Книга: Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Назад: Глава 6. Великое соединение
Дальше: Глава 8. Не лишено некоторого интереса

Глава 7. Золотой Ключ и улучшенная Теорема о распределении простых чисел

I.
Внимательный читатель уже, должно быть, заметил, что математические главы этой книги развиваются по двум основным колеям. Главы 1 и 5 были целиком посвящены различным бесконечным рядам, приводящим к математическим объектам, которые Риман назвал дзета-функцией. А в главе 3, посвященной простым числам, отталкиваясь от заглавия работы Римана 1859 года, мы рассмотрели Теорему о распределении простых чисел (ТРПЧ). Эти два предмета — дзета-функция и простые числа, — очевидно, связны в силу того интереса, который к ним проявлял Риман. В самом деле, определенным образом связав одну концепцию с другой и повернув Золотой Ключ, Риман открыл целую область аналитической теории чисел. Но как он это сделал? Какова связь? Что именно представляет собой Золотой Ключ? В данной главе я намерен ответить на этот вопрос — предъявить вам Золотой Ключ. После этого мы начнем готовиться к повороту Золотого Ключа, рассмотрев улучшенный вариант ТРПЧ.

 

II.
Начинается все с «решета Эратосфена». Золотой Ключ по существу представляет собой способ, которым Леонард Эйлер сумел выразить решето Эратосфена в терминах анализа.
Эратосфен из Кирены (в настоящее время — городок Шаххат в Ливии) был одним из библиотекарей великой александрийской библиотеки. Около 230 года до P.X. — примерно через 70 лет после Эвклида — он разработал свой знаменитый метод решета для нахождения простых чисел.
Работает этот метод следующим образом. Сначала выпишем все целые числа, начиная с 2. Разумеется, нельзя выписать их все, поэтому остановимся на сотне с небольшим.
  2   3   4   5   6   7   8   9  10  11
 12  13  14  15  16  17  18  19  20  21
 22  23  24  25  26  27  28  29  30  31
 32  33  34  35  36  37  38  39  40  41
 42  43  44  45  46  47  48  49  50  51
 52  53  54  55  56  57  58  59  60  61
 62  63  64  65  66  67  68  69  70  71
 72  73  74  75  76  77  78  79  80  81
 82  83  84  85  86  87  88  89  90  91
 92  93  94  95  96  97  98  99 100 101
102 103 104 105 106 107 108 109 110 111
Теперь, начиная с 2 и сохраняя при этом саму двойку в неприкосновенности, уберем каждое второе число после 2.
  2   3   .   5   .   7   .   9   .  11
  .  13   .  15   .  17   .  19   .  21
  .  23   .  25   .  27   .  29   .  31
  .  33   .  35   .  37   .  39   .  41
  .  43   .  45   .  47   .  49   .  51
  .  53   .  55   .  57   .  59   .  61
  .  63   .  65   .  67   .  69   .  71
  .  73   .  75   .  77   .  79   .  81
  .  83   .  85   .  87   .  89   .  91
  .  93   .  95   .  97   .  99   . 101
  . 103   . 105   . 107   . 109   . 111
Первое выжившее число после двойки — это 3. Сохраняя теперь 3 в неприкосновенности, удалим каждое третье число после 3, если оно еще не удалено. Получим
  2   3   .   5   .   7   .   .   .  11
  .  13   .   .   .  17   .  19   .   .
  .  23   .  25   .   .   .  29   .  31
  .   .   .  35   .  37   .   .   .  41
  .  43   .   .   .  47   .  49   .   .
  .  53   .  55   .   .   .  59   .  61
  .   .   .  65   .  67   .   .   .  71
  .  73   .   .   .  77   .  79   .   .
  .  83   .  85   .   .   .  89   .  91
  .   .   .  95   .  97   .   .   . 101
  . 103   .   .   . 107   . 109   . 111
Первое выжившее число после тройки — это 5. Сохраняя теперь 5 в неприкосновенности, удалим каждое пятое число после 5, если оно еще не удалено. Получим
  2   3   .   5   .   7   .   .   .  11
  .  13   .   .   .  17   .  19   .   .
  .  23   .   .   .   .   .  29   .  31
  .   .   .   .   .  37   .   .   .  41
  .  43   .   .   .  47   .  49   .   .
  .  53   .   .   .   .   .  59   .  61
  .   .   .   .   .  67   .   .   .  71
  .  73   .   .   .  77   .  79   .   .
  .  83   .   .   .   .   .  89   .  91
  .   .   .   .   .  97   .   .   . 101
  . 103   .   .   . 107   . 109   . 111
Первое выжившее число — это 7. Следующий шаг состоит в том, чтобы, сохраняя теперь 7 в неприкосновенности, удалить каждое седьмое число после 7, если его еще не удалили до этого. Первое число, которое выживает после этого, — 11. И так далее.
Если проводить эту процедуру бесконечно, то оставшимися числами будут все простые числа. В этом и состоит «решето Эратосфена». Если остановиться прямо перед тем, как пришло время обрабатывать простое число p — другими словами, прямо перед тем, как надо будет удалять каждое p-е число, если оно еще не было удалено, — то мы получим все простые числа, меньшие p2. Поскольку выше мы остановились прямо перед обработкой семерки, у нас имеются все простые до 72, т.е. 49. После этого числа остаются и не простые числа, такие как 77.

