Глава 6. Великое соединение
I.
Китайское слово Тай-е буквально переводится как «самый дальний дедушка» (прадедушка). Такой титул присвоен в семье моей жены ее деду по отцовской линии. Когда мы ездили в Китай летом 2001 года, нашей первейшей обязанностью было навестить Тай-е. Семья бесконечно им гордится, ибо он дожил до 97 лет в добром здравии и с ясной головой. «Ему девяносто семь лет! — говорили мне все. — Вам непременно надо встретиться с ним!» Я и встретился с ним — бодрым, располагающим к себе Буддой в цветущем человеческом воплощении, с румяным лицом и по-прежнему острым умом. Однако вопрос о том, правда ли ему 97 лет, довольно интересен.
Тай-е родился на третий день двенадцатого лунного месяца лунного года и сы по традиционному летосчислению, принятому в поднебесной. По западному календарю это было 28 декабря 1905 года. Поскольку мой приезд пришелся на начало июля 2001 года, возраст Тай-е по современному западному исчислению в тот момент составлял 951/2 лет и несколько дней. Так почему же все говорили, что ему 97 лет? Потому что по старому китайскому стилю, которого и придерживался Тай-е, возраст его при рождении составлял один год, и к этому добавлялся год всякий раз, как наступал Новый год по лунному календарю — каковой случился 24 января 1906 года по нашему календарю, через 27 дней после его рождения. Он не прожил еще и месяца в этом мире, а ему уже было два года! Таким образом, когда наступил лунный Новый год в 2001 году (что случилось также 24 января, хотя вообще-то лунный Новый год может выпасть на любую дату между 21 января и 20 февраля), Самый Дальний Дедушка отпраздновал свое 97-летие.
В традиционной китайской системе подсчета возраста нет ничего неправильного. Вы появляетесь в этом мире в такой-то день. Этот день является частью определенного года. Ясно, что этот год — ваш первый год. Если спустя 28 дней наступает следующий год — отлично, он будет вашим вторым годом. Все это вполне осмысленно. Единственная причина, по которой такая система выглядит странно, состоит в том, что современные люди (в Китае в той же степени, что и на Западе) привыкли при подсчете лет оперировать временем как чем-то таким, что можно измерить. Но когда Тай-е был молодым, китайцы воспринимали возраст человека как нечто, подлежащее счету.
II.
Такое различие между числами для счета и числами для измерения глубоко проникло в людскую речь и само мышление. Похоже на то, что мы одной частью своей головы воспринимаем мир составленным из четко отделенных друг от друга твердых объектов, которым можно присвоить инвентарные номера, а другой частью видим мир в виде совокупности материалов, тканей и субстанций, которые надлежит делить на единицы и измерять. Параллельное осмысление обеих концепций дается нелегко. Мой шестилетний сын до сих пор путает слова для обозначения числа и количества, «many» и «much». После рождественских праздников он спросил у своего друга: «How much presents did you get?»
Наше восприятие мира отражается в языке. Английский язык воспринимает мир как место, в основном поддающееся подсчету в существующих отдельно штуках: одна корова, две рыбы, три горы, четыре двери, пять звезд. Несколько реже наш язык воспринимает мир как нечто, нуждающееся в измерении при помощи соответствующих единиц: трава — одна былинка; бумага — два листа; скот — три головы; рис — четыре зернышка; бензин — пять галлонов. Слова «былинка», «лист», «голова», «зернышко», «галлон» — хотя, разумеется, каждое из них и может жить своей собственной жизнью — выступают здесь в роли единиц измерения. Китайский же язык, в отличие от английского, рассматривает практически все сущее как измеряемое. Одна (хотя и не самая главная) вещь, которую приходится зубрить при изучении китайского, — запоминание правильного «счетного слова» (таков точный перевод китайского грамматического термина лян цы) для каждого существительного: одна голова коровы, две ленты рыб, три постамента гор, четыре лопасти дверей, пять зерен звезд. Во всем китайском языке только два слова можно выпустить на свободу без счетного слова: «день» и «год». Все остальное — коровы, рыбы, горы, двери, звезды — представляет собой род субстанции, которую необходимо разделить и измерить, прежде чем о ней можно будет говорить.
