Книга: Облачно, возможны косатки
Назад: В поисках критических местообитаний
Дальше: На Магадан

Посмотреть в глаза косатке

Вообще фактических данных о Щекне, как и обо всей миссии в целом, набралось множество. Некоторые из них были поразительные, но все они со временем вступали в противоречие с новыми фактами либо полностью опровергались последующими наблюдениями. Похоже было, что наша ксенология склонялась к тому, чтобы поднять (или опустить – как кому нравится) руки перед этой загадкой. И многие весьма порядочные ксенологи присоединились к мнению Раулингсона, сказавшего еще лет десять назад в минуту слабости: «По-моему, они просто морочат нам голову!..»
А. И Б. СТРУГАЦКИЕ. «ЖУК В МУРАВЕЙНИКЕ»
Однажды к нам в экспедицию приехала очередная девочка-студентка. Она была романтична, как многие в ее возрасте, и свое желание поучаствовать в нашей работе объяснила тем, что хочет «посмотреть в глаза косатке». Девочке удалось реализовать эту мечту, но мы так и не узнали, увидела ли она в глазах косатки то, что искала. Скорее всего, нет, потому что больше она к нам не приезжала.
На самом деле в глазах косатки, да и других китообразных действительно можно увидеть массу интересного, если посмотреть повнимательней. Ведь их глаза удивительным образом приспособились к тому, чтобы видеть и под водой, и в воздухе. Вспомните, каким мутным все выглядит под водой, если нырнуть без маски. А косатке нужно четко видеть и в своей морской стихии, и вне ее – они нередко высовывают голову из воды и осматриваются, чтобы оценить обстановку, ведь в воздухе видно гораздо дальше.
Четкая картинка у нас в глазу формируется благодаря особой системе линз, преломляющих свет. У наземных зверей эту роль играют две структуры – роговица и хрусталик. Особенно сильно преломляет свет выпуклая поверхность роговицы, так как у нее показатель преломления значительно выше, чем у воздуха. Но у воды показатель преломления почти такой же, как у роговицы, поэтому под водой она почти не преломляет свет – из-за этого-то мы и видим все так размыто. Если надеть очки или маску, они создают слой воздуха перед глазом, роговица работает как обычно, и мы можем насладиться красотами подводного мира.
У китообразных свет преломляет в основном не роговица, а хрусталик, поэтому он имеет не уплощенную форму, как у нас, а почти сферическую. В нашем глазу фокусировка на объекты, находящиеся вблизи или вдалеке, достигается путем изменения кривизны хрусталика с помощью специальных мышц. Со сферическим хрусталиком такой механизм не работает, поэтому китообразные решают эту задачу иначе – путем смещения хрусталика вперед или назад. У них есть мышцы, позволяющие слегка выдвигать глаз из орбиты и втягивать обратно. Когда глаз втягивается, внутриглазное давление повышается, что приводит к смещению хрусталика вперед; когда глаз выдвигается из орбиты, давление понижается, и хрусталик смещается назад.
Когда дельфин высовывает голову из воды, чтобы рассмотреть что-то на воздухе, роговица начинает преломлять свет. Теоретически при этом животные должны становиться очень близорукими, так как к преломлению в хрусталике добавляется сильное «незапланированное» преломление в роговице. Тем не менее дельфины на воздухе хорошо видят – в дельфинарии они способны точно рассчитать траекторию прыжка и без труда различают тренеров.
Хитрость заключается в особой форме роговицы. В отличие от наземных млекопитающих, у которых она равномерно выпуклая, у дельфинов роговица имеет форму, похожую на ложку, с меньшей кривизной в передней и задней частях. Зрачок у дельфинов необычной подковообразной формы. При высокой освещенности его центр полностью смыкается, а открытыми остаются только рога подковы – две узкие щели в передней и задней частях радужной оболочки. Уплощенные области роговицы находятся как раз над этими щелями, так что на воздухе при хорошем освещении свет проникает в глаз дельфина только через них и почти не преломляется.