 

III.
Решето Эратосфена — вещь достаточно простая. И ему уже 2230 лет. Как же оно перенесет нас в середину XIX века, к глубоким результатам в теории функций? А вот как.
Я собираюсь повторить только что проведенную процедуру. (Именно по этой причине мы разобрали ее столь тщательно.) Но на этот раз я применю ее к дзета-функции Римана, которую мы определили в конце главы 5. Дзета-функция от некоторого аргумента s, большего единицы, записывается как
Стоит заметить, что такая форма записи предполагает выписывание всех положительных целых чисел — в точности как в начале наших действий с решетом Эратосфена (с тем только исключением, что на сей раз включена 1).
Сделаем такое: умножим обе части равенства на . Получим
где мы пользовались 7-м правилом действий со степенями (которое говорит, например, что 2s умножить на 7s равно 14s). А теперь вычтем второе из этих выражений из первого. В одну из левых частей входит ζ(s) с множителем 1, а в другую — та же ζ(s) с множителем . Вычитая, получаем
Вычитание устранило из бесконечной суммы все члены с четными числами. Остались только члены, в которые входят нечетные числа.
Вспоминая решето Эратосфена, умножим теперь обе части порченного равенства на , руководствуясь тем, что 3 — это первое выжившее число в правой части:
Теперь вычтем это выражение из того, которое мы получили ранее. При вычитании левых частей будем рассматривать  как неделимую штуку, — просто как некоторое число (каковым оно, конечно, и является при любом заданном s). Вся эта штука входит в левую часть одного выражения с множителем 1, а в левую часть другого — с множителем . Вычитая, получаем
Из бесконечной суммы исчезли все члены, содержащие числа, кратные тройке! Первое выжившее число — это теперь 5.
Умножив теперь обе части полученной формулы на , будем иметь
А теперь, вычитая это равенство из предыдущего и рассматривая на этот раз  как неделимую конструкцию, видим, что в левую часть одного выражения она входит с множителем 1, а в левую часть другого — с множителем . Вычитание дает
Все слагаемые с числами, кратными 5, исчезли при вычитании, и первое выжившее число в правой части — это 7.
Замечаете сходство с решетом Эратосфена? Но вы должны заметить и отличие. При работе с исходным решетом мы оставляли сами простые числа в неприкосновенности, удаляя только их кратные — числа, полученные из них умножением на 2, 3, 4, …. Здесь же при вычитании мы устраняем из правой части как само простое число, так и все его кратные.
Если продолжать описанную процедуру до достаточно большого простого числа, скажем, до 997, мы получим
Теперь заметим, что если s — любое число, большее единицы, то правая часть этой формулы совсем ненамного больше чем просто 1. Например, при s = 3 правая часть этой формулы равна 1,00000006731036081534… Поэтому выглядит довольно правдоподобным предположение, что если продолжать указанный процесс до бесконечности, то для любого числа s большего 1 получится следующий результат (7.1):
где в левой части содержится ровно одно выражение в скобках для каждого простого числа, причем эти скобки продолжаются налево без конца. Теперь поделим обе части полученного выражения последовательно на каждую из этих скобок (7.2):