Затруднения по поводу определения количества в свое время вызвали многочисленные споры и привели ко многим неудобствам. Во времена миллениума, например, который большинство из нас отмечали, когда год 1999-й сменился годом 2000-м, немногочисленные сеющие раздор диссиденты говорили, что все это неправильно. Их недовольство основывалось на том факте, что наш обычный календарь сконструирован без нулевого года. Первому дню первого года от P.X. предшествовал последний день первого года до P.X. Так произошло, потому что Дионисий Малый — живший в VI веке монах, совместивший христианскую систему нумерации лет с месяцами и днями календаря Юлия Цезаря, рассматривал годы как вещь исчисляемую, в точности как наш Тай-е. Первому году христианской эры тем самым надлежало быть годом 1, второму — годом 2 и т.д.
Источник проблемы несложно понять. Возьмем обычную школьную линейку. (Не в первый уже раз на протяжении этой книги. Удивительно, сколь много математики — и даже высшей — можно соотнести с отметками на футовой линейке за 1 доллар 89 центов.) Ну да, на ней отмечены 12 дюймов. Да, вы можете их пересчитать: 1, 2, 3, …, 12. Но если вы муравей и начали путешествие от левого конца линейки к правому и только что прошли первые полдюйма, то где же вы? В середине первого дюйма? Да. Значит, в середине дюйма номер 1? Конечно, если угодно. Но какова точная мера расстояния, которое вы прошли? Хм, это 0,5 дюйма. Поскольку движение — это непрерывный процесс (ибо муравей рано или поздно пройдет через каждую точку на линейке), это число намного более интересно и важно для математика. Математик предпочитает поэтому говорить, что вы на половине пути (другими словами, на 0,5 пути) через нулевой дюйм, что и определяет ваше положение как 0,5.
Современные люди достаточно математически изощренны, чтобы большую часть времени думать подобным образом. Это в действительности и представляло собой источник смятения для упомянутых «жалобщиков» на миллениум или же, в зависимости от того, какую точку зрения вы принимаете, для беззаботных весельчаков поздним вечером 31 декабря 1999 года. Жалобщики говорили: «Если вы измерите время, прошедшее от момента начала новой эры до самого конца 1999 года, вы наберете только 1999 полных лет. Вам надо подождать, пока не истечет 2000-й год». Они применяли логику измерений к системе, основанной на логике счета. А предающиеся веселью говорили: «Наступает год с номером 2000. Ур-ра!» — чисто «счетная» логика. И однако, те же весельчаки могут скатиться на логику измерения при ответе на вопрос о возрасте их недавно родившегося ребенка: «Ах, ему всего полгода». Другими словами, его возраст составляет 0,5 года — измерительная логика, по крайней мере по контрасту с традиционным китайским подходом. (У них, правда, есть возможность запутать все дело еще больше, сказав «Шесть месяцев…»)
Я однажды вступил в мягкую полемику с писателем и любителем слов Вильямом Ф. Бакли-мл. относительно слова «data» — слово это во множественном или единственном числе? Происходит оно от латинского глагола dare — давать. Отсюда, следуя обычным процессам в латинской грамматике, можно образовать отглагольное существительное datum, означающее «то, что дано». Из него, в свою очередь, можно образовать множественное число: data — «те вещи, которые даны». Но мы говорим по-английски, а не на латыни. Масса существительных в латинском множественном числе используется в английском в единственном числе: agenda, например. Никто не говорит «The agenda are prepared». Английский — это наш язык, и если мы заимствуем слово из другого языка, мы можем поступать с ним, как нам нравится.
Проработав с данными (data) всю свою сознательную жизнь, я неплохо себе представляю, что это такое. Это особое «тело» или даже субстанция, состоящая из неисчислимых маленьких частичек, неотличимых одна от другой — подобно рису, песку или траве. Применительно к субстанциям и телам такого типа в английском языке надо употреблять глаголы в единственном числе («рис сварился») или же использовать счетные слова. Если вы желаете ухватить одну частичку и рассматривать именно ее, требуется счетное слово: «зернышко риса», «элемент данных». Именно так, кстати, инстинктивно и говорят люди, которые зарабатывают себе на жизнь обработкой данных. Среди людей, содержание работы которых — данные, никто никогда не скажет «One datum, two data». Если бы они сказали такое, их никто бы не понял. И однако же грамматисты хотят, чтобы мы говорили «The data are…» Мое предсказание состоит в том, что они в конце концов проиграют бой.