Кроме того, близорукость в воздухе частично компенсируется смещением хрусталика: рассматривая что-то, дельфин несколько выдвигает глаз вперед, тем самым снижая внутриглазное давление, – это уменьшает кривизну роговицы и приводит к смещению хрусталика назад и уменьшению близорукости. Под водой глаз втянут в орбиту, в результате чего повышение внутриглазного давления приводит к сдвигу хрусталика вперед, подстраивая глаз к зрению под водой.
В сетчатке глаза большинства млекопитающих есть область, в которой концентрация светочувствительных клеток максимальна. Обычно она либо находится в центре сетчатки, либо – у животных с боковым расположением глаз (например, у зайцев) – растянута в виде горизонтальной полоски. У китообразных таких областей две: одна расположена в передней, а другая – в задней части глаза. Когда зрачок дельфина на ярком свету закрывается, оставляя два отверстия, каждое из них оказывается как раз напротив соответствующей области на сетчатке.
Под водой света гораздо меньше, чем на воздухе, и освещенность резко убывает с глубиной, поэтому зрачок открывается, из подковообразного превращаясь в круглый. Чтобы эффективнее использовать свет, за сетчаткой дельфинов находится отражающий слой, так называемый тапетум. Отражая попадающие в глаз лучи, он позволяет зрительным клеткам уловить больше света. Тапетум есть у многих ночных животных, в том числе у наших домашних собак и кошек – именно поэтому глаза у них светятся в темноте.
Различают ли дельфины цвета? На этот вопрос сложно ответить однозначно. У нас в сетчатке есть две разновидности светочувствительных клеток – палочки и колбочки. Палочки более чувствительны и реагируют на весь диапазон видимого света, поэтому в сумерках мы видим все в монохроме. Колбочки делятся на несколько типов, каждый из которых избирательно реагирует на свет в определенном диапазоне – например, от желтого до зеленого. У большинства млекопитающих два типа колбочек, но у некоторых приматов, включая нас с вами, их три – поэтому мы хорошо различаем красный цвет, а для собак он лишь оттенок зеленого. А вот рептилиям и птицам повезло больше – у многих из них встречается аж четыре разных типа колбочек, да и диапазон воспринимаемых длин волн у них пошире, чем у нас. Считается, что ранние млекопитающие утеряли два из четырех типов колбочек своих синапсидных предков, поскольку вели преимущественно ночной образ жизни, при котором различать цвета совершенно необязательно. Дельфинам с цветовым зрением не повезло еще больше: у них остался лишь один тип колбочек, воспринимающий желто-зеленый цвет. Поэтому-то и сложно сказать, различают ли дельфины какие-нибудь цвета: зеленые колбочки будут сильнее возбуждаться на зеленый свет, чем на красный, но отсутствие в сетчатке других колбочек – для сравнения – не позволяет определить, вызвано ли это возбуждение разницей в яркости или в цвете. Возможно, дельфины могут оценить это, используя различия в сигналах с колбочек и палочек.
В отличие от зрения, которое у китообразных хуже нашего, слух их гораздо лучше. Это неудивительно – ведь в мутной воде звуковой канал становится основным для ориентации в пространстве и общения с сородичами. У дельфинов слух смещен в высокочастотную область по сравнению с нашим: если человек способен слышать звуки частотой до 20 (а чаще – до 15) килогерц, то дельфины слышат звуки частотой в 100 и более килогерц. Этим они обязаны особому строению уха.
И в воде, и в воздухе звук представляет собой колебание частиц, но если на воздухе для таких колебаний характерно большое смещение частиц и малое изменение давления, то в воде наоборот – смещение маленькое, а изменение давления большое. Барабанная перепонка, работающая как приемник и преобразователь звука в ухе наземных млекопитающих, имеет высокую чувствительность к смещению частиц, но слабо реагирует на изменение давления, поэтому она плохо приспособлена к восприятию звука под водой. Вместо нее у китообразных к стремечку подходит тонкий отросток тимпанической кости, которая хорошо реагирует на изменение давления, так как она жесткая и имеет большую площадь. Помимо простого улучшения подводного слуха, это привело к существенному улучшению восприятия высоких частот, так как жесткие объекты лучше передают высокочастотные колебания, чем мягкие ткани, подобные барабанной перепонке, ведь инерция колебаний в них слабее.
