Книга: Время живых машин. Биологическая революция в технологиях
Назад: Сноски
Дальше: Сноски

130

David Shemin and D. Rittenberg, “The Life Span of the Human Red Blood Cell,” Journal of Biological Chemistry 166 (1946): 627–36.

131

Gerald D. Weinstein and Eugene J. van Scott, “Autoradiographic Analysis of Turnover Times of Normal and Psoriatic Epidermis,” Journal of Investigative Dermatology 45, no. 4 (1965): 257–62, .

132

H. J. Li et al., “Basic Helix-Loop-Helix Transcription Factors and Enteroendocrine Cell Differentiation,” Diabetes, Obesity and Metabolism 13, Suppl 1, no. 2 (2011): 5–12, .

133

Xuesong Li et al., “Preparation of High Performance Nanofiltration (NF) Membranes Incorporated with Aquaporin Z,” Journal of Membrane Science 450 (2014): 181–88, .

134

Saren Qi et al., “Aquaporin-Based Biomimetic Reverse Osmosis Membranes: Stability and Long Term Performance,” Journal of Membrane Science 508 (2016): 94–103, .

135

Yan Zhao et al., “Synthesis of Robust and High-Performance Aquaporin-Based Biomimetic Membranes by Interfacial Polymerization-Membrane Preparation and RO Performance Characterization,” Journal of Membrane Science 423–424 (2012): 422–28, ; Honglei Wang, Tai Shung Chung, and Yen Wah Tong, “Study on Water Transport through a Mechanically Robust Aquaporin Z Biomimetic Membrane,” Journal of Membrane Science 445 (2013): 47–52, .

136

Yang Zhao et al., “Effects of Proteoliposome Composition and Draw Solution Types on Separation Performance of Aquaporin-Based Proteoliposomes: Implications for Seawater Desalination Using Aquaporin-Based Biomimetic Membranes,” Environmental Science and Technology 47, no. 3 (2013): 1496–1503, .

137

Honglei Wang, Tai Shung Chung, and Yen Wah Tong, “Study on Water Transport through a Mechanically Robust Aquaporin Z Biomimetic Membrane,” Journal of Membrane Science 445 (2013): 47–52, ; Chuyang Tang et al., “Biomimetic Aquaporin Membranes Coming of Age,” Desalination 368 (2015): 89–105, .

138

Zhaolong Hu, James C. S. Ho, and Madhavan Nallani, “Synthetic (Polymer) Biology (Membrane): Functionalization of Polymer Scaffolds for Membrane Protein,” Current Opinion in Biotechnology 46 (2017): 51–56, ; Marta Espina Palanco et al., “Tuning Biomimetic Membrane Barrier Properties by Hydrocarbon, Cholesterol and Polymeric Additives,” Bioinspiration and Biomimetics 13, no. 1 (2017): 1–11, .

139

“Aquaporin Inside Membranes Undergo Second Round of Test in Space,” Membrane Technology (February 2017): 5–6, ; “Aquaporin Inside Membrane Testing in Space (AquaMembrane),” NASA International Space Station Research and Technology. Last modified October 4, 2017, .

140

Программа оценки водных ресурсов мира ООН, “Ежегодный отчет о развитии мировых водных ресурсов ООН 2015: вода для экологически ответственного мира” (Париж, UNESCO, 2015).

141

Национальный институт онкологии США, “Национальный акт о раке 1971”. Последнее изменение – 16 февраля 2016, ; Eliot Marshall, “Cancer Research and the $90 Billion Metaphor,” Science 331, no. 6024 (2011): 1540–41, .

142

Rebecca L. Siegel, Kimberly D. Miller, and Ahmedin Jemal, “Cancer Statistics, 2018.” CA: A Cancer Journal for Clinicians 68, no. 1 (2018): 7–30,; Национальный институт онкологии США, “Статистика онкологических заболеваний”. Последнее изменение – 27 апреля 2018, .

143

P. Rous, “A Transmissible Avian Neoplasm. (Sarcoma of the Common Fowl),” Journal of Experimental Medicine 12 (1910): 696–705, ; P. Rous, “A Sarcoma of the Fowl Transmissible by an Agent Separable from the Tumor Cells,” Journal of Experimental Medicine 13 (1911): 397–411, ; Robin A. Weiss and Peter K. Vogt, “100 Years of Rous Sarcoma Virus,” Journal of Experimental Medicine 208, no. 12 (2011): 2351–55, .

