Книга: Холодильник Эйнштейна. Как перепад температур объясняет Вселенную
Назад: Глава 18. Математика жизни
Дальше: Эпилог

Глава 19

Горизонт событий

Бекенштейн и Хокинг первыми отправились в далекую страну и нашли там золото.

Физик-теоретик Леонард Зюскинд




Ваша идея настолько безумна, что, возможно, верна.

Физик Джон Уилер своему студенту Джейкобу Бекенштейну


К 1970-м годам термодинамика проделала долгий путь. Ее начала легли в основу развития биологии, химии, инженерии и физики. Но одна область науки держалась до конца: считалось, что на дальних рубежах космоса наблюдаются феномены, которые единственные во Вселенной не подчиняются законам термодинамики. В частности, их поведение, казалось, противоречило второму началу, гласящему, что энтропия замкнутой системы, такой как наша Вселенная, всегда увеличивается. Такое поведение демонстрировали объекты, оправдывающие самые смелые предсказания общей теории относительности Эйнштейна, – черные дыры.

Черные дыры – это странные области пространства, куда может упасть что угодно, но откуда (почти) ничто не может выбраться.

Эти странные сущности представляют собой следствие главной работы Альберта Эйнштейна, общей теории относительности, опубликованной в ноябре 1915 года. Она должна была развить идеи специальной теории, которая показывала, что произойдет, если считать законы физики одинаковыми для всех наблюдателей, с какой бы скоростью они ни двигались. Однако специальная теория относительности не рассматривала следствия того же предположения при движении наблюдателей, если скорости их меняются. Как создать согласованные законы физики для всех наблюдателей, даже если их скорость растет или если, что особенно важно, они движутся под влиянием гравитации? Именно такой вопрос стоял перед общей теорией относительности.

Эйнштейн понимал, что необходимо заменить теорию тяготения Исаака Ньютона, опубликованную в 1687 году. Необходимо было также сделать еще более странным определение пространства и времени, предложенное в специальной теории. Чтобы интуитивно понять новое представление о реальности, нам стоит воссоздать в своем воображении один из самых знаменитых мысленных экспериментов Эйнштейна, пришедший ему в голову в 1907 году и ставший, как ученый отметил впоследствии, “счастливейшей мыслью в [его] жизни”.

Представьте физика Алису, которая находится в камере без окон в глубинах космоса, вдалеке от гравитационного воздействия звезд и планет. Она плавает по камере, не чувствуя притяжения ни в одну из сторон. Когда Алиса пытается взвеситься, привязав весы к подошвам своих ног, она не оказывает на эти весы давления. Следовательно, весы фиксируют нулевой вес: Алиса невесома.

Теперь представьте, что камера находится не в глубинах космоса, а всего в 50 км над землей, на нулевом меридиане прямо над лондонским районом Гринвич. Камера, как выясняется, летит вниз в свободном падении. Это значит, что сама камера и ее обитательница, Алиса, ускоряются, все быстрее приближаясь к земной поверхности. Важно, что и камера, и Алиса ускоряются в одном и том же темпе. Еще Галилей отметил, что тела падают с одной скоростью независимо от своей массы. Один из помощников Галилея Винченцо Вивиани вспоминал, как великий физик продемонстрировал это свойство, сбросив два тела разной массы с верхушки Пизанской башни и показав, что о землю они ударились одновременно. Историки не знают, насколько правдива эта история, но Галилей точно спускал шары разной массы по наклонной плоскости, чтобы показать, что все они проходят заданное расстояние за одинаковое время.

Вернемся к Алисе, заключенной в камеру, падающую над Гринвичем. Поскольку Алиса и камера летят вниз с одной скоростью, Алисе кажется, что она плавает по камере точно так же, как плавала, пока камера находилась в космосе. Если Алиса взвесится, весы снова покажут ноль. Алиса никак не сможет понять, что приближается к земле с возрастающей скоростью, пока камера не ударится о земную поверхность. До момента фатального столкновения с землей внутри камеры земная гравитация остается неощутимой. “Для наблюдателя в свободном падении <…> во время падения не существует никакого гравитационного поля”, – отметил Эйнштейн. Тот факт, что пребывание в свободном падении не отличить от пребывания в зоне нулевой гравитации, называется принципом эквивалентности.

Теперь расширим картину. Представьте вторую камеру, которая также находится в р км над землей над нулевым Гринвичским меридианом. Эта камера падает одновременно с камерой Алисы в 50 км южнее. Вторая камера сделана из более тяжелого материала, чем первая. Внутри нее другой физик, Боб, который весит на 20 кг больше Алисы.

С поверхности земли за падением камер наблюдает физик Клео. Она обладает дальним рентгеновским зрением, которое позволяет ей видеть сквозь стены. Но что же она видит? Она видит, что по мере движения вниз все тела – и камеры, и пассажиры – ускоряются в одинаковом темпе. Кроме того, Клео видит, что камеры не только падают, но и становятся все ближе друг к другу: горизонтальное расстояние между ними сокращается. Камеры сближаются гораздо медленнее, чем падают, но сближение идет непрерывно.

Весьма любопытно, что Клео видит, как камеры становятся ближе друг к другу. Чтобы объяснить их сближение, необходимо прежде всего обратиться к закону тяготения Исаака Ньютона. Он гласит, что существует некая сила, которая притягивает все к центру Земли. Поскольку сила направлена внутрь, в одну точку, которой является центр Земли, притягивая две камеры вниз, она также сближает их друг с другом в процессе падения.