 

IV.
Это — Золотой Ключ. Чтобы он предстал перед нами во всей красе, давайте немного его почистим. Дроби с дробными знаменателями нравятся мне ничуть не больше, чем вам, а кроме того, есть еще полезные математические приемы, которые позволят нам сэкономить на наборе формул.
Прежде всего вспомним 5-е правило действий со степенями: оно говорит, что a−N есть 1/aN и a−1 есть 1/a. Поэтому выражение можно записать поаккуратнее:
ζ(s) = (1 − 2−s)−1×(1 − 3−s)−1×(1 − 5−s)−1×(1 − 7−s)−1×(1 − 11−s)−1×….

Есть даже еще лучший способ. Вспомним про обозначение ∑, введенное в главе 5.viii. Когда мы складываем компанию слагаемых единообразной структуры, их сумму можно записать коротко, используя знак ∑; у этого имеется эквивалент для умножения, когда сомножители имеют единообразную структуру: тогда используется знак ∏. Это заглавная греческая буква «пи», используемая в этом качестве из-за слова «product» (произведение). Используя знак ∏, выражение можно переписать таким образом:
Читается это так: «Дзета от s равна взятому по всем простым числам произведению от величины, обратной единице минус p в степени минус s». Подразумевается, что маленькое p под знаком ∏ означает «по всем простым». Вспоминая определение функции ζ(s) в виде бесконечной суммы, можно подставить эту сумму в левую часть и получить
Золотой Ключ (7.3):
И сумма в левой части, и произведение в правой части простираются до бесконечности. Это, кстати, дает еще одно доказательство того факта, что простые числа никогда не кончаются. Если бы они вдруг кончились, то произведение в правой части содержало бы конечное число множителей, и тем самым мы его немедленно вычислили бы как какое-то число при абсолютно любом аргументе s. При s = 1, однако, левая часть представляет собой гармонический ряд из главы 1, сложение членов которого «уводит нас в бесконечность». Поскольку бесконечность в левой части не может равняться конечному числу в правой, количество простых чисел с необходимостью бесконечно.

 