144

Сам вирус использует в качестве носителя генетической информации РНК, поэтому для встраивания в геном клетки хозяина на основе вирусной РНК создается комплементарная ей нить ДНК (кДНК). – Прим. науч. ред.

145

Marco A. Pierotti, Gabriella Sozzi, and Carlo M. Croce, “Discovery and Identification of Oncogenes,” in Holland- Frei Cancer Medicine, ed. D. W. Kufe, R. E. Pollock, and R. R. Weichselbaum, 6th ed. (Hamilton: BC Decker, 2003); Peter K. Vogt, “Retroviral Oncogenes: A Historical Primer,” Nature Reviews Cancer 12, no. 9 (2012): 639–48,. Retroviral; Klaus Bister, “Discovery of Oncogenes: The Advent of Molecular Cancer Research,” Proceedings of the National Academy of Sciences 112, no. 50 (2015): 15259–60, .

146

Andreas Hochhaus et al., “Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia,” New England Journal of Medicine 376, no. 10 (2017): 917–27, .

147

Всемирная организация здравоохранения, “Предотвращение онкологических заболеваний”. Последнее изменение – 2018,

148

Sidney J. Winawer et al., “Colorectal Cancer Screening: Clinical Guidelines and Rationale: The Adenoma-Carcinoma Sequence,” Gastroenterology 112 (1997): 594–642, ; M. G. Marmot et al., “The Benefits and Harms of Breast Cancer Screening: An Independent Review,” British Journal of Cancer 108, no. 11 (2013): 2205–40, .

149

А.М. Нун и др. “Течение, распространенность и исходы злокачественных заболеваний 1975–2015, Национальный институт онкологических заболеваний, Бетесда, штат Мэриленд, , по данным, предоставленным SEER в 2017 г. и опубликованным на веб-сайте SEER в апреле 2018; “Статистика по онкологическим заболеваниям: рак груди”, Национальный институт онкологических заболеваний, программа изучения течения, распространенности и исходов злокачественных заболеваний. Последнее изменение – 2015, .

150

“Статистика по онкологическим заболеваниям: рак прямой кишки”, Национальный институт онкологических заболеваний, программа изучения течения, распространенности и исходов злокачественных заболеваний. Последнее изменение – 2015, .

151

John V. Frangioni, “New Technologies for Human Cancer Imaging,” Journal of Clinical Oncology 26, no. 24 (2008): 4012–21, .

152

N. Lynn Henry and Daniel F. Hayes, “Cancer Biomarkers,” Molecular Oncology 6, no. 2 (2012): 140–46, .

153

Gabriel A. Kwong et al., “Mass-Encoded Synthetic Biomarkers for Multiplexed Urinary Monitoring of Disease,” Nature Biotechnology 31, no. 1 (2013): 63–70, .

154

Ester J. Kwon, Jaideep S. Dudani, and Sangeeta N. Bhatia, “Ultrasensitive Tumour-Penetrating Nanosensors of Protease Activity,” Nature Biomedical Engineering 1, no. 4 (2017), .

155

S. N. Bhatia et al., “Selective Adhesion of Hepatocytes on Patterned Surfaces,” Annals of the New York Academy of Sciences 745 (1994): 187–209, .

156

Austin M. Derfus, Warren C. W. Chan, and Sangeeta N. Bhatia, “Probing the Cytotoxicity of Semiconductor Quantum Dots,” Nano Letters 4, no. 1 (2004): 11–18, .

157

Jorg Kreuter, “Nanoparticles – A Historical Perspective,” International Journal of Pharmaceutics 331, no. 1 (2007): 1–10, .

158

Saeid Zanganeh et al., “The Evolution of Iron Oxide Nanoparticles for Use in Biomedical MRI Applications,” SM Journal Clinical and Medical Imaging 2, no. 1 (2016): 1–11.

159

Florian J. Heiligtag and Markus Niederberger, “The Fascinating World of Nanoparticle Research,” Materials Today 16, no. 7–8 (2013): 262–71, .

160

Ian Freestone et al., “The Lycurgus Cup – A Roman Nanotechnology,” Gold Bulletin 40, no. 4 (2007): 270–77.