Эта ньютонова сила объясняет увиденное Клео, но рождает множество вопросов. Первым делом отметим, что все падающие тела – два человека и две камеры – имеют разную массу. Тем не менее они ускоряются в одном темпе, а это значит, что сила, притягивающая каждое из тел, не просто варьируется, а варьируется ровно в такой степени, чтобы обеспечить одинаковый темп ускорения. Но как Земля это делает? Как она варьирует свое тяготение, чтобы учесть массу каждого притягиваемого тела? Далее возникает вопрос с радиальным характером земного тяготения. Такое впечатление, что центр Земли проводит “линии прицеливания” к каждому объекту в непосредственной близости от поверхности. Иными словами, Земля словно измеряет расстояние от собственного центра до каждого тела в окрестностях, а также измеряет массу этих тел. Далее ей необходимо рассчитать точное количество силы, которое необходимо применить к каждому из тел, и направление приложения этой силы. После этого она мгновенно прикладывает нужную силу ко всем телам, падающим вниз.

Это нелепая мысль. И первым ее нелепость отметил сам Ньютон. В письме, написанном вскоре после публикации его теории земного тяготения, он сказал: “То, что тяготение должно быть врожденным, внутренне присущим материи и существенным для нее, дабы одно тело могло воздействовать на другое на расстоянии через пустоту, без посредства какого-либо агента <…> представляется мне столь вопиющей нелепостью, что, по моему убеждению, ни один человек, способный со знанием дела судить о философских материях, не впадет в нее. Тяготение должно вызываться неким агентом, постоянно действующим по определенным законам; материален этот агент или нематериален, я предоставляю судить читателям. Стоит отметить, что ни одна другая сила в природе не ведет себя подобно гравитации. Например, скрепка для бумаг и тело потяжелее, скажем болт, устремятся к магниту на разных скоростях. Однако, если уронить скрепку и болт, они полетят вниз с совершенно одинаковым ускорением.

Общая теория относительности стала взвешенным ответом Эйнштейна Ньютону. Она избавилась от нелепой мысли, что такие тела, как Земля, осуществляют сложные расчеты и мгновенно воздействуют на другие тела на расстоянии через пустоту. Согласно Эйнштейну, при падении тел происходит нечто совершенно иное. Массивное тело, такое как Земля, не знает о наличии тел в непосредственной близости и вообще ни к чему не прикладывает силу. Вместо этого своим присутствием такая масса, как Земля, искривляет пространство вокруг и замедляет ход времени вблизи себя.

Мысль о том, что пустота может искривляться, а гравитация способна влиять на время, возможно, стала самой радикальной во всей науке. Чтобы оценить ее, необходимо отбросить многие из представлений, основанных на здравом смысле. Доказательства этого математически настолько сложны, что Эйнштейну потребовалось восемь лет, чтобы их сформулировать. “Счастливейшая мысль”, что человек в свободном падении не чувствует гравитации, пришла к нему в 1907 году, а общую теорию он опубликовал лишь в ноябре 1915 года.

Вернемся к Алисе, заключенной в камеру, парящую в космосе. Фактически Алиса неподвижна в пространстве, но движется вперед во времени. Чтобы визуализировать это, как это делал Эйнштейн, представьте график, где по вертикальной оси отмеряется движение во времени, а по горизонтальной – движение в пространстве. Для простоты допустим, что существует лишь одно пространственное измерение – влево или вправо по горизонтальной оси. В таком виде Алиса не стоит на месте. Она движется вверх по прямой линии, параллельной вертикальной оси “времени”. Это просто значит, что ее положение в пространстве не меняется, но она движется в будущее.

Каким в сравнении с этим будет график, отражающий происходящее с Алисой, когда она находится в свободном падении над землей? Вспомним принцип эквивалентности, в соответствии с которым с точки зрения Алисы ничего не меняется: она продолжает полагать, что вместе с камерой движется по прямой линии сквозь время и пространство. (В камере, где заперта Алиса, нет окон, поэтому она не видит приближение земли.)



Массивное тело искривляет плоское время и пространство, и “прямые” траектории Алисы и Боба встречаются в точке N





Почему же Клео видит, как Алиса ускоряется и приближается к Бобу, который падает во второй камере? Ответ в том, что масса Земли искривляет пространство, сквозь которое они движутся, примерно как показано на рисунке.

Масса Земли искривляет плоское в прошлом пространство к точке N. Это значит, что Алиса, которая считает, что движется вперед во времени, но остается неподвижной в пространстве, на самом деле следует по изогнутой траектории из точки А в точку N. Хотя Боб, как и Алиса, полагает, что движется вперед во времени, но остается неподвижным в пространстве, на самом деле он тоже следует по изогнутой траектории из точки Б в точку N. Таким образом, Алиса и Боб неизбежно становятся ближе к точке N и друг к другу не потому, что их притягивает гравитация, а потому, что именно по такой траектории им приходится двигаться в изогнутом пространстве, если они пребывают в покое.

Ключевая идея общей теории относительности в том, что ньютонова гравитация иллюзорна. Мы полагаем, что Земля тянет нас вниз, прикладывая к нам силу. Это не так. Ее масса искривляет пространство таким образом, что прямая линия в этом искривленном пространстве ведет к центру Земли.

Эйнштейн представил математические уравнения общей теории относительности на заседании Прусской академии наук в Берлине в ноябре 1915 года. В последующие годы его теорию триумфально подтвердили наблюдения за космосом. Поскольку пространство возле такого массивного тела, как Солнце, искривлено, теория предсказывает, что возле Солнца луч света далекой звезды пойдет по изогнутой траектории. Так и происходит. Как показано на рисунке, луч света далекой звезды изгибается при прохождении возле Солнца. Наблюдателю на Земле кажется, что звезда сместилась, поскольку мы полагаем, что свет идет по прямой линии, хотя на самом деле это не так.