Но просто хорошо слышать звуки мало, для успешной ориентации нужно еще уметь определять, откуда они исходят. Наземные млекопитающие делают это по разнице тембра, громкости и времени прихода звуков в разные уши. Например, если собака лает слева от нас, в левое ухо звук лая приходит раньше, чем в правое, и он чуть более громкий, так как правое ухо от него экранирует голова, – наш мозг автоматически считывает такие различия и выдает нам вероятное направление источника звука. У китообразных голова имеет почти такую же плотность, как окружающая ее вода, поэтому звук проходит через нее совершенно свободно (именно поэтому человеку так сложно определить направление звука под водой). Наружный слуховой проход у китообразных зарастает – он не нужен, так как звук легко проходит через кожу и мышцы. Чтобы экранировать уши друг от друга, они отделены от костей черепа губчатой жировой тканью, имеющей более низкую плотность, чем вода и прочие ткани тела, – на границе сред с различной плотностью звук затухает, и получается такой же эффект, как с головой на воздухе. Благодаря этому китообразные прекрасно определяют направление, по которому находится источник звука, а их ушные кости – симпатичные полушария, не приросшие к черепу и легко отделяющиеся у мертвого кита, – стали популярным сувениром.
Направленный высокочастотный слух стал предпосылкой развития еще одной адаптации, определившей эволюционный успех зубатых китов, – эхолокации. В воде видимость не превышает десятков метров, а чаще и того меньше, и в таких условиях китообразным приходится находить добычу на слух – по звукам, издаваемым косяками рыбы, или ориентируясь на крики пирующих морских птиц. Но зубатые киты научились активно использовать звук для ориентировки и поиска корма – они издают щелчки, которые отражаются от добычи или от дна и эхом возвращаются назад, и по этому эху животное может определить расстояние до объекта, его размер, форму и даже материал, из которого он состоит. Разрешающая способность эхолокации дельфинов просто поразительна – они, можно сказать, видят с помощью звука. На расстоянии сотни метров дельфины способны обнаружить пятисантиметровую металлическую сферу. Плавательный пузырь рыб, наполненный воздухом, отражает звук еще лучше, чем металл, так что шанса спрятаться от голодных дельфинов у них не остается – даже камбалу, закопавшуюся в песок, они легко находят с помощью своего эхолокатора.
Зрение и слух – не единственные проблемы китов и дельфинов, доставшиеся им в наследство от сухопутных предков. Китообразные проводят всю жизнь в воде, будучи при этом млекопитающими со всеми вытекающими последствиями: они теплокровны, дышат воздухом, рождают живых детенышей и выкармливают их молоком. В этом есть свои преимущества и недостатки. Теплокровность и воздушное дыхание позволяют поддерживать более высокий уровень обмена веществ и иметь большой сложный мозг, который не могут себе позволить прочие морские обитатели, – никакая рыба не сравнится с китом по уровню интеллекта. В то же время все эти особенности, появившиеся у сухопутных животных, в воде порождают ряд проблем, которые китообразным приходится так или иначе решать.
Взять хотя бы теплокровность. Все мы знаем, что в воде можно замерзнуть гораздо быстрее, чем на воздухе, даже если ее температура ненамного ниже температуры тела, – это связано с высокой теплопроводностью воды. Китообразные проводят в воде всю жизнь и нередко обитают в холодных, а то и вовсе приполярных водах. Меха у них нет – ведь он греет под водой лишь до тех пор, пока не намокает и сохраняет прослойку воздуха, так что это не лучший вариант для животных, постоянно находящихся в воде. Чтобы не замерзнуть, китообразные «одеты» в прослойку подкожного жира. У тропических дельфинов он совсем тонкий, а у обитателей холодных вод может достигать внушительной толщины – например, до 40 сантиметров у гренландского кита.