V.
Что же такого — как вы, должно быть, недоумеваете — замечательного, такого неординарного и вызывающего имеется в выражении , что оно удостоилось столь высокопарного имени?
Окончательно это прояснится только в одной из последующих глав, когда мы на самом деле повернем Золотой Ключ. На данный же момент главное, что должно производить впечатление (на математиков оно, во всяком случае, производит большое впечатление), — это что в левой части выражения мы имеем бесконечную сумму, пробегающую все положительные целые числа 1, 2, 3, 5, 6, …, а в правой его части — бесконечное произведение, пробегающее все простые числа 2, 3, 5, 7, 11, 13, ….
Выражение — Золотой Ключ — на самом деле называется «эйлерова формула произведения». Она впервые увидела свет, хотя и в несколько иной обработке, в статье Variae observationes circa series infinorum, написанной Леонардом Эйлером и опубликованной Санкт-Петербургской академией в 1737 году. (Заглавие переводится как «Различные наблюдения о бесконечных рядах». Прочитайте еще раз оригинальное латинское название и убедитесь в справедливости моего тезиса из главы 4.viii о легкости, с которой читается Эйлерова латынь.) Точная формулировка утверждения о Золотом Ключе в той работе такова.
Theorema 8
Si ex serie numerorum primorum sequens formetur expressio
erit eius valor aequalis summae huius seriei
Латынь означает: «Если из последовательности простых чисел образовать следующее выражение…, то его значение будет равно сумме ряда…» Опять же, если вы знакомы с десятком основных латинских окончаний (-orum — родительный падеж; -etur — пассивный залог сослагательного наклонения настоящего времени и т.п.), то эйлерова латынь вас не отпугнет.
Делая наброски идей, из которых выросла данная книга, я сначала полез в математические тексты у себя на книжной полке, чтобы найти доказательство Золотого Ключа, подходящее для читателей, не являющихся специалистами. Я остановился на одном, показавшемся мне подходящим, и включил его в книгу. На более поздней стадии работы над книгой мне подумалось, что стоит, пожалуй, проявить авторское тщание, и я отправился в научную библиотеку (в данном случае — замечательное отделение по наукам, промышленности и бизнесу Нью-Йоркской публичной библиотеки в центре Манхэттена) и отыскал оригинальную статью в собрании трудов Эйлера. Данное им доказательство Золотого Ключа занимает десяток строк и куда проще и изящнее, чем доказательство, которое я извлек из своих учебников. Поэтому я заменил первоначально выбранное доказательство эйлеровым. Доказательство, приведенное в разделе iii этой главы, по сути и есть эйлерово доказательство. Я знаю, что это писательский штамп, но он от этого не перестает быть верным: нет ничего лучше, чем обратиться к первоисточнику.

 