161

Debasis Bera et al., “Quantum Dots and Their Multimodal Applications: A Review,” Materials 3, no. 4 (2010): 2260–2345, .

162

Jonas Junevi, Juozas Žilinskas, and Darius Gleiznys, “Antimicrobial Activity of Silver and Gold in Toothpastes: A Comparative Analysis,” Stomatologija, Baltic Dental and Maxillofacial Journal 17, no. 1 (2015): 9–12.

163

Florian J. Heiligtag and Markus Niederberger, “The Fascinating World of Nanoparticle Research,” Materials Today 16, no. 7–8 (2013): 262–71, .

164

Geoffrey Von Maltzahn et al., “Nanoparticle Self-Assembly Gated by Logical Proteolytic Triggers,” Journal of the American Chemical Society 129, no. 19 (2007): 6064–65, ; Ji Ho Park et al., “Magnetic Iron Oxide Nanoworms for Tumor Targeting and Imaging,” Advanced Materials 20, no. 9 (2008): 1630–35, .

165

M. E. Akerman et al., “Nanocrystal Targeting in Vivo,” Proceedings of the National Academy of Sciences 99, no. 20 (2002): 12617–21, ; Kazuki N. Sugahara et al., “Co-Administration of a Tumor-Penetrating Peptide Enhances the Efficacy of Cancer Drugs,” Science 328, no. 5981 (2010): 1031–35, ; Ester J. Kwon et al., “Porous Silicon Nanoparticle Delivery of Tandem Peptide Anti-Infectives for the Treatment of Pseudomonas Aeruginosa Lung Infections,”Advanced Materials 29, no. 35 (2017): 1–9, .

166

Todd J. Harris et al., “Proteolytic Actuation of Nanoparticle Self-Assembly,” Angewandte Chemie – International Edition 45, no. 19 (2006): 3161–65, .

167

Todd J. Harris et al., “Protease-Triggered Unveiling of Bioactive Nanoparticles,” Small 4, no. 9 (2008): 1307–12, .

168

Характеристика, используемая для оценки стабильности комплекса биологических молекул. – Прим. науч. ред.

169

A. Bairoch, “The ENZYME Database in 2000,” Nucleic Acids Research 28, no. 1 (2000): 304–5, .

170

Arren Bar-Even et al., “The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters,” Biochemistry 50, no. 21 (2011): 4402–10, .

171

Dmitri Simberg et al., “Biomimetic Amplification of Nanoparticle Homing to Tumors,” Proceedings of the National Academy of Sciences 104, no. 3 (2007): 932–36, .

172

Todd J. Harris et al., “Tissue-Specific Gene Delivery via Nanoparticle Coating,” Biomaterials 31, no. 5 (2010): 998–1006, .

173

Elvin Blanco, Haifa Shen, and Mauro Ferrari, “Principles of Nanoparticle Design for Overcoming Biological Barriers to Drug Delivery,” Nature Biotechnology 33, no. 9 (2015): 941–51, .

174

Andrew D. Warren et al., “Disease Detection by Ultrasensitive Quantification of Microdosed Synthetic Urinary Biomarkers,” Journal of the American Chemical Society 136 (2014): 13709–14, ; Simone Schuerle et al., “Magnetically Actuated Protease Sensors for in Vivo Tumor Profiling,” Nano Letters 16, no. 10 (2016): 6303–10, .

175

Jaideep S. Dudani et al., “Classification of Prostate Cancer Using a Protease Activity Nanosensor Library,” Proceedings of the National Academy of Sciences 115, no. 36 (2018): 8954–59, .

176

Gabriel A. Kwong et al., “Mathematical Framework for Activity-Based Cancer Biomarkers,” Proceedings of the National Academy of Sciences 112, no. 41 (2015): 12627–32, .

177

Sharon S. Hori and Sanjiv S. Gambhir, “Mathematical Model Identifies Blood Biomarker-Based Early Cancer Detection Strategies and Limitations,” Science Translational Medicine 3, no. 109 (2011), . Mathematical.

178

A. D. Warren et al., “Point-of-Care Diagnostics for Noncommunicable Diseases Using Synthetic Urinary Biomarkers and Paper Microfluidics,” Proceedings of the National Academy of Sciences 111, no. 10 (2014): 3671–76, .