Помогают сохранять тепло и крупные размеры – ведь по мере увеличения животного его поверхность растет в квадрате по сравнению с линейными размерами, а объем – в кубе. Поэтому отношение поверхности к объему у крупных животных ниже, чем у точно таких же по форме, но маленьких, соответственно ниже и потери тепла. Китообразные – довольно крупные животные. Самое мелкое из них – дельфин Гектора – лишь немногим уступает в размерах взрослому человеку: его длина составляет 1,2–1,6 метра, а вес – 40–60 килограммов. Самое большое китообразное и вообще самое крупное животное, когда-либо жившее на Земле, – это синий кит, достигающий длины 33 метра и веса более 170 тонн.
Другое приспособление к сохранению тепла – это так называемые комплексные сосуды в плавниках. Слой жира изолирует только тело кита, но не плавники, поэтому теплоотдача через них значительно выше. Чтобы избежать лишних теплопотерь, сосуды у китообразных в плавниках имеют особое строение: центральная артерия окружена сетью вен. Артерия несет теплую кровь из глубины тела, а вены – холодную кровь из конечности; в комплексных сосудах они соприкасаются, и теплая артериальная кровь по ходу сосуда согревает холодную венозную кровь, отдавая ей тепло. В итоге конечность остается холодной, а тепло возвращается обратно в тело животного.
Когда кит движется быстро, у него возникает обратная проблема – как избавиться от лишнего тепла, ведь тело-то изолировано слоем жира. В таких ситуациях усиливается кровоток в плавниках, артерия расширяется, частично пережимая окружающие ее вены, и поток теплой крови устремляется к краям плавников, щедро отдавая тепло во внешнюю среду. Помимо увеличения теплоотдачи, это приводит к повышению жесткости плавников, что тоже важно при быстром передвижении. В результате достигается двойной эффект: когда животное находится в спокойном состоянии и плывет медленно, комплексные сосуды слабо наполнены кровью, теплоотдача низкая и плавники мягкие; при активном плавании комплексные сосуды наполняются кровью, теплоотдача высокая и плавники жесткие.
Подкожный слой жира как подводная теплоизоляция хорош всем, кроме одного: кожа находится снаружи от него и, соответственно, остывает. А ведь она должна периодически обновляться, и для этого необходим приток крови, несущей питательные вещества для роста новых клеток. Но если приток крови произойдет в холодной воде, это приведет к значительной потере тепла. Некоторые обитатели холодных вод, например белухи, населяющие арктические моря, решают эту проблему, выбирая для линьки мелководные теплые бухты и эстуарии рек. А антарктические косатки типа «B», охотящиеся на тюленей среди плавучих льдов, поступают еще радикальнее – они совершают регулярные миграции в тропики. Этот удивительный факт обнаружил американский ученый Джон Дурбан с помощью установленных на плавники косаток спутниковых меток, которые регулярно транслировали местоположение животного. Миграции не приурочены к какому-то определенному сезону; просто время от времени косатки покидали ледяные антарктические воды и быстро шли прямиком на север, достигая теплых вод на широте Уругвая и Бразилии. Один трек, длившийся 109 дней, позволил зафиксировать безостановочную миграцию туда-обратно длиной более 9400 километров всего за 42 дня. В теплых водах косатки перемещались медленнее, но не было замечено никаких резких изменений в скорости или направлении движения, которые могли бы указывать на роды, длительную кормежку или другие уважительные причины, ради которых стоило бы идти в такую даль. Единственное объяснение таким миграциям – потребность косаток в линьке. Им необходимо периодически сбрасывать отмирающую старую кожу и наращивать новую, но регенерация требует прилива крови, что ведет к резкому росту теплопотерь. По-видимому, косаткам энергетически выгоднее сплавать в отпуск в тропики, чем линять в антарктических водах при температуре, близкой к нулю.
Кожа дельфинов долгое время привлекала пристальный интерес биомехаников, которые решали важную стратегическую проблему – как добиться, чтобы крейсеры и подводные лодки ходили быстрее. Еще в 1930-х годах англичанин Джеймс Грей измерил скорость плавания дельфинов и посчитал, что для движения с такой скоростью они должны обладать в семь раз большей мышечной силой, чем другие млекопитающие (парадокс Грея). Он предположил, что дельфины умеют управлять обтекаемостью своей кожи, сохраняя ламинарное обтекание при скоростях движения, для которых оно уже должно становиться турбулентным.
