение упрощается сначала до c² = 62,21, а потом и до c ≈ 7,89.
Отступление
Доказательство: Чтобы доказать эту теорему, рассмотрим три частных случая – в зависимости от того, будет ли ∠C прямым, острым или тупым. Если ∠C – прямой, его косинус будет равен cos 90° = 0, что упрощает закон косинусов до c² = a² + b², то есть до уже доказанной нами теоремы Пифагора.
Если ∠C – острый (как на рисунке), опустим перпендикуляр из ∠B к стороне AC до лежащей на ней точки D. Получим два треугольника. Применим теорему Пифагора к CBD – a² = h² + x² и придем к
h² = a² – x²
Треугольник же ABD можно просчитать как c² = h² + (b – x)² = h² + b² – 2bx + x², то есть
h² = c² – b² + 2bx – x²
Составим из двух равных h² частей уравнение:
c² – b² + 2bx – x² = a² – x²
Следовательно,
c² = a² + b² – 2bx
В треугольнике CBD cos C = x/a, поэтому x = a cos C. Следовательно, если ∠C является острым, то
c² = a² + b² – 2ab cos C
Если же ∠C – тупой, дополним треугольник ABC прямоугольным треугольником CBD, как на рисунке:
Для него, как и для получившегося большого, верна теорема Пифагора: a² = h² + x² и c² = h² + (b + x)². Как и в случае с острым ∠C, соединим уравнения:
c² = a² + b² + 2bx
В треугольнике CBD cos (180° – C) = x/a, то есть x = a cos (180° – C) = –a cos C. И мы вновь приходим к искомому:
c² = a² + b² – 2ab cos C☺
Кроме того с помощью функций можно рассчитать площадь треугольника.
Сопутствующая теорема: В любом треугольнике ABC со сторонами a и b и лежащим между ними ∠C
Отступление
Доказательство: Площадь треугольника с длиной основания
b и высотой
h равна
Все три треугольника, рассмотренные при доказательстве закона косинусов, имеют основание
b. Определим высоту
h. В остроугольном треугольнике обратим внимание на то, что sin
C =
h/
a, то есть
h =
a sin
C. В тупоугольном треугольнике sin (180° –
C) =
h/
a, поэтому опять имеем
h =
a sin (180° –
C) =
a sin
C. В прямоугольном же треугольнике
h =
a, что равно
a sin
C, потому что
C = 90°, а sin 90° = 1. Следовательно, так как во всех трех случаях
h =
a sin
C, площадь треугольников составит
что и требовалось доказать.
Следствия этой теоремы очевидны:
Другими словами, в треугольнике ABC (sin C)/c равен его удвоенной площади, разделенной на произведение длин трех его сторон. Какой угол выбрать, по большому счету не так уж и важно – (sin B)/b или (sin A)/a дадут нам тот же результат. И это доказывает одну очень полезную теорему.
Теорема (закон синусов): В любом треугольнике ABC, длины сторон которого соответственно равны a, b и c,
Закон синусов – это еще один способ вычислить высоту нашей горы. На этот раз мы сосредоточимся на a – диагонали, пролегающей между нами и вершиной:
Способ № 5 (закон синусов): В треугольнике ABD ∠BAD = 32°, а ∠BDA = 180° – 40° = 140°. Следовательно, ∠ABD = 8°. Согласно закону синусов получаем
Умножим обе части на sin 32°, что даст нам a = 300 sin 32°/ sin 8° ≈ 1143 метров. А так как sin 40 ≈ 0,6428 = h/a, то
h = a sin 40 ≈ (1143)(0,6428) = 735
что полностью совпадает с ответом, к которому мы пришли в прошлом разделе.
Отступление
Не менее замечательна в этом отношении формула Герона, с помощью которой можно найти площадь треугольника по длинам его сторон a, b и c. Сначала мы находим полупериметр p:
А потом и площадь S:
S = √p(p – a)(p – b)(p – c)
Например, если взять треугольник со сторонами 3, 14 и 15 (узнаете первые пять цифр числа π?), полупериметр будет равен (3 + 14 + 15)/2 = 16, а площадь, таким образом, – √(16(16 – 3)(16 – 14)(16 – 15)) = √416 ≈ 20,4.
Несложно, правда? Уверен, внимательный читатель не сможет не заметить здесь закон косинусов, слегка приправленный алгеброй.