На этой гиперболизированной схеме показано, как из-за гравитации может казаться, что положение звезды изменилось





Этот эффект различим при солнечном затмении, когда звезды позади Солнца становятся видимыми. Днем свет этих звезд теряется в ярком свете Солнца. Во время затмения, когда Солнце заслоняет Луна, день сменяется ночью и звезды на несколько мгновений показываются на небе. Именно поэтому в 1919 году, всего через четыре года после того, как Эйнштейн представил свою теорию, группа британских ученых посетила Бразилию и Западную Африку, чтобы при затмении сфотографировать положение звезд, находящихся позади Солнца. Сравнив эти наблюдения с положением звезд, зафиксированным шестью месяцами ранее, они увидели небольшие различия. Это доказало, что лучи звездного света действительно искривились, когда прошли рядом с Солнцем полугодом ранее, но остались прямыми, когда не встретили Солнце на своем пути. Впоследствии было сделано множество наблюдений, подтверждающих, что вблизи массивных тел лучи света проходят по изогнутым траекториям.

И все же, хотя научное сообщество быстро приняло общую теорию относительности, в первой половине XX века ее изучали лишь немногие ученые, что объяснялось отчасти необходимостью масштабного переосмысления реальности, а отчасти – дьявольской сложностью содержащихся в ней математических формул. Предсказания этих формул в целом совпадали с предсказаниями гораздо более простых правил ньютоновой гравитации. Возможно, последние были “абсурдны” с философской точки зрения, но работать с ними было существенно легче.

Интерес к теории наконец усилился после Второй мировой войны, когда физики озаботились поведением чрезвычайно больших тел, которые во много раз тяжелее Солнца. Для них предсказания общей теории относительности сильно отличались от предсказаний ньютоновой гравитации, а потому изучение таких тел сулило открытие новых принципов работы Вселенной. Особенный интерес при этом представлял один аспект общей теории относительности, впервые замеченный всего через несколько недель после того, как Эйнштейн объявил о своем открытии.

В начале 1916 года немецкий физик и астроном Карл Шварцшильд, в то время служивший на русском фронте, опубликовал анализ теории Эйнштейна. В его статье было сделано тревожное предсказание, что если такое массивное тело, как звезда, сожмется до достаточно высокой плотности, то пространство вокруг него искривится, а время замедлится в такой степени, что начнут происходить странные вещи. Пространство и время окажутся искривлены бесконечно. Такая сверхмассивная звезда создаст “сингулярность”, а это значит, что математика общей теории относительности несостоятельна, поскольку не может описать, что произойдет в таком случае.

Многие физики, включая Эйнштейна, не придали значения сингулярностям, утверждая, что в реальной Вселенной они, скорее всего, не встречаются. Впоследствии причины, по которым люди отрицали их существование, отпали одна за одной, и уже в конце 1960-х и начале 1970-х годов лучшие физики мира обратили внимание на сингулярности, надеясь понять, какие секреты они таят. Пока в космосе не обнаружили ни одного такого объекта, поэтому вся работа в этой сфере остается теоретической. И все же, несмотря на отсутствие доказательств, эти сингулярности – или объекты, появившиеся в результате гравитационного коллапса, – получили выразительное прозвище: черные дыры.





Сингулярность пространства-времени





Представьте неглубокий океан воды, который простирается на бесконечное расстояние во всех направлениях. В этом океане живет лишь один вид слепых рыб, которые плавают в воде, но не чувствуют ее. Если вода, окружающая одну из рыб, течет, то рыба движется вместе с ней, но даже не догадывается об этом. Чтобы общаться друг с другом, рыбы, обладающие исключительно хорошим слухом, передают в воде звуковые сигналы на постоянной скорости. Этот водный мир обладает важной характеристикой: в нем ничто не может двигаться быстрее скорости распространения звука.

В одной части океана сливное отверстие всасывает в себя всю воду вокруг. Чем ближе вода к сливному отверстию, тем быстрее она движется. На определенном расстоянии от сливного отверстия скорость потока всасываемой воды достигает скорости звука, а затем превышает ее, причем расстояние это зависит от того, с какой силой отверстие всасывает воду.

Удобно представить, что сливное отверстие находится в центре окружности. За пределами очерченного ею круга вода течет медленнее скорости звука. Внутри него вода течет к сливному отверстию быстрее скорости звука. На границе вода течет ровно со скоростью звука. Назовем эту окружность звуковым барьером.

Теперь представим двух слепых рыб. Одна из них, Алиса, находится достаточно далеко от сливного отверстия, поэтому его работа не оказывает влияние на течение воды вокруг нее. Другая рыба, Боб, находится гораздо ближе к сливному отверстию и движется к нему вместе с водой. Однако, двигаясь вместе с водой, Боб не знает об этом движении. Чтобы оставаться на связи, Боб и Алиса договорились, что раз в секунду Боб будет издавать резкий звук, напоминающий свист.

Сначала Алиса слышит свист Боба каждую секунду. Далее интервалы между сигналами становятся все длиннее. Дело в том, что без ведома Алисы и Боба вода вокруг Боба движется к сливному отверстию и прочь от Алисы. Следовательно, сигналы Боба идут к Алисе против течения, в связи с чем им требуется больше времени, чтобы преодолеть расстояние от Боба к Алисе, чем если бы они шли по стоячей воде. Чем ближе Боб оказывается к звуковому барьеру, тем более выраженным становится эффект. В конце концов интервалы между сигналами становятся такими длинными, что Алиса решает, что Боб перестал переговариваться с ней. Алиса предполагает, что Боб удаляется от нее все медленнее и его часы также тикают все медленнее по мере приближения к звуковому барьеру. Когда Боб оказывается у барьера, Алисе кажется, что его часы остановились.

Боб, однако, ощущает все иначе. С его точки зрения, он исправно посылает сигналы раз в секунду. Он не понимает, что вода несет его к сливному отверстию и что он пересекает звуковой барьер. Ему кажется, что все идет хорошо, пока он не решает повернуть назад, к Алисе. Он обнаруживает, что, как бы он ни пытался, у него не получается вернуться за звуковой барьер, в ту часть океана, откуда он приплыл и где осталась Алиса. Дело в том, что вода по ту сторону звукового барьера, где находится Боб, течет быстрее скорости звука, стремясь к центру сливного отверстия. Поскольку в водном мире ничто не может двигаться быстрее скорости звука, Боб при всем желании не может попасть обратно туда, откуда приплыл. Как бы он ни старался выплыть, его будет неотвратимо затягивать в центр сливного отверстия.