VI.
После того как мы увидели, что же собой представляет Золотой Ключ, пришло время готовиться к тому, чтобы его повернуть. Для этого понадобится вспомнить некоторое количество математики, включая кусочек дифференциального и интегрального исчислений. В оставшейся части данной главы я приведу все, что нужно знать из дифференциального и интегрального исчисления, чтобы понять Гипотезу Римана и оценить ее значение. А затем, обратив необходимость в удобство, я воспользуюсь этими сведениями, чтобы представить улучшенный вариант ТРПЧ — вариант, имеющий более непосредственное отношение к работе Римана.
Обучение дифференциальному и интегральному исчислению традиционно начинается с графика. График, с которого мы начнем, — тот же, что и изображение логарифмической функции в главе 5.iii; теперь он воспроизведен на рисунке 7.1. Представьте себе, что вы — очень маленький (бесконечно малый, если получится представить) гомункулус, взбирающийся вверх по графику логарифмической функции слева направо. Если вы начали свое путешествие из какой-го точки, находящейся недалеко от нуля, то сначала путь вашего восхождения очень крутой и вам требуется скалолазное снаряжение. Но по мере продвижения ландшафт становится более пологим. К тому времени, как вы достигнете аргументов в районе 10, вы можете распрямиться и просто шагать, как на прогулке.
Рисунок 7.1. Функция ln x.
Степень крутизны кривой изменяется от точки к точке. Но в каждой точке наклон кривой имеет определенное численное значение — точно так же, как ваша машина, когда вы разгоняетесь, имеет определенную скорость в каждый данный момент времени — скорость, которую вы фиксируете, бросая взгляд на спидометр. Через мгновение она может слегка измениться, но в каждый определенный момент времени она имеет некоторое определенное значение. Точно так же для любого аргумента в своей области определения (которую составляют все числа, большие нуля) логарифмическая функция имеет некоторый определенный наклон.
Как нам измерить этот наклон и что это такое? Сначала давайте определим «наклон» наклонной прямой линии. Это подъем по вертикали, деленный на смещение по горизонтали. Если, пройдя по горизонтали расстояние в 5 единиц, вы поднялись на 2 единицы вверх, то, значит, наклон равен двум пятым, т.е. 0,4 (рис. 7.2).
Рисунок 7.2. Наклон.
Чтобы найти наклон некоторой кривой в произвольной точке на ней, построим прямую линию, касающуюся кривой в выбранной точке. Ясно, что имеется ровно одна такая прямая. Если я слегка ее «покачаю» (можно представлять себе, что прямая — это стальной стержень, а кривая — стальной обод), то точка касания с кривой слегка сместится. Наклон кривой в данной точке — это наклон этой единственной касательной в этой точке. Для ln x наклон при аргументе x = 10, если вы его измерите, равен 1/10. Наклон при аргументе 20, конечно, меньше этого; измерение дает 1/20. Наклон при аргументе 5 больше — и измерение дает 1/5. На самом деле еще одно поразительное свойство логарифмической функции состоит в том, что при любом аргументе x ее наклон равен 1/x — числу, обратному x (обозначаемому еще как x−1).
Если вы когда-нибудь слушали лекции по дифференциальному исчислению, то все это вам хорошо знакомо. Дифференциальное исчисление в действительности начинается с такого утверждения: из любой функции f можно произвести другую функцию g, которая выражает наклон функции f при любом ее аргументе. Если f — это ln x, то g — это 1/x. Произведенная таким образом функция называется, как ни странно, производной функции f. Например, 1/x — это производная функции ln x. Если вам дали какую-то функцию f, то процесс нахождения ее производной называется дифференцированием.
Дифференцирование — действие, которое подчиняется некоторым простым правилам. Например, оно прозрачно для нескольких основных арифметических операций. Если производная функции f — это g, то производная функции 7f — это 7g. (Так что производная от 7∙ln x равна 7/x.) Производная суммы f + g — это производная функции f плюс производная функции g. Правда, все не совсем так для умножения: производная произведения f и g не равна произведению производной функции f на производную функции g.
Единственные функции, кроме логарифма, производные которых нам понадобятся в этой книге, — это простые степенные функции xN. Приведем без доказательства тот факт, что для любого числа N производная функции xN есть функция NxN−1. Таблица 7.1 дает некоторые производные степенных функций.
Функция Производная
x−3 −3x−4
x−2 −2x−3
x−1 x−2
x0 0
x1 1
x2 2x
x3 3x2
Таблица 7.1. Производные функций xN.
Конечно, x0 — это просто единица, а график этой функции — горизонтальная прямая. У нее нет наклона — точнее, нулевой наклон. Дифференцирование любого фиксированного числа дает нуль. А x1 — это просто x, график же представляет собой прямую, идущую по диагонали вверх и покидающую рисунок через правый верхний угол. Наклон ее повсюду равен 1. Заметим, что нет такой степенной функции, производная которой была бы равна x−1, хотя x0 вроде бы стоит на правильном месте, чтобы дать такую производную. Это неудивительно, поскольку мы уже знаем, что производная ln x есть как раз x−1. Это еще одно свидетельство того, что ln x как будто пытается выдать себя за x0.

 