В качестве последнего примера приведу тот, который озадачивал меня в школьные годы, прошедшие под знаком англиканской церкви: рассмотрим те три дня, которые Иисус Христос пролежал в могиле перед тем, как воскреснуть в согласии со своим собственным пророчеством: «После трех дней воскресну». Трех дней? Он был распят в пятницу — Страстную пятницу. Воскресение состоялось в воскресенье. Это составляет 48 часов, если измерять, но, разумеется, три дня (пятница, суббота, воскресенье), если считать, как и поступали те эллинизированные интеллектуалы, которые составили Новый Завет.
III.
Гипотеза Римана
Все нетривиальные нули дзета-функции имеют вещественную часть, равную одной второй.
Гипотеза Римана родилась из столкновения, названного в заглавии данной главы великим соединением, между логикой подсчета и логикой измерения. Выражаясь точным математическим языком, она возникла, когда некоторые идеи из арифметики были скомбинированы с некоторыми идеями из анализа и образовалась новая штука, новая ветвь на древе математики — аналитическая теория чисел.
Вспомним традиционные категории математики, о которых мы говорили в главе 1.viii.
1. Арифметика — наука о целых числах и дробях.
2. Геометрия — наука о фигурах в пространстве.
3. Алгебра — использование абстрактных символов для представления математических объектов (чисел, линий, матриц, преобразований) и изучение правил, по которым эти символы можно комбинировать.
4. Анализ — наука о пределах.
Эта четырехчленная схема закрепилась в людских головах около 1800 года, а великое соединение, которое я собираюсь описать в данной главе, было соединением идей, до 1837 года существовавших каждая сама по себе под двумя из приведенных вывесок — арифметики и анализа. Это соединение создало такую дисциплину, как аналитическая теория чисел.
Сегодня мы достаточно искушены в подобных взлетах воображения, и они, возможно, чуть лучше нам удаются. В действительности на сегодняшний день наряду с аналитической теорией чисел существуют алгебраическая теория чисел и геометрическая теория чисел. (Мы дойдем до некоторых элементов алгебраической теории чисел в главе 20.v.) Но в 30-х годах XIX столетия соединение концепций из двух областей, до того считавшихся не связанными друг с другом, несколько ошарашивало. Однако, прежде чем можно будет познакомить вас с главным действующим лицом в этой части нашей истории, надо сказать еще кое-что о тех двух дисциплинах, которые он друг с другом соединил.
IV.
В то время, о котором у нас идет речь, — в начале XIX столетия — анализ оставался самой новой и самой привлекательной частью математики, где совершались великие достижения и где работали самые проницательные умы. К концу столетия об арифметике, геометрии и алгебре было известно больше, чем в начале, но об анализе — намного больше. В самом же начале того столетия основную концепцию анализа — концепцию предела — ясно не представляли себе и лучшие умы. Если бы вы спросили Эйлера или даже молодого Гаусса, о чем идет речь в анализе, они сказали бы: «О бесконечном и инфинитезимальном». Но если бы вы вслед за тем спросили Эйлера, а что же в точности означает «бесконечное», он бы разразился приступом кашля и ушел из комнаты или же развернул дискуссию о значении слова «означает».
Анализ на самом деле ведет свое начало от изобретения дифференциального и интегрального исчисления Ньютоном и Лейбницем в 70-х годах XVII века. Без сомнения, идея предела — идея, разграничивающая анализ и остальную математику, — имеет фундаментальное значение для дифференциального и интегрального исчисления. Если вы хоть раз сидели в аудитории на лекции по математическому анализу, то у вас, возможно, остались смутные воспоминания о графике, на котором изображены кривая и пересекающая ее в двух точках прямая. «А теперь, — говорит лектор, — если вы будете сдвигать эти точки все ближе друг к другу, то в пределе…» — а остальное вы позабыли.
Дифференциальное и интегральное исчисление не составляют всего анализа: расходимость гармонического ряда — это теорема из анализа, но она не относится к дифференциальному и интегральному исчислению, которых просто не было в те времена, когда жил Никола Орем. Имеются и другие достаточно обширные области анализа, которые, строго говоря, не относятся к дифференциальному и интегральному исчислению. Теория меры, например, развитая Анри Лебегом в 1901 году, а также солидный кусок теории множеств. Тем не менее мне кажется справедливым сказать, что даже новейшие области анализа, не связанные с дифференциальным и интегральным исчислением, были открыты в связи с идеей совершенствования последнего: в случае Лебега — в связи с совершенствованием определения интеграла.