Что общего у этого сливного отверстия с черной дырой? Аналогия работает примерно так: сливное отверстие, всасывающее воду, эквивалентно сингулярности в центре черной дыры, всасывающей пространство. Подобно окружности с центром в сливном отверстии, где вода течет быстрее скорости звука, вокруг центра черной дыры есть сфера, внутри которой скорость потока пространства превышает скорость света (да, здесь нужно представить пустое пространство как текущую жидкость). Поскольку никакие объекты и сигналы в нашей Вселенной не могут двигаться сквозь пространство быстрее света, все, что находится внутри этой сферы, обречено оставаться внутри нее. Боб не может вернуться за звуковой барьер, потому что не может плыть быстрее, чем вода течет к сливному отверстию, и точно так же ничто из того, что находится внутри сферы с центром в сингулярности, не может вернуться за ее пределы. Боба, рыбу из водного мира, неизбежно уносит потоком воды в сливное отверстие, и подобным образом астронавта неизбежно унесло бы потоком пространства в сингулярность.

Главное, что вокруг сингулярности в центре черной дыры существует сфера, которая обозначает точку невозврата. Все, что пересекает поверхность этой сферы, уже никогда не возвращается назад. Ничто внутри нее, даже луч света, не может вырваться наружу. Если астронавт, падающий в сингулярность, посветит фонариком на поверхность сферы, свет устремится к сингулярности, поскольку пространство течет внутрь быстрее, чем свет движется наружу сквозь это пространство. Эта сфера, отделяющая пространство внутри от пространства снаружи, работает только на вход. Физики называют ее горизонтом событий черной дыры.

Прежде чем объяснить, как горизонт событий связан с термодинамикой, мне следует подчеркнуть, что недавно ученые подтвердили существование черных дыр. Доказательством служит тот факт, что даже за пределом горизонта событий искажения пространства и времени влияют на движение соседних звезд. Именно поэтому астрономы наблюдали, как звезды вращаются вокруг невидимых объектов во многих регионах космоса. Наиболее правдоподобно такое поведение объясняется тем, что звезды вращаются вокруг черных дыр.

Свидетельства существования черных дыр дает и общая теория относительности, в соответствии с которой при столкновении две черные дыры объединяются в одну, высвобождая огромное количество энергии в форме ряби или волн в пространстве. Как помните, пространство ведет себя на манер жидкости, поэтому волны в нем формируются так же, как в воде. При столкновении двух айсбергов в океане в разные стороны от места их столкновения по воде расходится рябь. Подобным образом при столкновении черных дыр рябь расходится в разные стороны по пространству. В 2015 году такие волны были обнаружены и измерены двумя детекторами, специально построенными в Северной Америке для выполнения этой задачи.

Теперь вернемся к горизонту событий черной дыры, этой странной односторонней двери, ведущей прочь из нашего региона пространства. Дело в том, что именно там ученые обнаружили самое причудливое воплощение законов термодинамики. История об этом открытии начинается с имени одного из немногих в истории людей, превосходящих свой ореол славы. Это Стивен Хокинг.

* * *

Летом 1962 года здоровый молодой студент сидел перед экзаменационной комиссией в Оксфордском университете. Двадцатилетний Стивен Хокинг готовился к получению степени бакалавра. Его преподаватель физики сказал об экзаменаторах: “Они были достаточно умны, чтобы понять, что говорят с человеком, который гораздо умнее большинства из них”. Вскоре после этого Хокинг переехал из Оксфорда в Кембридж, чтобы приступить к работе над докторской диссертацией, и остался там на всю жизнь. Однако вскоре после переезда у Хокинга стали проявляться симптомы болезни двигательного нейрона, серьезного дегенеративного заболевания, которое обрекло его на жизнь с усугубляющейся потерей подвижности. Сначала он лишился способности ходить, а затем – даже возможности самостоятельно питаться. В конце концов ему пришлось дышать через трубку, вставленную в горло. История о том, как Хокинг принял шокирующий диагноз и преодолел огромные трудности, вызванные инвалидностью, чтобы совершить прорыв в области теоретической физики, производит необыкновенное впечатление.

В конце 1960-х и начале 1970-х годов Хокинг сотрудничал с блестящим оксфордским специалистом по математической физике Роджером Пенроузом. Вместе они углубили представления о том, каким образом в соответствии с общей теорией относительности шло формирование Вселенной на заре ее существования, а также изучили многие аспекты черных дыр. К 1970 году эта работа привела Хокинга к непростому осознанию, что черные дыры, возможно, имеют связь с термодинамикой. Это было вызвано работой, проведенной с целью показать, что не существует очевидного способа сделать так, чтобы горизонт событий черной дыры стал меньше.

Причина такова: при падении в черную дыру любого объекта, от звезд и планет до пролетающих мимо космических кораблей, ее масса возрастает. В таком случае сила тяготения, действующая на поток пространства вокруг, увеличивается. Следовательно, по мере увеличения массы черной дыры скорость “потока пространства” достигает скорости света на все большем расстоянии от центра этой черной дыры. Радиус горизонта событий становится больше. Однако ничто не может покинуть черную дыру и тем самым уменьшить ее массу. Таким образом, радиус горизонта событий не может стать меньше. Хокинг заметил поразительное сходство между поведением горизонта событий и поведением энтропии. Ни горизонт событий, ни энтропия никогда не уменьшаются.