179

Zhou J. Deng et al., “Layer-by-Layer Nanoparticles for Systemic Codelivery of an Anticancer Drug and SiRNA for Potential Triple-Negative Breast Cancer Treatment,” ACS Nano 7, no. 11 (2013): 9571–84, ; Erkki Ruoslahti, Sangeeta N. Bhatia, and Michael J. Sailor, “Targeting of Drugs and Nanoparticles to Tumors,” Journal of Cell Biology 188, no. 6 (2010): 759–68, ; Zvi Yaari et al., “Theranostic Barcoded Nanoparticles for Personalized Cancer Medicine,” Nature Communications 7 (2016), ; Rong Tong et al., “Photoswitchable Nanoparticles for Triggered Tissue Penetration and Drug Delivery,” Journal of the American Chemical Society 134, no. 21 (2012): 8848–55, ; Dan Peer et al., “Nanocarriers as an Emerging Platform for Cancer Therapy,” Nature Nanotechnology2, no. 12 (2007): 751–60, .

180

Melodi Javid Whitley et al., “A Mouse-Human Phase 1 Co-Clinical Trial of a Protease-Activated Fluorescent Probe for Imaging Cancer,” Science Translational Medicine 8, no. 320 (2016): 4–6, .

181

Джим Эвинг в разговоре с автором, май 2018.

182

Прикладная наука, объединяющая достижения биологии, механики и электроники для восстановления или усиления нарушенных функций организма – контроля движения, зрения, осязания и др. – Прим. науч. ред.

183

Eric Moskowitz, “The Prosthetic of the Future,” Boston Globe, November 21, 2016, .

184

Хью Герр в разговоре с автором, 2006–2018.

185

“Motor Neurons,” PubMed Health Glossary, ; Andrew B. Schwartz, “Movement: How the Brain Communicates with the World,” Cell 164, no. 6 (2016): 1122–35, .

186

Hugh M. Herr and Alena M. Grabowski, “Bionic Ankle– Foot Prosthesis Normalizes Walking Gait for Persons with Leg Amputation,” Proceedings of the Royal Society B 279 (2012): 457–64, .

187

Samuel K. Au, Jeff Weber, and Hugh Herr, “Powered Ankle – Foot Prosthesis Improves Walking Metabolic Economy,” IEEE Transactions on Robotics 25, no. 1 (2009); Luke M. Mooney, Elliott J. Rouse, and Hugh M. Herr, “Autonomous Exoskeleton Reduces Metabolic Cost of Human Walking,” Journal of NeuroEngineering and Rehabilitation 11, no. 1 (2014): 1–5, .

188

Разговоры автора с Хильдур Эйнарсдоттир, Кимом де Рой и Магнусом Оддсоном, октябрь 2017.

189

Beata Jarosiewicz et al., “Virtual Typing by People with Tetraplegia Using a Self-Calibrating Intracortical Brain- Computer Interface,” Science Translational Medicine 7, no. 313 (2015): 1–11; B. Wodlinger et al., “Ten- Dimensional Anthropomorphic Arm Control in a Human Brain−Machine Interface: Difficulties, Solutions, and Limitations,” Journal of Neural Engineering 12, no. 1 (2015), ; S. R. Soekadar et al., “Hybrid EEG/EOG-Based Brain/Neural Hand Exoskeleton Restores Fully Independent Daily Living Activities after Quadriplegia,” Science Robotics 1 (2016): 1–8.

190

Разговоры автора с Джоном Донохью, сентябрь 2017; Jens Clausen et al., “Help, Hope, and Hype: Ethical Dimensions of Neuroprosthetics,” Science 356, no. 6345 (2017): 1338–39.

191

D. Purves et al., eds., “The Primary Motor Cortex: Upper Motor Neurons That Initiate Complex Voluntary Movements,” in Neuroscience, 2nd ed. (Sunderland, MA: Sinauer Associates, 2001), .

192

Пуантилизм – живописный прием письма отдельными четкими мазками в виде точек или мелких квадратов. – Прим. пер.

193

John P. Donoghue and Steven P. Wise, “The Motor Cortex of the Rat: Cytoarchitecture and Microstimulation Mapping,” Journal of Comparative Neurology 212 (1982): 76–88; Shy Shoham et al., “Statistical Encoding Model for a Primary Motor Cortical Brain-Machine Interface,” IEEE Transactions on Biomedical Engineering 52, no. 7 (2005): 1312–22; T. Aflalo et al., “Decoding Motor Imagery from the Posterior Parietal Cortex of a Tetraplegic Human,” Science 348, no. 6237 (2015): 906–10, .

