Краткое содержание главы и пример
Итак, если руководство организации хочет, чтобы вложения в данные и аналитику окупились, ему необходима схема принятия решений, подкрепленных данными. Ваши сотрудники должны следовать шестиступенчатому процессу, описанному в этой главе.
Схема «спросить – получить – проанализировать – интегрировать – решить – выполнить итерацию» должна стать для вас второй кожей, неотъемлемой частью вашей работы. Дата-грамотность должна вести вашу организацию и всех ее сотрудников к более разумным и обоснованным решениям. Если дата-грамотность не помогает принимать решения, то зачем она нужна? Поясню на примере.
Давайте обратимся к опыту Rolls-Royce. Компания развивает интернет вещей и устанавливает на своих авиационных двигателях датчики. Эти датчики очень полезны: они сообщают, как проходит полет. На этом примере можно показать, почему организация решила, что разработка датчиков – выгодное вложение. Сразу хочу оговориться, что это гипотетический пример: так могло бы быть. Я понятия не имею, насколько моя реконструкция близка к реальности. Но давайте с ее помощью разберем, как происходит принятие решений, подкрепленных данными.
Первая ступень – задать вопрос. Представьте, что вы – инженер или специалист по обработке данных и изучаете обстановку в отрасли. Вы обращаете внимание на то, что интернет вещей и датчики стали очень популярной темой. Вы задаете себе вопрос: «А нельзя ли установить датчики на авиационном двигателе, чтобы передавать информацию о полете на землю в реальном времени?» Это первая ступень – на нее вы поднялись благодаря любопытству.
Далее вы рассуждаете, что стоит побольше узнать о таких датчиках: как они работают и можно ли вообще установить их на самолете (смогут ли они передавать информацию в таких условиях). Это внешние данные. Кроме того, вы изучаете внутренние данные вашей организации, пытаясь понять, насколько сейчас подходящее время для подобного предложения и насколько сложно будет воплотить его в жизнь. Наконец, вы выясняете, какие именно данные можно получить с помощью датчиков, что позволяет вам нарисовать полную картину возможностей. Вы завершили вторую ступень – получение данных.
Третья ступень – проанализировать. Вы же не просто так собирали все эти данные! Сведения были вам нужны, чтобы разобраться в них и проанализировать. Вы просеиваете тонны данных, чтобы окончательно определить сложность задачи, условия рынка и потенциальную выгоду. Полагаясь на критическое мышление, вы мысленно проигрываете различные сценарии развития событий. Третья ступень пройдена.
Четвертая ступень – интеграция в анализ человеческого фактора. И речь здесь не только о вас, но и о ваших соседях, друзьях, коллегах и т. д. Вы должны понять потенциальное влияние датчиков на безопасность миллионов людей. Вы следите, чтобы не угодить в ловушку предвзятости. Вы понимаете, что лично вам возможность собирать информацию с помощью датчиков кажется захватывающей, но это не должно влиять на объективность вашего решения. Вы интегрируете в процесс ваш (и не только) личный и профессиональный опыт. Вы уже серьезно приблизились к моменту принятия решения.
И вот пятая ступень – само решение. Благодаря пройденным ранее этапам вы решили: да, установить датчики на авиационных двигателях имеет смысл. Вы считаете, что это позволит собрать больше данных о ходе полетов и будет способствовать повышению безопасности. Вы планируете, как лучше всего донести ваши идеи и решение до всех заинтересованных лиц в организации, а затем приступаете к делу.
И наконец, последняя ступень – итерация. Датчики установлены, вы собираете все больше и больше данных о том, как они работают. Новые данные вызывают все новые и новые вопросы. Вы снова и снова проходите все этапы процесса принятия решения. Это открывает перед вашей организацией огромные возможности. Эта схема жизненно важна для формирования и поддержания организационной культуры успешного обращения с данными.