Но Хокинг считал это совпадением. Он полагал, что горизонт событий не может быть связан с энтропией, просто потому что все объекты, имеющие энтропию, теплые. Представьте сосуд с газом. Если он обладает энтропией, значит, атомы газа постоянно перемещаются, оказываясь в разных энергетически неразличимых состояниях. Именно так энтропию определяли Людвиг Больцман и Джозайя Уиллард Гиббс. Газ может обладать нулевой энтропией лишь в том случае, если его молекулы неподвижны. Однако по определению это также значит, что их температура равна абсолютному нулю. Суть в том, что если молекулы обладают энтропией, то они движутся, а следовательно, имеют температуру. По этой логике, чтобы обладать энтропией, черная дыра должна иметь температуру, как и газ. Это, в свою очередь, значит, что она должна излучать теплоту. Но это кажется невозможным, поскольку ничто, включая теплоту, не может выходить за горизонт событий.

В 1971 году Хокинг опубликовал статью, в которой признал, что существует сходство между областью горизонта событий и энтропией: представляется, что только они во всей Вселенной неизбежно увеличиваются и никак не могут становиться меньше. Но это просто совпадение, заявил Хокинг, поскольку черная дыра не может излучать тепло, а потому не может обладать энтропией.

Однако Хокинг не знал, что годом ранее в одном из кабинетов Института перспективных исследований в Принстоне, в штате Нью-Джерси, состоялся разговор, в котором прозвучало предположение, что это, возможно, не так. В беседе участвовали молодой аспирант Джейкоб Бекенштейн и его научный руководитель Джон Уилер.

Джон Уилер был человеком противоречий. Он был консервативно и антикоммунистически настроенным патриотом, который работал над созданием американского ядерного оружия, но при этом дружил в том числе с советскими учеными и чилийскими коммунистами. Он почти всегда носил строгий костюм и внешне напоминал директора большой корпорации, но одобрял движения за гражданские права и за права женщин, а также растущую толерантность к культурному разнообразию, которая стала символом 1960-х годов. После неудачного юношеского эксперимента с фейерверками на одном из его больших пальцев недоставало фаланги. Если ему случалось заскучать на научной конференции, когда он был уже взрослым, он надувал бумажный пакет и разрывал его с громким хлопком. А еще он был одним из самых проницательных мыслителей XX века, и именно он популяризировал термин “черная дыра”. Ранее черные дыры назвали объектами, появившимися в результате гравитационного коллапса, или сингулярностями Шварцшильда. Во многих отношениях Уилер напоминал великого берлинского преподавателя физики Густава Магнуса, дома у которого молодой Рудольф Клаузиус в 1840-х годах начал свои исследования энтропии. Более столетия спустя, в конце 1970-х годов, загадочная природа энтропии все еще стояла на повестке дня, когда Уилер, сидя в своем кабинете в Принстоне, завел беседу с молодым аспирантом Джейкобом Бекенштейном, которому в то время было всего 23 года.

Бекенштейн прошел необычный путь, прежде чем оказаться в кабинете Уилера. Он родился в 1947 году в Мехико в семье еврейских эмигрантов, бежавших из Европы в 1930-х. Отец Бекенштейна был плотником, а мать – домохозяйкой. Им пришлось полностью перестроить свою жизнь, и они не были богаты, но способствовали развитию талантов сына. В детстве мать водила Джейкоба в главную библиотеку Мехико, где он читал книги, которых не было в школе, и развивал свой растущий интерес к науке и технологиям. Очарованные запуском советских спутников в 1960-х годах, они со школьными друзьями конструировали собственные ракеты на топливе, которое смешивали из химикатов, купленных на карманные деньги в магазине медицинских товаров. “Некоторые из них действительно летали, – написал впоследствии Бекенштейн, – и пару раз улетели так далеко, что мы не смогли их найти”. В начале 1960-х годов Бекенштейны получили разрешение на переезд в США и сели на автобус, следующий из Мехико в Техас. В конце концов семья обосновалась в Нью-Йорке, где Бекенштейн окончил школу и добился таких успехов в университете, что получил стипендию на обучение в аспирантуре Института перспективных исследований в Принстоне. К этому времени Бекенштейн выбрал карьеру физика-теоретика, что позже объяснил следующим образом: “В молодости, выбирая из возможных профессий, я решил, что хочу заниматься тем, что поймут даже существа из других регионов Вселенной”.

В тот день в 1970 году, когда Уилер в своем принстонском кабинете беседовал с Бекенштейном, они рассуждали о той же особенности рассеяния энергии, которая завораживала Карно, Кельвина и Клаузиуса. Ученые XIX века подчеркивали, что теплота может преобразовываться в полезную работу тогда и только тогда, когда в системе наблюдается разница температур, то есть когда одна часть системы горячее другой. В таком случае, если по примеру лорда Кельвина представить железный стержень, горячий с одного конца и холодный с другого, то тепловой поток, идущий от горячего конца к холодному, можно использовать для выполнения полезной механической работы, такой как подъем веса. Если же позволить теплоте рассеяться по стержню, чтобы одинаковая температура установилась по всей его длине, то теплота станет бесполезной, хотя энергия при этом не будет никуда потрачена. В таком случае теплоту невозможно будет использовать для подъема веса. Иными словами, железный стержень перейдет из состояния с низкой энтропией в состояние с высокой энтропией. Мысль, что увеличение энтропии приводит к потере возможности получать полезную работу из энергии, подтолкнула Уилера сказать Бекенштейну: “Я всегда чувствую себя преступником, когда ставлю чашку горячего чая рядом со стаканом чая со льдом и позволяю им прийти к одной температуре, сохраняя мировую энергию, но повышая мировую энтропию. Мое преступление отзывается в конце времени, поскольку не существует способа его исправить. Но представим, что мимо проплывет черная дыра, чтобы я смог вылить в нее горячий и холодный чай. Разве в таком случае свидетельства моего преступления не исчезнут навсегда?” Большинство других слушателей его слова привели бы в недоумение, но, как отметил Уилер, “Джейкобу этого замечания оказалось достаточно”.