194

Sharlene N. Flesher et al., “Intracortical Microstimulation of Human Somatosensory Cortex,” Science Translational Medicine 8 (2016): 1–11; Emily L. Graczyk et al., “The Neural Basis of Perceived Intensity in Natural and Artificial Touch,” Science Translational Medicine 142 (2016): 1–11; Luke E. Osborn et al., “Prosthesis with Neuromorphic Multilayered E-Dermis Perceives Touch and Pain,” Science Robotics 3 (2018): 1–11, .

195

Встроенный в кору головного мозга. – Прим. науч. ред.

196

John P. Donoghue, “Connecting Cortex to Machines: Recent Advances in Brain Interfaces,” Nature Neuroscience 5, no. 11 (2002): 1085–88, ; Mijail D. Serruya et al., “Instant Neural Control of a Movement Signal,” Nature 416, no. 6877 (2002): 141–42, ; Vicki Brower, “When Mind Meets Machine,” EMBO Reports 6, no. 2 (2005): 108–10.

197

Leigh R. Hochberg et al., “Neuronal Ensemble Control of Prosthetic Devices by a Human with Tetraplegia,” Nature 442 (July 2006), .

198

Leigh R. Hochberg et al., “Reach and Grasp by People with Tetraplegia Using a Neurally Controlled Robotic Arm,” Nature 485, no. 7398 (2012): 372–75, ; Andrew Jackson, “Neuroscience: Brain-Controlled Robot Grabs Attention,” Nature 485, no. 7398 (2012): 317–18, .

199

“Парализованная женщина двигает роботом с помощью своего сознания”, Nature Video. Последнее изменение – 16 мая 2012. .

200

A. Bolu Ajiboye et al., “Restoration of Reaching and Grasping in a Person with Tetraplegia through Brain- Controlled Muscle Stimulation: A Proof-of-Concept Demonstration,” Lancet 389 (2017): 1821–30, ; Clive Cookson, “Paralysed Man Regains Arm Movement Using Power of Thought,” Financial Times, March 28, 2017, ; “Using Thought to Control Machines: Brain-Computer Interfaces May Change What It Means to Be Human,” The Economist, January 4, 2018, .

201

Импланты, вживленные в улитку внутреннего уха. – Прим. науч. ред.

202

Leigh R. Hochberg et al., “Neuronal Ensemble Control of Prosthetic Devices by a Human with Tetraplegia,” Nature 442 (July 2006), .

203

Karl Frank, “Some Approaches to the Technical Problem of Chronic Excitation of Peripheral Nerve” (speech), April 1968, Centennial Celebration of the American Otological Society.

204

Ли Хокберг в разговорах с автором, декабрь 2017; Bob Tedeschi, “When Might Patients Use Their Brains to Restore Movement? ‘We All Want the Answer to Be ow,’” STAT, June 6, 2017, .

205

Chethan Pandarinath et al., “High Performance Communication by People with Paralysis Using an Intracortical Brain-Computer Interface,” ELIFE 6 (2017): 1–27, .

206

Агонисты – скелетные мышцы, которые играют главную роль в определенном движении. Антагонисты – мышцы, выполняющие противодействие агонистам. – Прим. пер.

207

Lindsay M. Biga et al., eds., “Chapter 11: The Muscular System,” in Anatomy & Physiology (Open Oregon State: , 2018), ; Janne M. Hahne et al., “Simultaneous Control of Multiple Functions of Bionic Hand Prostheses: Performance and Robustness in End Users,” Science Robotics 3 (2018): 1–9, .

208

S. S. Srinivasan et al., “On Prosthetic Control: A Regenerative Agonist-Antagonist Myoneural Interface,” Science Robotics 2, no. 6 (2017), .

209

Tyler R. Clites et al., “A Murine Model of a Novel Surgical Architecture for Proprioceptive Muscle Feedback and Its Potential Application to Control of Advanced Limb Prostheses,” Journal of Neural Engineering 14 (2017).