Концепции, которыми оперирует анализ, — «бесконечное и инфинитезимальное», как сказал бы Эйлер, или «пределы и непрерывность», как поправил бы его сегодняшний коллега, — относятся к вещам, которые всего труднее охватить человеческим умом. Вот почему дифференциальное и интегральное исчисления так пугают столь многих образованных людей. Причины всех затруднений были сформулированы на очень раннем этапе развития математики — около 450 года до P.X. греческим философом Зеноном. Каким образом, спрашивал Зенон, оказывается возможным движение? Как можно говорить о том, что стрела летит, если в каждый данный момент времени она где-то должна находиться? Если все время составлено из моментов, а движение невозможно ни в какой заданный момент, то каким же образом вообще возможно движение?
В начале XVIII века, когда дифференциальное и интегральное исчисление впервые стало известно в широких кругах образованной публики, понятие бесконечно малого сделалось объектом многочисленных насмешек. Известным скептиком был ирландский философ Джордж Беркли (1685-1753 гг.; это его именем назван город в Калифорнии): «А что из себя представляют эти приращения текущих величин? Это не конечные величины, не бесконечно малые, ни даже ничто. Не следует ли называть их призраками почивших величин?»
Трудности, с которыми давались эти идеи, напоминают нам о том, что на определенном уровне математическое мышление является глубоко неестественным. Не говоря уже об анализе, это относится и к основам арифметики. В предисловии к Principia Mathematica Уайтхед и Рассел отмечали:
Сама по себе абстрактная простота идей в этой работе парализует язык. С помощью языка проще выражать сложные идеи. Высказывание «кит — большой» представляет язык в его лучшем проявлении, соотнося сжатое выражение со сложным фактом, тогда как полный анализ высказывания «единица — это число» приводит к непереносимому многословию.
(И они не шутили. В Principia Mathematica на определение числа 1 отводится 345 страниц.)
Совершенно верно. Кит, в соответствии с любыми осмысленными стандартами сложности, является значительно более сложной штукой, чем «пять», и однако же его намного проще охватить человеческим умом. В языке любого человеческого племени, знакомого с китами, несомненно найдется слово для них. И однако же есть народы, в языке которых нет слова для «пяти», несмотря на то что его, так сказать, содержание находится у них в буквальном смысле на пальцах! Повторюсь: математическое мышление представляет собой глубоко неестественный способ мыслить и, вероятно, по этой-то причине и отталкивает столь многих. Но если это отталкивание удается преодолеть, то воздается сполна! Посмотрим на 2000-летнюю историю одомашнивания концепции нуля — числа, которое получило широкое признание математиков лишь около 400 лет назад. Ну и что бы мы без него сегодня делали?
Арифметику, в отличие от анализа, принято рассматривать как простейшую, легче всего постижимую область математики. Целые числа? Ясное дело, требуются для счета. Отрицательные числа? Без них не обойтись, если вы интересуетесь температурой в холодный денек. Дроби? Разумеется, понятно, что гайка в 3/8 дюйма не навинтится на болт 13/32. Если вы предоставите мне бумагу, карандаш и немного времени, я, пожалуй, смогу вам сказать, подойдет ли гайка размером 15/23 к болту размера 29/44. Чего же тут бояться?
Но арифметика обладает тем занятным свойством, что в ней довольно легко сформулировать утверждения, которые невероятно трудно доказать. В 1742 году Кристиан Гольдбах выдвинул свою знаменитую гипотезу, что любое четное число большее двойки можно представить как сумму двух простых чисел. Усилия, прилагавшиеся лучшими умами на планете на протяжении двадцати шести десятков лет, не принесли ни доказательства, ни опровержения этого простого утверждения (которое послужило источником вдохновения по крайней мере для одного романа: «Дядя Петрос и гипотеза Гольдбаха» Апостолоса Доксиадиса. В арифметике имеются сотни подобных гипотез, одни из них доказаны, а другие остаются открытыми.
Нет сомнения, что именно это имел в виду Гаусс, когда отверг предложение вступить в соревнование за награду, обещанную за доказательство Последней теоремы Ферма. Генриху Олберсу, который побуждал его участвовать, Гаусс ответил: «Должен сознаться, что теорема Ферма… не слишком меня интересует, поскольку я без труда мог бы произвести множество утверждений подобного типа, — таких, которые будет невозможно ни доказать, ни опровергнуть».