Слова Уилера вдохновили Джейкоба Бекенштейна на написание докторской диссертации, которую теперь можно считать первым шагом к революционной и по-прежнему не созданной новой физике. Любопытно, что Бекенштейн счел невозможным не обращать внимания на законы термодинамики, рожденные при изучении будничной технологии паровых машин. “Я был крайне неудовлетворен таким выводом, – написал он впоследствии о замечании Уилера, – [ведь] второе начало термодинамики имеет такой общий характер и работает в таком множестве случаев, что я не готов был смириться с тем, чтобы оно вдруг осталось не у дел”.

Чтобы иначе взглянуть на то, что озадачило Бекенштейна, представьте сосуд с горячим газом, который, разумеется, обладает энтропией. Допустим, этот сосуд упал за горизонт событий черной дыры. Поскольку ничто не может вернуться из-за горизонта событий, сосуд пересек точку невозврата и, следовательно, перестал быть частью нашей Вселенной. И сосуд с газом, и связанная с ним энтропия исчезли из нашей Вселенной. Но это значит, что энтропия нашей Вселенной уменьшилась, что прямо противоречит второму началу термодинамики. Похоже, в случае с черными дырами общая теория относительности вступает в конфликт с термодинамикой, и первая одерживает верх.

Бекенштейн решил проверить, может ли термодинамика выжить в битве с общей теорией относительности. Для этого ему пришлось допустить, вопреки представлениям Стивена Хокинга и остальных ученых, что черная дыра может обладать энтропией. Коллеги отмечали, что скромность и мягкость Бекенштейна резко контрастировали с его интеллектуальной дерзостью. “Фактически Бекенштейн подходил к физике почти как Эйнштейн, – писал физик Леонард Зюскинд. – Оба были мастерами мысленных экспериментов. Используя минимум математики, но много и глубоко размышляя о физических законах и их работе в воображаемых (но возможных) физических обстоятельствах, оба приходили к радикальным выводам, которые оказывали серьезное влияние на будущее физики”.

Согласование термодинамики с черными дырами, безусловно, требовало “глубокого мышления”. Для этого Бекенштейну пришлось объединить теорию относительности, термодинамику и теорию информации и коснуться квантовой механики.

Сначала Бекенштейн спросил: каково минимальное количество энтропии, которое я могу добавить в черную дыру?

И ответил: оно равно минимальному количеству энергии, которое можно рассеять в пространстве внутри горизонта событий черной дыры. Томсон одобрил бы такой ответ, ведь Бекенштейн, по сути, представлял пространство внутри горизонта событий так, словно это железный стержень, по которому равномерно распределена теплота.

Каково же минимальное количество энергии, которое можно рассеять, или рассредоточить, внутри горизонта событий? Бекенштейн представил, что это единичный фотон света, который может находиться где угодно в пределах горизонта событий черной дыры, – иными словами, единичный фотон, длина волны которого примерно равняется радиусу горизонта событий черной дыры. Чтобы вычислить, какой энергией он обладает, Бекенштейн обратился к статье Эйнштейна о квантах света, опубликованной в 1905 году. В ней говорилось, что энергия фотонов пропорциональна длинам их волн. Это позволило Бекенштейну оценить минимальное количество рассеиваемой энергии и прийти к выводу, что оно пропорционально радиусу горизонта событий черной дыры.

Зная количество энергии, рассеянное внутри горизонта событий, Бекенштейн перевел его в массу по знаменитой формуле Эйнштейна E = mc2.

Так он сделал решающий шаг и увидел, что при увеличении энтропии черной дыры увеличивается и ее масса. По общей теории относительности увеличение массы черной дыры всегда увеличивает площадь ее горизонта событий. Это также находилось в соответствии с недавней статьей Стивена Хокинга, показывающей, что горизонты событий не могут становиться меньше.

Итак, энтропия увеличивает энергетическое содержимое черной дыры, повышая и ее массу, и размер ее горизонта событий. Какой вывод сделал Бекенштейн? Всякий раз, когда энтропия черной дыры увеличивается, увеличивается и площадь ее горизонта событий. Иными словами, площадь горизонта событий черной дыры – это не аналогия энтропии, а непосредственная мера энтропии этой черной дыры. По мнению Бекенштейна, это спасало универсальность второго начала термодинамики. Энтропия Вселенной всегда увеличивается, даже если объекты падают в черные дыры, поскольку потеря энтропии из пространства за пределами горизонта событий компенсируется увеличением площади поверхности этого горизонта событий. Бекенштейн назвал это обобщенным вторым началом термодинамики, или GSL.

Бекенштейн описал GSL в своей докторской диссертации, которую представил на рассмотрение Уилеру через несколько месяцев после их разговора. Позже Уилер вспоминал о своей реакции на работу: “Довольно часто в своей карьере я узнавал, что порой оказывается более странной, чем должна была бы быть в нашем представлении. Я сказал Джейкобу: «Ваша идея настолько безумна, что, возможно, верна. Вам следует опубликовать работу”». Так Бекенштейн и сделал.

И все же, когда статья Бекенштейна вышла в 1972 году, мало кто воспринял ее всерьез. Да, Бекенштейн продемонстрировал математическую связь между энтропией черной дыры и площадью ее горизонта событий, но при этом не учел, что энтропия предполагает, что черная дыра должна излучать теплоту. Никто не верил, что такое возможно. “Наступили два одиноких года, – вспоминал Бекенштейн в своей автобиографии. – В то время идея об энтропии черной дыры была еще слишком нова, и большинство людей, слышавших о ней, называли ее полной чепухой. Некоторые даже говорили, что я напрасно теряю время”.

Стивен Хокинг тоже не обрадовался, прочитав статью Бекенштейна. Он несколько лет изучал общую теорию относительности и полагал, что в соответствии с ней черные дыры никак не могут отдавать теплоту. Вместе с двумя коллегами он немедленно написал новую статью, объясняя, в чем Бекенштейн неправ. Хокинга особенно возмутило, что принстонский физик сослался на его работу. “Должен признаться, что эта статья писалась отчасти под влиянием раздражения, вызванного работой Бекенштейна, который, как я считал, злоупотребил открытым мною ростом площади горизонта событий”, – пояснил Хокинг в своем бестселлере “Краткая история времени”.

