Намагнитить отдельную молекулу
Среди изученных свойств каркасных металлорганосилоксанов следует отдельно упомянуть их магнитные свойства. Широко известны вещества, которые после воздействия магнитного поля сами становятся магнитами и сохраняют это свойство после удаления внешнего поля. Их называют ферромагнетиками. Термин указывает на то, что подобное свойство было впервые обнаружено для железа и его соединений. В ферромагнетиках существуют крупные области – до 106 атомов, называемые доменами (франц. domaine – «область»). Магнитные моменты частиц ориентированы в доменах параллельно, но в ненамагниченном веществе сами домены расположены хаотично. При намагничивании магнитные моменты доменов выстраиваются параллельно по всей массе вещества и сохраняют такое состояние.
При изменении направления внешнего поля ферромагнетики способны перемагнититься, то есть изменить положение полюсов на противоположное. Это явление позволяет количественно оценить магнитные свойства вещества. При постепенном увеличении напряженности внешнего магнитного поля, измеряемого в эрстедах (Э), намагниченность выходит на насыщение – иными словами, как бы ни увеличивали внешнее намагничивающее поле, намагниченность самого вещества далее не увеличивается (горизонтальный участок штрихпунктирной линии на рис. 6.25). Если затем уменьшать внешнее поле, то вещество до определенного момента сохранит свою намагниченность (верхняя часть пунктирной линии на рис. 6.25). После того как внешнее поле меняет знак, вещество перемагничивается и опять доходит до насыщения в области противоположно направленного поля (нижняя часть пунктирной линии на рис. 6.25). При повторении всей процедуры, когда направление внешнего поля меняют на противоположное, вещество перемагничивается, зависимость воспроизводится, приходя в исходную точку насыщения (пунктирная линия на рис. 6.25). Общий вид кривых, показанных на рис. 6.25, называют петлей гистерезиса (греч. ὑστέρησις – «запаздывание»).
Величину напряженности магнитного поля, которая позволяет полностью «перемагнитить» ферромагнетик, называют коэрцитивной силой (лат. coercitio – «удерживание»). Чем больше эта величина, тем устойчивее магнит к размагничиванию. На рис. 6.25 показан пример ферромагнетика а – он более устойчив к размагничиванию, чем ферромагнетик б. «Сильные» магниты используют в измерительных и спектральных приборах, «слабые» применяют для изготовления сердечников в трансформаторах. Кроме того, они удобны для хранения и перезаписывания информации (в технической литературе для магнитов используют термины «жесткий» и «мягкий»).
Ранее было сказано, что магнитные свойства материалов зависят от присутствия в них доменов – крупных агрегатов магнитоактивных атомов или молекул. В 1990-х гг. произошло событие, заметно расширившее представления о возможностях магнитных материалов. Оказалось, что можно намагничивать отдельные молекулы в веществе при отсутствии доменной структуры. Появился новый класс магнетиков – мономолекулярные магниты (single-molecule magnets), которые способны сохранять намагниченность после удаления внешнего магнитного поля, то есть обладают магнитной «памятью». На данный момент такое явление наблюдают только при пониженных температурах, зачастую близких к абсолютному нулю. Как и у обычных магнитов, у мономолекулярных существует петля гистерезиса. На сегодня получено крупное семейство соединений, обладающих свойствами мономолекулярных магнитов, наиболее часто это различные комплексы лантаноидов. Величина коэрцитивной силы у некоторых из них достигает 50 эрстед. Молекулы-магниты в настоящее время интенсивно изучают: в перспективе они могут широко использоваться в качестве элементов высокоплотной магнитной памяти.
Экспериментально было установлено, что некоторые из каркасных металлорганосилоксанов способны намагничиваться и сохранять это состояние после удаления внешнего магнитного поля, что подтверждено полученными петлями гистерезиса (рис. 6.26). Наибольшую коэрцитивную силу – 350 Э (при температуре 1,8 К) – показало соединение, содержащее в каркасе пять атомов никеля.
Заманчивой выглядит идея сделать элементом магнитной памяти отдельную молекулу. Такие соединения открывают перспективы для создания вычислительных устройств следующего поколения – квантовых компьютеров.