VII.
Вы, должно быть, помните мои слова о том, что математики обожают все обращать. Если задано выражение P через Q, то как выразить Q через P? Именно так мы исходно и получили логарифмическую функцию — как обращение показательной функции. Если a = eb, тот как найти b через a? Как ln а.
Так вот, предположим, что мы продифференцировали функцию f и получили функцию g. То есть g представляет собой производную функции f. А f представляет собой… (что именно?!) функции g? В чем состоит обращение дифференцирования? Производная ln x — это 1/x, так что ln x — это… (что?) функции 1/x? Ответ: интеграл, вот что. Обращение производной — это интеграл, а обращение дифференцирования — это интегрирование. Поскольку вся эта деятельность прозрачна для умножения на фиксированное число, переворачивание таблицы 7.1 вверх ногами и некоторая ее «доводка» дадут нам обратную операцию, которая и представлена в таблице 7.2. И вообще, если только N не равно −1, то интеграл от функции xN равен xN+1/(N + 1). (Взгляд на таблицу еще раз показывает, как функция ln x изо всех сил старается вести себя как функция x0, каковой она, конечно, не является).
Функция Интеграл
x−3 1/2x−2
x−2 x−1
x−1 ln x
x0 x
x1 1/2x2
x2 1/3x3
x3 1/4x4
Таблица 7.2. Интегралы функций xN.
Если производные годятся для того, чтобы выражать наклон функции — т.е. скорость, с которой функция изменяется в данной точке, — то для чего же годятся интегралы? Ответ: для нахождения площадей под графиками.
Рисунок 7.3. Для чего пригодно интегрирование.
Функция, показанная на рисунке 7.3, а это в действительности функция 1/x4, т.е., другими словами, x−4, — ограничивает собой некоторую площадь между аргументами x = 2 и x = 3. Чтобы найти эту площадь, сначала надо найти интеграл от x−4. Согласно приведенному выше общему правилу, этот интеграл равен −1/3x−3, т.е. −1/(3x3). Эта функция, как и всякая другая, имеет значение для каждого x из своей области определения. Чтобы найти площадь между аргументами 2 и 3, надо вычислить значение интеграла при аргументе 3, затем вычислить значение интеграла при аргументе 2, а потом вычесть второе значение из первого.
При x = 3 значение функции −1/(3x3) равно −1/81, при x = 2 оно составляет −1/24. Вычитаем, не забывая, что вычесть отрицательное число — это все равно что прибавить соответствующее положительное: −1/81 − (−1/24) = 1/241/81, что равно 19/648, т.е. примерно 0,029321.
У математиков есть специальный способ для записи всей этой процедуры: , что читается как «интеграл от икс в минус четвертой степени по дэ-икс от двух до трех». (Не слишком озадачивайтесь этим самым «по » — назначение этих слов состоит в указании, что именно x является основной переменной, с которой мы работаем, и именно ее интеграл надо найти. Если под знаком интеграла окажутся еще другие переменные, то они будут там присутствовать праздно, интегрирование ведется не по ним. В главе 19 у нас появится такой пример.)
Далее. Иногда оказывается возможным отправить правый конец интегрирования на бесконечность, но при этом получить конечную площадь. Это напоминает ситуацию с бесконечными суммами: если значения ведут себя должным образом, такие суммы могут сходиться к конечному значению. То же и здесь. У функций, которые ведут себя должным образом, площадь под кривой может оказаться конечной, несмотря даже на то, что область бесконечно длинная. Интегралы связаны с суммами на глубинном уровне. Даже знак интеграла, впервые использованный Лейбницем в 1675 году, представляет собой вытянутое S, обозначающее «сумму».
Смотрите: предположим, что вместо того, чтобы останавливаться на тройке, мы бы продолжили интегрирование до x = 100. Тогда, поскольку куб числа 100 равен 1 000 000, наше вычисление приобрело бы вид:
(−1/3 000 000) − (−1/24) = 1/241/3 000 000.

Ясно, что если бы мы пошли еще дальше, то второе слагаемое стало бы еще меньше. По мере того как мы спешим к бесконечности, оно постепенно угасает, стремясь к нулю, и у нас есть полное право написать:
Стоит заметить, что, когда интеграл используется для вычисления площади, x исчезает из ответа: вместо x подставляются числа и в ответе получается число.
Вот и все. Клянусь, это все, что нам понадобится из дифференциального и интегрального исчисления. И поскольку ничего нового вводиться не будет, пользоваться дифференциальным и интегральным исчислением мы начнем прямо сейчас. С их помощью мы определим новую функцию, которая чрезвычайно важна в теории простых чисел и дзета-функции.