Через год события приняли неожиданный оборот. В сентябре 1973 года Хокинг посетил Москву и обсудил черные дыры с двумя ведущими советскими физиками, Яковом Зельдовичем и Алексеем Старобинским. На обратном пути в Англию Хокинг пришел к выводу, что поднятые в этих разговорах идеи помогут доказать, что черная дыра не может излучать теплоту, а следовательно, не может и обладать энтропией. Однако, приступив к расчетам, он к своему “удивлению и досаде” обнаружил, что результаты, похоже, не оправдывают его надежд. “Я боялся, что если об этом узнает Бекенштейн, то он этим воспользуется для дальнейшего обоснования своих соображений об энтропии черных дыр, которые мне по-прежнему не нравились”, – писал он. Чем больше Хокинг работал, тем сильнее убеждался, что Бекенштейн на самом деле прав. Черные дыры не только излучают теплоту, но и излучают ее ровно в таком количестве, которое необходимо, чтобы площадь горизонтов их событий действительно можно было считать мерой их энтропии. К началу 1974 года Хокинг развил свои идеи в полноценную теорию. Она привела его к знаменитому сегодня открытию, что все черные дыры испускают “излучение Хокинга”.

Но как Хокинг понял, что, хотя ничто, даже свет, не может выбраться за пределы горизонта событий, черная дыра все же может излучать теплоту вопреки этому принципу? Дело в том, что Хокинг решил изучить горизонт событий черной дыры с точки зрения квантовой теории. В то время большинство физиков полагало, что черные дыры, массивные космические объекты, подчиняющиеся принципам общей теории относительности, не имеют связи с квантовой теорией. В конце концов, квантовая теория – ключ к микроскопическому миру внутри атома. Однако у Хокинга было чувство, отчасти рожденное его беседами в Москве, что если изучить пустое пространство на границе и вокруг горизонта событий черной дыры с точки зрения квантовой теории, то можно узнать нечто интересное. Понять логику Хокинга непросто. Чтобы примерно представить, что он сделал, нам необходимо рассмотреть одно из самых причудливых следствий знаменитого “принципа неопределенности” квантовой физики – так называемую энергию вакуума.

Как видно из названия, вакуум не инертен, а находится в состоянии активного бурления. В любую секунду в нем вдруг появляются всплески энергии, которые заимствуют свою энергию из какого-то мгновения будущего. Обычно мы не имеем информации об этих флуктуациях, поскольку всплеск положительной энергии нейтрализуется всплеском отрицательной, следующим сразу за ним. Отрицательная энергия – странная вещь, но она существует! Эти всплески энергии принимают множество форм. Они могут проявляться в форме частиц, таких как электроны и позитроны, а также как кванты электромагнитной энергии – фотоны.

Хокинг предположил, что на границе горизонта событий черной дыры и сразу за ней с этой “нейтрализацией” возникают проблемы. Пространство и время там чрезвычайно сильно искривлены, и потому часть создаваемой отрицательной энергии отрывается от положительной энергии, которую в обычных обстоятельствах она бы уничтожала. Выживающая в результате положительная энергия может свободно излучаться из черной дыры. Отрицательная энергия падает в нее. Поскольку эта энергия отрицательна, в результате она делает черную дыру менее массивной.

Внешнему наблюдателю кажется, что черная дыра “испаряется”, постепенно сжимаясь по мере испускания энергии в форме так называемого “излучения” Хокинга.

Поразительно, что расчеты Хокинга позволили ему предсказать температуру этого излучения, испускаемого с горизонта событий. Как правило, она очень низка – на крошечную долю градуса выше абсолютного нуля. Однако это вполне ожидаемо в том случае, если, как отметил Бекенштейн, энтропия черной дыры пропорциональна площади поверхности ее горизонта событий. “Но в конце концов оказалось, что Бекенштейн в принципе был прав, хотя наверняка даже не представлял себе, каким образом”, – писал Хокинг впоследствии.

Из цилиндра физики вытащили кролика. Хокинг и Бекенштейн показали, что три великие идеи современной физики – общая теория относительности, квантовая механика и термодинамика – слаженно работают друг с другом. По этой причине энтропия и излучение черных дыр заняли господствующее положение в современной физике, ведь ученые сегодня ищут так называемую грандиозную единую теорию, Священный Грааль единого принципа, который объясняет природу – мир, Вселенную, все на свете – на самом фундаментальном уровне.

За десятилетия, прошедшие с открытий Хокинга и Бекенштейна, сформировался консенсус, что площадь поверхности горизонта событий черной дыры и есть ее энтропия. Эта странная мысль намекает на фундаментальный принцип организации нашей Вселенной. Энтропия обычно представляется нам трехмерным феноменом. Так, энтропия сосуда с горячим газом есть сумма всех разных, но неотличимых друг от друга конфигураций атомов газа внутри сосуда в трех пространственных измерениях. Как же этот явно трехмерный процесс превращается в двумерный на поверхности горизонта событий?

Порождая огромное количество исследований в последние десятилетия, на арену вместе с термодинамикой, квантовой теорией и общей теорией относительности вышла еще одна область физики – теория информации. Чтобы понять почему, снова представьте, как сосуд с горячим газом падает в черную дыру. Теоретически для расчета энтропии газа можно составить невообразимо длинный список положений всех молекул газа и указать направление их движения. Затем можно преобразовать каждую единицу этого списка в двоичное число по методу, открытому Клодом Шенноном в 1940-х годах. При этом получится полное описание содержимого газа, выполненное в форме длинной последовательности нулей и единиц. Держа это в уме, вспомните, что, согласно Бекенштейну и Хокингу, когда сосуд с газом попадает в черную дыру, площадь поверхности ее горизонта событий увеличивается соразмерно энтропии газа. Это все равно, как если бы площадь поверхности горизонта событий черной дыры увеличивалась ровно настолько, чтобы на ней умещались все кодирующие энтропию газа нули и единицы.