Что такое турбулентность? При некоторой небольшой скорости движения слои жидкости перемещаются параллельно друг другу, без завихрений – такое обтекание называется ламинарным. При увеличении скорости в среде самопроизвольно образуются многочисленные завихрения. Они появляются случайно, и их размер и амплитуда меняются хаотически. Турбулентность существенно повышает сопротивление, ограничивая максимальную скорость движения.
Как же дельфины справляются с турбулентностью? Гидродинамик Макс Крамер показал, что сопротивление воды, испытываемое дельфином при движении, в 10 раз меньше, чем сопротивление при движении модели того же размера и формы с обычной обшивкой. Крамер предположил, что кожа дельфинов гасит турбулентные завихрения за счет своей упругости. В ней есть два основных слоя – эластичный наружный (эпидермис) и лежащий под ним упругий внутренний (дерма с высокими сосочками и жировым отложением). По мнению Крамера, наружный слой выгибается и пружинит под давлением воды, что позволяет гасить зарождающиеся завихрения. Ориентируясь на строение кожи дельфина, Крамер разработал искусственное покрытие «ламинфло», которое существенно уменьшало сопротивление потока жидкости.
Большое внимание строению кожи дельфина уделяли и советские ученые, искавшие способы снизить сопротивление воды для увеличения скорости подводных лодок. Советские исследователи предполагали, что способность дельфинов к поддержанию ламинарного обтекания связана прежде всего с постоянной динамичной подстройкой кожи к силе потока. Согласно их гипотезе, каждый сосочек кожи благодаря увеличению или уменьшению просвета кровеносных сосудов на различных скоростях плавания обладает переменной упругостью, которая рефлекторно меняется в зависимости от силы набегающего потока.
Обсуждение парадокса Грея продолжалось и позже, однако до недавнего времени никто не подвергал сомнению главный тезис, лежащий в его основе, – что сила, создаваемая мышцами дельфина, должна быть равна силе сопротивления воды. В 2014 году группа физиков доказала, что это неверно: для объектов, движущихся с помощью волнообразных изгибов тела, сила мышц, толкающих тело вперед, в действительности может быть меньше действующей на него силы сопротивления, и никакого парадокса в этом нет.
Еще один удар по парадоксу Грея нанесли американские ученые, разработавшие метод измерения скорости и направления движения частиц воды. Для этого бассейн наполняется мельчайшими пузырьками воздуха, а движущегося сквозь шлейф этих пузырьков дельфина снимает высокоскоростная видеокамера. Затем перемещения каждого пузырька на видео отслеживает от кадра к кадру специальная программа. Измерение скорости и направления движения пузырьков дает возможность рассчитать силу, которую развивает хвост дельфина в движении.
В результате этих измерений выяснилось, что в среднем он развивает примерно в 10 раз бо́льшую силу, чем предполагал Грей. Этого с лихвой хватает, чтобы двигаться под водой с теми скоростями, что характерны для дельфинов. Почему же результаты расчетов Грея так сильно отличались от экспериментальных? Во-первых, Грей, судя по всему, существенно недооценил мощность мышц млекопитающих: расчеты для дельфина он проводил на примере рывка, длившегося семь секунд, а для людей-гребцов рассчитывал мощность на протяжении трех – пяти минут непрерывной работы. Однако на рывке мышцы сокращаются за счет «быстрых» волокон и выдают бо́льшую мощность, чем при продолжительной работе, в которой задействованы, скорее, «медленные» волокна, поэтому сравнивать эти результаты некорректно. Во-вторых, оценка взаимосвязи мышечной массы и механики локомоторного движения – крайне сложная задача с большим количеством неизвестных, особенно у двух таких разных видов, как дельфин и человек; так что неудивительно, что результаты Грея оказались довольно далеки от реальности.
Получается, что парадокс Грея – вовсе не парадокс, и кожа дельфинов, которую так внимательно исследовали во времена холодной войны ученые обоих лагерей, не так уж и важна для их быстроходности. Хотя за прошедшие с работ Крамера десятилетия было опубликовано немало статей, теоретически обосновывающих и практически доказывающих, что упругая кожа снижает турбулентность, этот эффект, судя по всему, играет не самую важную роль в движении дельфинов. Главным оказался все-таки хвост.