Следует, впрочем, сказать, что равнодушие Гаусса в данном случае — это точка зрения меньшинства. Задача, сформулировать которую можно в нескольких простых словах, но решить которую лучшие математические таланты не могут на протяжении десятилетий — или, как в случае гипотезы Гольдбаха или Последней теоремы Ферма, столетий, — обладает неотразимой привлекательностью для большинства математиков. Они знают, что могут прославиться, если решат ее, как это произошло с Эндрю Уайлсом, доказавшим Последнюю теорему Ферма. Из истории вопроса им также известно, что даже неудачные попытки могут привести к созданию мощных новых методов и получению новых результатов. И кроме того, никуда не делся «фактор Мэлори»: отвечая на вопрос «Нью-Йорк таймс», почему ему так хочется забраться на гору Эверест, Джордж Мэлори ответил: «Потому что она есть».
V.
Связь между измерением и счетом такова. Поскольку нет никакого теоретического предела точности, с которой можно измерить некую величину, список всех возможных измерений бесконечен и при этом бесконечно измельчен. Между измерением, которое дает 2,3 дюйма, и измерением, которое дает 2,4 дюйма, имеются промежуточные, более точные результаты в 2,31, 2,32, 2,33, …, 2,39 дюйма, которые можно разбивать далее, и так до бесконечности. Поэтому мы можем совершить мысленное путешествие, в котором, переходя от одного результата измерения к любому другому, мы связываем их через бесчисленное количество других, расположенных между ними, и при этом никогда не возникнет проблемы, что нам будет не на что наступить. Эта идея связности — путешествия через пространство или некоторый интервал без необходимости перепрыгивать через пустоты — лежит в основе жизненно важных математических понятий непрерывности и предела. Другими словами, она лежит в основе всего анализа.
Наоборот, если мы занимаемся счетом, то между семью и восемью ничего нет; нам приходится совершать прыжок от одного числа к другому, причем между ними нет никаких камешков, по которым можно было бы скакать. Да, измеряя что-то, можно получить результат в семь с половиной дюймов, но нельзя насчитать семь с половиной объектов. (Ваше возражение могло бы быть таким: «А что, если у меня семь с половиной яблок? Разве это не высказывание о результате счета?» Я бы ответил: «Я могу разрешить вам выражаться таким образом, но только если вы уверены, что там ровно семь с половиной яблок, — в той же степени, в которой Ларри, Керли и Моу — это ровно три человека. А что, если у вас 0,501 или 0,497 от целого яблока?» И если мы желаем разрешить этот вопрос, то мы немедленно попадаем в царство измерений. «Семь с половиной струнных квартетов» — это жульничество.)
Великое соединение арифметики и анализа — соединение счета и измерения, чисел staccato и чисел legato — возникло в результате исследования простых чисел, предпринятого Леженом Дирихле в 30-х годах XIX века. Дирихле (1805-1859), несмотря на свои имя и фамилию, был немцем из городка близ Кельна, где он и получил большую часть своего образования. Тот факт, что он был немцем, уже сам по себе заслуживает небольшого отступления, ибо соединение идей из арифметики и анализа, выполненное Дирихле и Риманом, происходило на фоне широких социальных изменений в математике в целом — подъемом немцев.
VI.
Первая десятка величайших математиков, работавших в 1800 году, выглядела бы примерно так: Арган, Бойаи, Больцано, Гаусс, Жермен, Коши, Лагранж, Лаплас, Лежандр, Монж, Пуассон, Уоллес, Фурье. Другой автор, или даже тот же самый, но в другом настроении, мог бы, конечно, добавить или вычеркнуть одну-две фамилии, но это не повлияло бы на самое поразительное свойство данного списка: практически полное отсутствие в нем немцев. Единственный из них — Гаусс. Еще в списке один шотландец, один чех, один венгр и один «спорный» (Лагранж, нареченный при крещении Джузеппе Лагранджа, считается «своим» и в Италии, и во Франции). Все остальные — французы.
Работавших в 1900 году математиков было вообще намного больше, так что составление подобного списка на тот год с большей вероятностью привело бы к потасовке. Однако мне представляется, что следующие фамилии вызовут локально минимальное количество возражений: Адамар, Борель, Вольтерра, Гильберт, Дедекинд, Кантор, Каратеодори, Клейн, Лебег, Миттаг-Лефлер, Пуанкаре, Харди. Четыре француза, итальянец, англичанин, швед и пятеро немцев.