210

Tyler R. Clites et al., “Proprioception from a Neurally Controlled Lower-Extremity Prosthesis,” Science Translational Medicine 10, no. 443 (2018), ; Gideon Gil and Matthew Orr, “Pioneering Surgery Makes a Prosthetic Foot Feel Like the Real Thing,” STAT, May 30, 2018, .

211

Фенотипический комплекс фонда Белуэттера Центра растениеводства имени Данфорта, .

212

Mao Li et al., “The Persistent Homology Mathematical Framework Provides Enhanced Genotypeto-Phenotype Associations for Plant Morphology,” Plant Physiology 177 (2018): 1382–95, .

213

Robert T. Furbank and Mark Tester, “Phenomics – Technologies to Relieve the Phenotyping Bottleneck,” Trends in Plant Science 16, no. 12 (2011): 635–44, ; Daniel H. Chitwood and Christopher N. Topp, “Revealing Plant Cryptotypes: Defining Meaningful Phenotypes among Infinite Traits,” Current Opinion in Plant Biology 24 (2015): 54–60, .

214

Todd P. Michael and Scott Jackson, “The First 50 Plant Genomes,” The Plant Genome 6, no. 2 (2013): 1–7, .

215

Департамент по экономическим и социальным вопросам ООН, демографический отдел “Перспективы мировой урбанизации, редакция 2018 г.”, 2018, .

216

D. Tilman et al., “Global Food Demand and the Sustainable Intensification of Agriculture,” Proceedings of the National Academy of Sciences 108, no. 50 (2011): 20260–64, .

217

M. A. Zeder, “Domestication and Early Agriculture in the Mediterranean Basin: Origins, Diffusion, and Impact,” Proceedings of the National Academy of Sciences 105, no. 33 (2008): 11597–604, ; Iosif Lazaridis et al., “Genomic Insights into the Origin of Farming in the Ancient Near East,” Nature 536, no. 7617 (2016): 419–24, .

218

Плодородный полумесяц – условное название региона на Ближнем Востоке, где в зимние месяцы наблюдается повышенное количество осадков. – Прим. пер.

219

Nils Roll-Hansen, “The Holist Tradition in Twentieth-Century Genetics. Wilhelm Johannsen’s Genotype Concept,” Journal of Physiology 592, no. 11 (2014): 2431–38, ; W. Johannsen, “The Genotype Conception of Heredity,” International Journal of Epidemiology 43, no. 4 (2014): 989–1000, .

220

Мендель Г. Опыты над растительными гибридами // Труды Бюро по прикладной ботанике. 1910. Т. 3. № 11. С. 479–529.

221

Maclyn McCarty, “Discovering Genes Are Made of DNA,” Nature 421 (2003): 406.

222

Фарадей М. В 3 т. – М.: Изд. АН СССР, 1947, 1951, 1959. (“Классики науки”).

223

Joseph John Thomson, “XL. Cathode Rays,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 44, no. 269 (1897): 293–316, .

224

P. Agre et al., “Aquaporin CHIP: The Archetypal Molecular Water Channel,” American Journal of Physiology 265 (1993): F463–76, ; Mario Parisi et al., “From Membrane Pores to Aquaporins: 50 Years Measuring Water Fluxes,” Journal of Biological Physics 33, no. 5–6 (2007): 331–43, .

225

Mauricio De Castro, “Johann Gregor Mendel: Paragon of Experimental Science,” Molecular Genetics and Genomic Medicine 4, no. 1 (2016): 3–8, .

226

Ralf Dahm, “Friedrich Miescher and the Discovery of DNA,” Developmental Biology 278, no. 2 (2005): 274–88, .

227

J. D. Watson and F. H. Crick, “Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid,” Nature 171, no. 4356 (1953): 737–38; Francis Crick, “Central Dogma of Molecular Biology,” Nature 227 (1970): 561–63.

228

R. T. Fraley et al., “Expression of Bacterial Genes in Plant Cells,” Proceedings of the National Academy of Sciences 80, no. 15 (1983): 4803–7, ; P. Zambryski et al., “Ti Plasmid Vector for the Introduction of DNA into Plant Cells without Alteration of Their Normal Regeneration Capacity,” EMBO Journal 2, no. 12 (1983): 2143–50, .

229

Mark Vaeck et al., “Transgenic Plants Protected from Insect Attack,” Nature 328, no. 6125 (1988): 33–37, .

