Книга: Холодильник Эйнштейна. Как перепад температур объясняет Вселенную
Назад: Глава 19. Горизонт событий
Дальше: Благодарности

Эпилог

Эта книга, по сути, прославляет термодинамику и ее важность для фундаментальной науки. Однако изучение энергии, энтропии, температуры и законов, которым они подчиняются, сыграло огромную роль в величайшем в истории нашего вида улучшении условий жизни людей.

До 1850 года люди в большинстве своем проживали короткие, тяжелые, обремененные болезнями жизни. Они пытались выжить на одной мышечной силе – своей и своих одомашненных животных. Элиты на жизнь не жаловались, но только потому, что существовали за счет мускулов других людей.

Затем кое-что изменилось. Благодаря научным прорывам, описанным в этой книге, мышечная сила со временем оказалась заменена другими источниками энергии, такими как уголь, нефть, газ, вода и радиоактивный распад. В результате мы теперь по большей части проживаем более долгие, счастливые, здоровые и насыщенные жизни, чем наши предки в любой момент истории. Часто об этой “хорошей новости” забывают, но если вы хотите увидеть подкрепляющие ее данные, то рекомендую вам заглянуть на сайт Our World in Data, созданный оксфордским экономистом Максом Розером. Там приведенное выше утверждение подкрепляется исчерпывающими доказательствами со всего света.

Иными словами, я полагаю, что открытие начал термодинамики стало одним из самых значимых и полезных прорывов в науке. Однако некоторые читатели справедливо заметят, что, восхищаясь научным и техническим прогрессом, я забыл об ущербе, который индустриализация причиняет окружающей среде. С этим не поспорить.

При этом, во-первых, ни один здравомыслящий защитник окружающей среды, как бы его ни беспокоила судьба планеты, не хочет, чтобы человечество вернулось в мир начала XIX века. Это уж слишком, ведь никто не хочет возвращаться к нищете, болезням и огромному уровню детской смертности, которые определяли существование людей на протяжении большей части истории человечества. Во-вторых, большинство согласится, что условия жизни людей улучшились благодаря науке и технологиям. Но возникает вопрос: нивелирует ли изменение климата, которое также стало продуктом науки и технологий, весь прогресс, которого добился наш вид?

Здесь я хочу рассказать вам историю о еще одном великом ученом викторианской эпохи – Джоне Тиндале.

Талантливый ученый-экспериментатор, любивший привлекать людей к науке, Тиндаль родился в 1820 году в графстве Карлоу в Ирландии в англо-ирландской семье. Его отец служил констеблем в местной полиции. В двадцать с небольшим Тиндаль уехал в Англию, где стал работать геодезистом в стремительно расширяющейся железнодорожной сети. Хотя формальное научное образование Тиндаля оставляло желать лучшего, у него проснулся огромный интерес к физике. Тиндаль решил, что лучше всего ему поехать учиться в Германию. Он считал, что знаменитая одержимость английских университетов классическими дисциплинами и чистой математикой говорит не в пользу их стандартов лабораторной и экспериментальной науки. Именно на эти аспекты, однако, делался упор в новых университетах Германии.

В 1848–1851 годах Тиндаль жил, работал и учился в Марбурге, где завел тесную дружбу с рядом ведущих немецких экспериментаторов. Он не только учился у великого химика Роберта Бунзена, именем которого названа газовая горелка, но и первым перевел сочинения Рудольфа Клаузиуса по термодинамике на английский язык. Кроме того, Тиндаль влюбился в Альпы. Он стал пионером альпинизма на этом горном хребте и одним из первых поднялся на вершину Маттерхорна.

В 1851 году, вернувшись в Великобританию, Тиндаль вошел в число самых искусных физиков-экспериментаторов в стране. Своими умениями он привлек к себе внимание Майкла Фарадея, руководившего исследованиями магнетизма в лондонском Королевском институте, и по его рекомендации Тиндаль занял в институте пост профессора натурфилософии. Благодаря этому Тиндаль получил доступ к самой хорошо оснащенной физической лаборатории на Британских островах и подходил к использованию этого ресурса с огромной изобретательностью и упорством.

Тиндаль изучал множество вещей, от магнетизма и звука до нагревания молока с целью сделать его безопасным для употребления в пищу. Но его лучшая работа касалась земной атмосферы и ее способности поглощать, излучать и удерживать теплоту, поступающую с солнца. По сути, Тиндаль хотел понять, какую роль атмосфера играет в поддержании земной температуры.

Для этого он предложил красивый и имеющий историческое значение эксперимент, который провел в начале 1860-х годов.