Появление немцев на ведущих позициях в математике тесно связано с историческими событиями, которые мы вкратце рассмотрели в главах 1 и 2. При всех реформах Фридриха Великого поражение под Йеной в 1806 году показало пруссакам, что им предстоит еще пройти значительный путь по совершенствованию и модернизации своего государства. Подъем националистических чувств, питаемый, с одной стороны, долгими войнами с Наполеоном, а с другой — движением романтизма, стимулировал дополнительное ускорение реформ, несмотря на то что их тормозил (с точки зрения националистов) провал на Венском конгрессе идеи объединения всех говорящих по-немецки народов. В годы, последовавшие за Йеной, прусская армия подверглась реорганизации на основе всеобщей воинской повинности, было отменено крепостное право, были сняты ограничения на развитие промышленности, пересмотрены система налогов и вся финансовая система, а также проведены образовательные реформы Вильгельма фон Гумбольдта, уже упоминавшиеся в главе 2.iv. Более мелкие немецкие государства последовали примеру Пруссии, и довольно скоро Германия в целом превратилась в место, где привольно себя чувствовали наука, промышленность, прогресс, образование — и, разумеется, математика.
Стоит, наверное, заметить, что была и еще одна, меньшая по масштабу, причина подъема немецкой математики в XIX столетии — Гаусс. Он единственный немец в списке, который я составил на 1800 год; но как один доллар стоит десятка десятицентовиков, так и один Гаусс стоил десятка обычных математиков. Одного того факта, что Гаусс находился в своей обсерватории в Геттингене и преподавал там (хотя он и не любил преподавать и, как мог, избегал подобных занятий), было достаточно, чтобы Германия, да и Геттинген, были отмечены на мысленной карте каждого, кто интересуется математикой.
VII.
Таков был мир, в котором вырос Лежен Дирихле. Родившись в 1805 году, он принадлежал к поколению, предшествовавшему поколению Римана. Он был сыном почтмейстера из городка в 20 милях к юго-западу от Кельна, в рейнских провинциях Пруссии. Его поколение первым выиграло от реформированной фон Гумбольдтом системы среднего образования. Он, по-видимому, исключительно быстро учился, поскольку к 16 годам имел достаточную подготовку для поступления в университет. Уже «подсев» к этому времени на математику, он отправился в город, который по-прежнему оставался мировой столицей математического знания, — Париж, везя с собой книгу, которой дорожил больше всего, Disquisitiones Arithmeticae Гаусса. В Париже с 1822 по 1825 год Дирихле посещал лекции многих великих французских светил того времени, включая по крайней мере четверых из тех, кто входит в приведенный выше список: Лапласа, Лежандра, Пуассона и Фурье.
В 1827 году, по достижении 22 лет, Дирихле вернулся в Германию и начал преподавать в университете Бреслау в Силезии. (Бреслау в настоящее время находится в Польше и на современных картах фигурирует под именем Вроцлава.) Он получил там должность при поддержке и поощрении Александра фон Гумбольдта — исследователя и путешественника, приходившегося братом Вильгельму. Оба брата фон Гумбольдт играли ключевую роль в культурном развитии Германии в начале XIX столетия.
Однако за пределами Берлина немецкие университеты находились в состоянии, описанном в главе 2.vii, занимаясь в основном подготовкой учителей, адвокатов и т.п. Разочаровавшись в Бреслау, Дирихле получил должность в Берлине, где и провел, преподавая, большую часть своей профессиональной жизни (с 1828 по 1855 год). Среди тех, кого он учил, был блестящий молодой ученый из местности Вендланд на севере Германии — Бернхард Риман, перешедший из Геттингенского университета в погоне за наилучшим математическим образованием. В главе 8 мы гораздо более подробно рассмотрим влияние, которое Дирихле оказал на Римана, а здесь лишь упомянем об этой связи и о том, что благодаря ей Риман приобрел глубокое уважение к Дирихле, считая его вторым по величине математиком после Гаусса.
Дирихле женился на Ребекке Мендельсон, одной из сестер композитора Феликса Мендельсона, образовав одну из многочисленных взаимосвязей между Мендельсоном и математикой.