Еще одна проблема, возникающая у млекопитающих при переходе к водному образу жизни, – это дыхание. Естественно, киты не могут, подобно рыбам, дышать растворенным в воде кислородом, поэтому им приходится постоянно выныривать за очередной порцией воздуха. Чтобы уменьшить возникающие при этом ограничения, форма их черепа изменилась: ноздри с конца морды «переползли» на верхнюю часть головы. Для чего это нужно, легко понять – когда кит выныривает на поверхность, гораздо удобнее дышать через дырку в той части тела, которая естественным образом торчит над водой, чем специально высовывать из воды кончик носа.
У дальних предков китообразных и даже у ранних представителей этой группы носовые отверстия находились там, где положено, – на кончике морды. Однако по мере приспособления к водному образу жизни ноздри стали постепенно смещаться назад и вверх. Для этого китам пришлось очень сильно изменить форму костей черепа – предчелюстная и челюстная кости существенно удлинились, а носовая и лобная сплющились.
У китообразных развился целый ряд приспособлений, предотвращающих попадание воды в дыхательный тракт. Когда кит или дельфин ныряет, его ноздри закрываются специальным клапаном. У двух доживших до нашего времени групп китообразных – усатых и зубатых китов – дыхало устроено немного по-разному: у усатых китов оно открывается наружу двумя раздельными отверстиями, а у зубатых эти отверстия срослись в одно общее. Впрочем, ниже, под дыхалом, носовой проход делится на два отдельных канала, которые играют важнейшую роль в жизни зубатых китов, – в них расположены так называемые вокальные губы, используемые для издавания звуков. В каждом из двух каналов носового прохода имеется по паре вокальных губ, что позволяет издавать два разных звука одновременно. У дельфинов одна пара вокальных губ несколько крупнее другой, и считается, что правая пара используется для щелканья, а левая – для свиста. Чтобы заставить вокальные губы вибрировать, дельфины пользуются тем же, чем и мы, – потоком воздуха, но, чтобы воздух не заканчивался и можно было подольше кричать под водой, они не выдыхают его наружу, а перегоняют между воздушными мешками, расположенными над и под вокальными губами.
Ниже вокальных губ и воздушных мешков носовые проходы сливаются в одну общую дыхательную трубку. Поскольку китообразные поглощают пищу под водой, им важно отделить пищевод от трахеи, чтобы вода случайно не попала в дыхательный тракт. У нас и у прочих наземных зверей трахея соединяется с пищеводом чуть выше гортани – довольно неудачное дизайнерское решение, из-за которого мы способны подавиться едой (что иногда даже приводит к смертельному исходу). Если на минуту предположить, что креационисты правы и наш мир – результат разумного замысла, то в этом месте Творец явно напортачил. У дельфинов, которым приходится питаться под водой, эта проблема стоит еще острее, но Творец, исправляя ошибку, придумал еще более странную конструкцию – разросшиеся хрящи гортани у них образуют трубку, проходящую насквозь через пищевод. Благодаря этому дыхательный и пищеварительный тракты действительно оказались разделены, но еду приходится проталкивать через пищевод слева или справа от дыхательной трубки.
Когда кит выдыхает, нередко можно видеть так называемый фонтан, форма и размер которого различаются у разных видов. Существует ошибочное представление, будто фонтан – это вода, которую кит захватил в глотку при питании и выбрасывает через дыхало, отфильтровав пищевые объекты. Конечно, это не так: захваченную воду кит выталкивает наружу через китовый ус. На самом деле фонтан состоит даже не из воды, а в основном из водяного пара. Он образуется из-за конденсации влаги при выбрасывании теплого воздуха из легких в холодный наружный воздух. Выраженность фонтана сильно зависит от погоды – иногда довольно большой фонтан можно видеть даже у косаток, а бывает, что и у крупных китов никакого фонтана не заметно.