Тиндаль знал, что солнечная энергия в основном достигает нас в форме видимого света, который, в свою очередь, нагревает сушу и воду на поверхности земли. Затем суша и вода изучают часть этой энергии обратно в атмосферу, но энергия покидает землю не в форме видимого света. Она испускается в форме инфракрасного излучения, которое обладает более низкой, чем видимый свет, частотой и остается невидимым, но ощущается как тепло.

Однако Тиндаль хотел понять, как инфракрасное излучение ведет себя в земной атмосфере. Проходит ли оно по воздуху беспрепятственно, как и видимые формы излучения? Или же воздух в некоторой степени задерживает его? Это важный вопрос, поскольку если это инфракрасное излучение не могло вернуться в космос, то должно было нагревать земную атмосферу.

Чтобы узнать, так ли это, Тиндалю нужно было установить источник инфракрасного излучения в своей лаборатории. После многих проб и ошибок он остановился на медном кубе, наполненном кипящей водой. Он поместил его у одного конца лежащей горизонтально 120-сантиметровой трубки, которую можно было наполнить газом. У другого конца он расположил “термоэлектрический датчик”, который выполнял роль чувствительного термометра и показывал Тиндалю, поглощает ли заполненная газом трубка какую-либо часть теплоты, излучаемой медным кубом.

Тиндаль сделал довольно неожиданное открытие. Азот и кислород, составляющие 99 % атмосферы, почти не оказывали влияния на инфракрасное излучение. Однако, когда такое же излучение проходило сквозь воздух, содержащий водяной пар или углекислый газ, пусть даже в крошечных количествах, термометр показывал снижение температуры. По мнению Тиндаля, объяснить это можно было лишь тем, что присутствие этих газов примерно в 15 раз повышает способность воздуха поглощать инфракрасное излучение.

Так Тиндаль открыл то, что мы называем парниковым эффектом. Водяной пар и углекислый газ, содержащиеся в земной атмосфере, задерживают часть солнечной энергии. По сути, они укрывают планету теплым одеялом. Не будь в атмосфере этих газов, температура земли резко упала бы и даже на экваторе была бы значительно ниже нуля.

Но что случится, если уровень парниковых газов – водяного пара и углекислого газа – повысится? Очевидно, что в атмосфере будет задерживаться больше теплоты, излучаемой с поверхности земли, и температура планеты возрастет. Как сразу отметили Тиндаль и его современники, угольные заводы времен Промышленной революции выбрасывали углекислый газ прямо в атмосферу, что приводило к повышению концентрации этого парникового газа. Таким образом Тиндаль еще в 1860-х годах продемонстрировал, что промышленная деятельность человека может оказывать воздействие на климат. Именно поэтому уже в 1917 году Александр Грэхем Белл, великий инженер и изобретатель телефона, стал призывать к использованию солнечной энергии для уменьшения рисков от неконтролируемого сжигания ископаемого топлива.

Полагаю, такова суть этой истории. Изучая теплоту, мы научились использовать ее, что значительно улучшило условия жизни людей. Однако с самого начала нас предупреждали о потенциальных опасностях, и, что особенно важно, у нас было время подумать о том, как их смягчить. Сегодня, в немалой степени благодаря тому, что ученые постигли законы термодинамики, мы нашли несколько стратегий борьбы с изменением климата. Ветряные электростанции и другие возобновляемые источники энергии уже вырабатывают около трети британского электричества, и нам известно, как увеличить их вклад. Ученые с безупречной экологической репутацией, от Джеймса Лавлока до Марка Лайнаса, призывают существенно увеличить производство ядерной энергии, поскольку оно не сопряжено с выбросом углеводородов и гораздо безопаснее, чем полагает большинство людей. Перспективными также кажутся геотермальные и приливные источники энергии. Главная проблема при работе с изменением климата носит не научный, а политический и эмоциональный характер. Одни отказываются признавать, что проблема вообще существует, а другие не хотят соглашаться с ее решениями.

И здесь я возвращаюсь к тому, почему решил написать эту книгу. Теперь как никогда важно, чтобы все мы имели базовое представление о термодинамике, ведь нам нужно принимать разумные и информированные решения о том, как обеспечить прогресс, сохраняя или улучшая условия жизни людей и не разрушая окружающую среду. Стоит ли нам обратиться к ядерной энергетике? Стоит ли водить электромобили? Каким налогом облагать бензин и какие субсидии предоставлять ветряным электростанциям? Нам никак не ответить на эти жизненно важные вопросы, если мы хотя бы в общих чертах не понимаем начала термодинамики.

Я уверен, что ответы найдутся в ходе хорошо обоснованных дискуссий. Наука о теплоте может и должна улучшать условия жизни людей, не уничтожая планету.

Дело за нами.

Назад: Глава 19. Горизонт событий
Дальше: Благодарности