Сохранились некоторые записки о Дирихле и о стиле, в котором он читал лекции в годы своего пребывания в Берлине. Записки эти оставлены Томасом Херстом — англичанином, который занимался математикой, вел дневники и провел значительную часть 1850-х годов, путешествуя по Европе и принимаясь изучать математику везде, где это ему удавалось. Осень и зиму 1852-1853 года он провел в Берлине, где свел дружбу с Дирихле и стал посещать его лекции. Из дневника Херста:
31 октября 1852. Нельзя превзойти Дирихле в отношении богатства материала и ясного понимания его сути; но как оратор он не обладает особыми достоинствами — он не производит впечатление человека, хорошо владеющего речью. Однако же ясный взгляд и понимание предмета это компенсируют: если специально за этим не следить, то на его неровную речь и не обратишь внимания. У него такая своеобразная черта — он не видит своей аудитории: когда он не пишет на доске (и посему не стоит к нам спиной), он сидит за своей высокой кафедрой лицом к нам, подняв очки на лоб и оперев голову на обе руки; при этом, если глаза его не прикрыты руками, он держит их по большей части закрытыми. Никакими заметками он не пользуется, а загородившись руками, видит на них воображаемое вычисление, читая его нам вслух, чтобы мы смогли понять его так, как если бы тоже его видели. Мне импонирует такая манера чтения лекций.
14 ноября 1852. <…> Вечер среды я провел у Дирихле: снова встретил миссис Дирихле и узнал, что она — сестра Мендельсона; она сыграла мне несколько пьес своего брата, которые я слушал с большой охотой.
20 февраля 1853. <…> У Дирихле свои причуды, одна из которых — забывать о времени. Он вытаскивает свои часы, выясняет, что уже четвертый час, и убегает, даже не закончив фразы.
VIII.
Определяющая роль Дирихле в том, что относится к нашему рассказу, состоит в следующем. Вдохновленный результатом, доказанным Эйлером ровно за сто лет до того, — результатом, который я отныне буду называть Золотым Ключом, — Дирихле в 1837 году свел вместе идеи из анализа и арифметики для доказательства важного результата о простых числах. Этот момент многими рассматривается как начало аналитической теории чисел — арифметики с пределами. Открывшая новые горизонты работа Дирихле называлась, уж извините, Beweis des Satzes, doss jede unbegrenzte arithmetische Progression, deren erstes Gleid und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sindf unendlich viele Primzahlen enthält — «Доказательство теоремы о том, что каждая неограниченная арифметическая прогрессия, первый член и разность которой являются целыми числами без общего делителя, содержит бесконечно много простых чисел».
Возьмем любые два целых числа и будем последовательно прибавлять одно к другому. Если наши два числа имеют общий делитель, то каждое из получающихся чисел тоже будет иметь этот делитель: например, последовательное прибавление числа 6 к 15 даст числа 15, 21, 27, 33, 39, 45, …, каждое из которых делится на тройку. Но если два исходных числа не имеют общего делителя, то в получающемся списке могут попадаться и простые числа. Например, будем последовательно прибавлять 6 к 35: получим 35, 41, 47, 53, 59, 65, 71, 77, 83, …, где масса простых (вперемешку, разумеется, с массой не простых, таких как 65 или 77). А как много простых? Может ли такая последовательность содержать бесконечно много простых чисел? Другими словами, может ли случиться так, что для любого сколь угодно большого числа N нам удастся получить более чем N простых чисел, достаточно долго прибавляя для этого 6 к 35? А может ли любая подобная последовательность, построенная из двух чисел без общего делителя, содержать бесконечно много простых чисел?
Да. Может. И именно так дело и обстоит. Возьмем любые два числа без общего делителя и будем последовательно прибавлять одно к другому. Получим бесконечно много простых чисел (наряду с бесконечно большим количеством не простых). Гаусс высказал предположение, что так должно быть, — зная мощь Гаусса, хочется сказать, что он это чувствовал интуитивно, — но твердо доказал это Дирихле в той работе 1837 года. Именно в доказательстве, которое привел Дирихле, реализовалась первая часть того самого великого соединения.
На самом деле все даже еще интереснее. Возьмем любое положительное целое число, скажем, 9. Как много чисел, меньших, чем 9, не имеют общего делителя с девяткой (единица не считается за делитель)? Таких чисел шесть — это 1, 2, 4, 5, 7, 8. Будем по очереди брать каждое из них и последовательно прибавлять к нему девятку.