 

VIII.
Сначала рассмотрим функцию 1/ln t. Ее график показан на рисунке . Обозначение для аргумента заменено с x на t по той причине, что букве x отведена другая роль, чем просто быть бессловесной переменной.
На рисунке затемнена некоторая область под графиком, поскольку мы сейчас устроим небольшое интегрирование. Как только что объяснялось, интегрирование — это способ вычислить площадь под графиком функции. Сначала надо найти интеграл от интересующей нас функции, а потом взять калькулятор. Итак, каков же интеграл от функции 1/ln t?
К сожалению, в домашнем хозяйстве нет обычной функции, которая позволила бы выразить интеграл от 1/ln t. Но интеграл этот весьма важен. Он снова и снова появляется в исследованиях, связанных с Гипотезой Римана. Поскольку нежелательно писать всякий раз, как потребуется эта монструозная конструкция, мы попросту определим новую функцию, выражаемую этим интегралом, и выдадим ей свидетельство, что это добропорядочная и уважаемая функция, ни в чем не уступающая другим своим коллегам.

 

Рисунок 7.4. Функция 1/ln t.
У этой новой функции есть имя: ее зовут интегральный логарифм. Для нее обычно используется обозначение Li(x). (Иногда пишут li(х).) Она определена как функция, выражающая площадь под кривой — то есть под графиком функции 1/ln t — от нуля до x.
Здесь не обошлось без некоторой ловкости рук, потому что у функции 1/ln t нет значения при t = 1 (из-за того что логарифм единицы равен нулю). Я обойду эту сложность, не углубляясь в нее, — просто заверю вас, что имеется некоторый способ привести все в порядок. Надо еще заметить, что при вычислении интегралов области ниже горизонтальной оси считаются отрицательными, так что по мере увеличения t область справа от 1 «тратится» на сокращение области слева от 1. Другими словами, Li(x) выражается затемненной областью на рисунке , причем отрицательный вклад в площадь, набираемый слева от = 1, гасится положительным вкладом от площади справа от t = 1 (когда x лежит справа).
На рисунке 7.5 показан график функции Li(x). Мы видим, что она принимает отрицательные значения, когда x меньше единицы (поскольку соответствующая площадь на рисунке дает отрицательный вклад), но по мере того, как x уходит направо от 1, положительный вклад в площадь постепенно сокращает отрицательный, так что Li(x) возвращается из отрицательной бесконечности, достигает нуля (т.е. отрицательный вклад в площадь полностью сокращается) при аргументе x = 1,4513692348828…, а после этого уже постоянно возрастает. Наклон этой функции в каждой точке равен, конечно, 1/ln x. А это, как мы видели в главе 3.ix, есть вероятность того, что целое число в окрестности числа x окажется простым.
Рисунок 7.5. Функция Li(x).
Именно поэтому данная функция так важна в теории чисел. Дело в том, что по мере того, как N делается все больше и больше, мы имеем Li(N) ~ N/ln N. Но ТРПЧ утверждает, что π(N) ~ N/ln N. Секундное размышление показывает, что знак волны транзитивен — т.е. что если P ~ Q, a Q ~ R, то должно быть и P ~ R. Так что если ТРПЧ верна — а мы знаем, что это так, она была доказана в 1896 году, — то должно быть верно и π(N) ~ Li(N).
Это не просто верно. Это, в некотором роде, еще вернее. Я хочу сказать, Li(N) дает на самом деле лучшую оценку функции π(N), чем N/ln N. Намного лучшую. Таблица 7.3 показывает, почему Li(x) играет центральную роль в нашем исследовании.
Таблица 7.3.
На самом деле ТРПЧ чаще всего формулируют как π(N) ~ Li(N), а не как π(N) ~ N/ln N. Поскольку знак волны транзитивен, два утверждения эквивалентны, как можно видеть из рисунка 7.6. Из работы Римана 1859 года следует и точное, хотя и не доказанное, выражение для π(N), и во главе этого выражения стоит Li(x).
ТРПЧ (улучшенный вариант)
π(N) ~ Li(N)
Отметим еще одно обстоятельство, связанное с таблицей . Для всех приведенных там значений N функция N/ln N дает заниженную оценку для π(N), а функция Li(N) — завышенную. Оставим это замечание без комментариев до тех пор, пока оно нам не понадобится.

 

Рисунок 7.6. ТРПЧ.
Назад: Глава 6. Великое соединение
Дальше: Глава 8. Не лишено некоторого интереса