Применяя формулы Бекенштейна и Хокинга, физики могут сказать, какую площадь на поверхности горизонта событий занимает одна цифра из двоичного числа, описывающего энтропию газа. Это маленький участок – примерно 4 X 10-66 см2. Следовательно, можно представить, что поверхность горизонта событий черной дыры покрыта крошечными плитками, каждая из которых содержит один “бит” информации, описывающей энтропию всего, что падает внутрь.

Математика показывает, что площадь поверхности горизонта событий увеличивается на необходимое количество плиток, чтобы записать каждый “бит” энтропии, падающей в черную дыру. В качестве приблизительной визуальной аналогии представьте, как масло выливается на сферу, покрывая ее очень тонким слоем. Чем больше масла льется на сферу, тем больше становится сфера, чтобы слой масла оставался предельно тонким. Подобным образом наблюдателям снаружи черной дыры кажется, что никакие объекты в нее не падают. Вместо этого они распределяются тонким слоем по горизонту событий.





Каждая треугольная плитка содержит один бит информации. Вместе они описывают энтропию всего, что находится внутри черной дыры





Это натолкнуло физиков на мысль сравнить горизонт событий черной дыры с голограммой. В обоих случаях мы имеем дело с двумерными поверхностями, которые содержат всю информацию, необходимую для создания полного трехмерного изображения. Это не 3D-картины, которые показывают в кино и которые лишь создают иллюзию трехмерности. Если обойти голограмму объекта по кругу, она будет казаться настоящим трехмерным объектом. При этом вся информация, необходимая для ее создания, хранится на плоском фрагменте пленки. Так называемый голографический принцип позволил физикам предположить, что двумерная информация на горизонте событий черной дыры в некотором роде “реальнее” трехмерных объектов, упавших в нее, поскольку горизонт событий черной дыры остается доступен нашей части Вселенной, в то время как упавшее в нее оказывается потеряно навсегда.

Все это приводит нас к еще более невероятному выводу: возможно, вся информация, описывающая нашу Вселенную, хранится на двумерной поверхностной оболочке, которая ее окружает.

Дело в том, что в 1998 году открыли, что скорость расширения Вселенной растет. Далекие галактики отдаляются от нас все быстрее. Физики пока не знают, что стоит за этим расширением – выдвигались предположения о загадочной “темной энергии”, – но пространство удаляется от нас во всех направлениях со все более высокими скоростями по мере увеличения расстояния от Земли. На расстоянии около 16 млн световых лет от Земли пространство удаляется от нас со скоростью, которая превышает скорость света. Это значит, что при пересечении этой границы галактики оказываются потерянными для нас, поскольку их свет уже не может к нам вернуться. Если расширение Вселенной будет ускоряться и дальше, то движущееся быстрее скорости света пространство продолжит уносить с собой галактики, которые будут исчезать из виду. Со временем видимыми останутся лишь наша галактика и несколько ее ближайших соседей.

Представим это следующим образом: пусть все галактики во Вселенной станут точками на поверхности сферического воздушного шарика. Под действием таинственной энергии шарик все быстрее расширяется, и расстояние между точками растет.

Допустим, что одна точка обозначает галактику Млечный Путь, которая находится в центре окружности, куда входят также соседние галактики. Внутри окружности скорость расширения шарика ниже скорости света, а снаружи – выше нее. Нам видны лишь объекты, находящиеся внутри окружности, а все, что находится за ее пределами, мы не видим. Однако, поскольку скорость расширения шарика растет, все больше объектов исчезает, оказываясь за границей окружности.

Этот процесс кажется знакомым. Такое впечатление, что наша Вселенная – это “вывернутая наизнанку черная дыра”. Вместо того чтобы пересекать одностороннюю границу, направляясь внутрь, и исчезать навечно, объекты пересекают одностороннюю границу, направляясь наружу, и исчезают навсегда. Это значит, что, подобно горизонту событий, окружающему черную дыру, существует горизонт событий, окружающий Вселенную. Что из этого следует? Вполне

возможно, что, подобно тому как вся информация, необходимая для описания всего, что упало в черную дыру, закодирована на поверхности ее горизонта событий, вся информация, необходимая для описания всего, что существует в нашей Вселенной, закодирована на двумерной поверхности окружающего ее горизонта. Это позволяет предположить, что воспринимаемая нами трехмерная Вселенная иллюзорна. Для нас это лишь способ восприятия истинной двумерной Вселенной. Видимая нами Вселенная подобна голограмме, трехмерной тени двумерной реальности.

Почему же эта идея увлекает физиков? Она намекает, что иллюзорно не только третье измерение, но и гравитация. Эта сила, которая всем нам кажется настоящей, может быть лишь артефактом, помогающим нам интерпретировать двумерные данные, хранящиеся на границе Вселенной. Если гравитация не “реальна”, то нет необходимости согласовывать ее с другими силами природы. Следовательно, может быть, что “теория всего”, которую так отчаянно ищут физики, уже у нас в руках!

История термодинамики началась двести лет назад с молодого француза Сади Карно, который просто хотел повысить эффективность паровых машин. Умирая от холеры в психиатрической больнице, он понятия не имел, что своей работой оставил след в истории науки. Даже в самых смелых и бредовых мечтах он не мог предвидеть, что заложенные им идеи однажды помогут нам изучить далекий край нашего космоса.

Как сказал Стивен Хокинг, “мы просто продвинутый вид обезьян, живущих на маленькой планете у ничем не примечательной звезды. Но мы можем понять Вселенную. И это делает нас особенными”.

Назад: Глава 18. Математика жизни
Дальше: Эпилог