1: 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127…
2: 11, 20, 29, 38, 47, 56, 65, 74, 83, 92, 101, 110, 119, 128…
4: 13, 22, 31, 40, 49, 58, 67, 76, 85, 94, 103, 112, 121, 130…
5: 14, 23, 32, 41, 50, 59, 68, 77, 86, 95, 104, 113, 122, 131…
7: 16, 25, 34, 43, 52, 61, 70, 79, 88, 97, 106, 115, 124, 133…
8: 17, 26, 35, 44, 53, 62, 71, 80, 89, 98, 107, 116, 125, 134…
Каждая из этих шести последовательностей содержит не просто бесконечно много простых чисел (выделены жирным), но и одну и ту же долю простых чисел. Другими словами, представим себе, что последовательности продолжены до окрестности какого-то очень большого числа N, а не просто до окрестности числа 134; тогда каждая последовательность будет содержать примерно одно и то же количество простых чисел, причем если верна Теорема о распределении простых чисел, то около 1/6(N∙ln N) (впрочем, эта теорема еще не была доказана во времена Дирихле). Если N — это 134, то 1/6(N∙ln N) составляет около 4,55983336…. Приведенные выше шесть последовательностей содержат 5, 5, 4, 5, 4 и 5 простых чисел, что дает среднее 4,6666… — на 2,3 процента больше, чем утверждается, что совсем неплохо для такой маленькой выборки.
Для доказательства своего результата Дирихле начал с арифметики в той форме, в какой она была подробно развита Гауссом в Disquisitiones Arithmeticae. Математики называют ее «арифметикой сравнений». Ее можно представлять себе как арифметику циферблата. Временно заменим 12 на циферблате часов на 0. Двенадцать часовых отметок на циферблате теперь имеют вид 0, 1, 2, 3, …, 11. Если времени сейчас восемь часов, а вы прибавите 9 часов, то что получится? Ага, вы получите пять часов. В данной арифметике, таким образом, 8 + 9 ≡ 5. Или, как это выражают математики, 8 + 9 ≡ 5 (mod 12), что читается как «девять плюс восемь сравнимо с пятью по модулю 12». Фраза «по модулю двенадцати» означает «я определяю результаты по циферблату с 12 часовыми отметками, от 0 до 11». Это может показаться тривиальным, но в действительности арифметика сравнений уходит очень глубоко и полна странных и трудных результатов. Гаусс был в ней великим гроссмейстером; ни одна из семи глав Disquisitiones Arithmeticae не обходится без знака ≡.
Не забудем, что Disquisitiones была постоянным спутником Дирихле в его молодые годы. Когда он приступил к упомянутой выше задаче в 1836 или 1837 году, ему было уже тридцать с небольшим лет, и к тому времени он не раз уже проштудировал работу Гаусса по сравнениям. Затем каким-то образом в поле его зрения попал результат Эйлера 1737 года — Золотой Ключ. Это и дало ему подсказку. Он соединил две вещи вместе, применил некоторые элементарные методы анализа и получил свое доказательство.
IX.
Дирихле, таким образом, был первым, кто подобрал Золотой Ключ — связующее звено между арифметикой и анализом — и всерьез воспользовался им. Однако (если продолжить ту аналогию, которую я здесь развиваю) утверждение о том, что он еще и повернул ключ, было бы некоторым преувеличением. Скорее я бы сказал, что он его взял, оценил его красоту и потенциальную мощь, затем отложил его в сторону, но использовал как образец для другого похожего ключа — серебряного, можно сказать, — чтобы отпереть дверь, ведущую к стоявшей перед ним конкретной проблеме. Великое соединение — аналитическая теория чисел — появилось во всем своем великолепии лишь 22 года спустя, в работе Римана 1859 года.
Вспомним, однако, что Риман был одним из учеников Дирихле и, без сомнения, знал о его работах. Действительно, в первом же абзаце своей статьи 1859 года он упоминает Дирихле вместе с Гауссом. Они были двумя его математическими кумирами. Если Риман повернул ключ, то Дирихле сначала показал ему этот ключ и продемонстрировал, что он в самом деле может что-то отпереть; и именно Дирихле заслуженно принадлежит бессмертная слава создания аналитической теории чисел.
Но что же представляет собой этот Золотой Ключ? Что именно оставил Леонард Эйлер, работая в своей комнате наедине со свечой, когда по улицам Санкт-Петербурга пробирались тайные агенты Бирона, что именно оставил он — для того чтобы через сто лет это нашел Дирихле?