Поскольку морским млекопитающим необходимо постоянно двигаться, чтобы находиться на плаву, у них возникает еще одна проблема – сон. Как-то раз, когда мы работали на Командорских островах, переезжая от одной лениво лежащей на воде группы горбатых китов к другой, студент-океанолог спросил меня:
– А если кит заснет в воде, он утонет?
– Конечно, – ответила я. – Поэтому мы и ездим от кита к киту, будим их, чтобы не утонули.
Не знаю, поверил ли мне студент, но на самом деле киты и дельфины вполне справляются со сном в воде без нашей помощи: они спят одной половиной мозга. Однополушарный сон открыли советские ученые А. Я. Супин и Л. М. Мухаметов – тот самый, который организовал первый в России отлов косатки в 2003 году. В советское время, задолго до того, как он стал зарабатывать отловом и продажей морских млекопитающих, Лев Мухарамович занимался физиологией сна и выяснил, что у дельфинов одно полушарие спит, а другое бодрствует. Во время такого сна бодрствующее полушарие контролирует движения тела, удерживая животное на воде. Глаз, противоположный бодрствующему полушарию, остается открытым, и дельфин реагирует, если с этой стороны появляется что-то стоящее внимания. Через некоторое время полушария меняются ролями: бодрствующее засыпает, а вахту принимает вторая, выспавшаяся половина мозга.
Однополушарный сон был обнаружен не только у дельфинов, но и у морских котиков, которые могут по многу месяцев проводить в море, не выходя на сушу. На Командорах мы не раз натыкались на котиков, которые просто спят на воде и просыпаются, только когда катер подходит к ним вплотную. Помимо способности спать одним полушарием, как дельфины, у котиков есть еще одна интересная особенность.
Для всех млекопитающих характерна особая фаза сна – так называемый быстрый, или парадоксальный, сон. Для чего он нужен – неизвестно, но, если животному долго не давать спать быстрым сном (будить его каждый раз, когда сон переходит в эту фазу), а потом оставить в покое, наступает период компенсации, когда оно спит быстрым сном очень долго. Единственные, у кого быстрый сон пока не обнаружен, – это китообразные. А вот морские котики на берегу спят как обычные наземные млекопитающие – с длинными периодами быстрого сна, а в воде – как китообразные, вовсе без быстрого сна. Но когда они наконец возвращаются на берег, никакой фазы компенсации у них не наступает – они переключаются на обычный наземный сон так, как будто никуда и не уходили. Настоящая загадка – если быстрый сон так нужен, что большинство млекопитающих без него не обходятся, как же справляются китообразные и котики в море?
Основное, что связывает котиков с сушей, – это необходимость рожать и выкармливать детенышей. А вот дельфинам и китам приходится делать это в воде. Дельфиненок обычно рождается хвостом вперед, хотя иногда случается и обратное расположение. Едва родившись, он сразу же устремляется вверх, чтобы сделать свой первый вдох. У дельфиненка нет времени отдохнуть и прийти в себя, как у детенышей наземных млекопитающих: он сразу же начинает двигаться и первое время плавает почти непрерывно. Матери приходится подстраиваться под его режим, так что несколько недель она тоже постоянно движется и мало спит.
Как и все млекопитающие, дельфинихи и китихи кормят своего детеныша молоком. Мягких губ у китообразных нет, но они охватывают материнский сосок скрученным в трубочку языком. Молоко очень жирное и позволяет малышу быстро набирать вес и накапливать жир, необходимый для теплоизоляции в воде. Особенно актуально это для китят: у усатых китов детеныши довольно быстро отделяются от матерей и обретают самостоятельность – как правило, это происходит в возрасте около полугода или чуть больше. У зубатых китов этот срок дольше – мелкие виды вроде морских свиней могут кормить детеныша молоком около года, а у более крупных – например, у косаток – молочное вскармливание может длиться больше двух лет, хотя твердую пищу детеныши начинают пробовать уже в годовалом возрасте. Связь с матерью у многих дельфинов сохраняется существенно дольше, чем кормление молоком, – у афалины этот срок составляет несколько лет, а у рыбоядных косаток, как мы уже знаем, дети остаются рядом с матерью всю жизнь.
Назад: В поисках критических местообитаний
Дальше: На Магадан