230

Elizabeth Nolan and Paulo Santos, “The Contribution of Genetic Modification to Changes in Corn Yield in the United States,” American Journal of Agricultural Economics 94, no. 5 (2012): 1171–88, ; Zhi Kang Li and Fan Zhang, “Rice Breeding in the Post-Genomics Era: From Concept to Practice,” Current Opinion in Plant Biology 16, no. 2 (2013): 261–69, .

231

Andrew Balmford, Rhys Green, and Ben Phalan, “Land for Food & Land for Nature?” Daedalus 144, no. 4 (2015): 57–75, .

232

Sun Ling Wang et al., “Agricultural Productivity Growth in the United States: Measurement, Trends and Drivers,” United States Department of Agriculture Economic Research Service, 2015, .

233

Статистическая служба Министерства сельского хозяйства США, “Исторические записи о производстве сельскохозяйственных культур (апрель 2017)”, 2017, .

234

1 акр = 0,404 га. – Прим. пер.

235

Sean Sanders, ed., “Addressing Malnutrition to Improve Global Health,” Science 346 (2014), ; FAO, IFAD, and WFP, The State of Food Insecurity in the World 2014. Strengthening the enabling environment for food security and nutrition (Rome: FAO, 2014), .

236

Информационный центр ООН в Канберре, “Статистика голода ВОЗ”, .

237

Norman E. Borlaug, “The Green Revolution Revisited and the Road Ahead,” in Nobel Prize Symposium, 2002, .

238

G. Bruening and J. M. Lyons, “The Case of the FLAVR SAVR Tomato,” California Agriculture 54, no. 4 (2000).

239

Научно-исследовательская служба Министерства сельского хозяйства США, “Сельскохозяйственные методы и организация деятельности: биотехнологический обзор”. Последнее изменение – 11 января 2018, .

240

“Genetically Engineered Crops: Experiences and Prospects,” The National Academies Press, 2016, .

241

Ryan K. C. Yuen et al., “Whole Genome Sequencing Resource Identifies 18 New Candidate Genes for Autism Spectrum Disorder,” Nature Neuroscience 20, no. 4 (2017): 602–11, ; Stephan Ripke et al., “Biological Insights from 108 Schizophrenia-Associated Genetic Loci,” Nature 511, no. 7510 (2014): 421–27, ; Aswin Sekar et al., “Schizophrenia Risk from Complex Variation of Complement Component 4,” Nature 530, no. 7589 (2016): 177–83, .

242

Mohamed A. Ibrahim et al., “Bacillus Thuringiensis: A Genomics and Proteomics Perspective,” Bioengineered Bugs 1, no. 1 (2010): 31–50, .

243

National Research Council of the National Academies, Toward Sustainable Agricultural Systems in the 21st Century, 2010, .

244

National Research Council of the National Academies, Toward Sustainable Agricultural Systems in the 21st Century, 2010, .

245

Luca Comai, Louvminia C. Sen, and David M. Stalker, “An Altered AroA Gene Product Confers Resistance to the Herbicide Glyphosate,” Science 221 (1983): 370–71.

246

Jon Entine and Rebecca Randall, “GMO Sustainability Advantage? Glyphosate Spurs No-Till Farming, Preserving Soil Carbon,” Genetic Literacy Project, 2017, .

247

The National Academies Press, “Genetically Engineered Crops: Experiences and Prospects,” 2016, .

248

J. Madeleine Nash, “This Rice Could Save a Million Kids a Year,” Time Magazine, July 31, 2000, 1–7, ; Ingo Potrykus, “The ‘Golden Rice’ Tale,” AgBioWorld, 2011, .

249

J. H. Humphrey, K. P. West, and A. Sommer, “Vitamin A Deficiency and Attributable Mortality among Under-5-Year-Olds,” Bulletin of the World Health Organization 70, no. 2 (1992): 225–32,

250

A. Alan Moghissi, Shiqian Pei, and Yinzuo Liu, “Golden Rice: Scientific, Regulatory and Public Information Processes of a Genetically Modified Organism,” Critical Reviews in Biotechnology 36, no. 3 (2016): 535–41, ; Janel M. Albaugh, “Golden Rice: Effectiveness and Safety, A Literature Review,” Honors Research Projects 382, University of Akron, 2016, .

251

Gary Scattergood, “Australia, New Zealand Approve Purchasing of GMO Golden Rice to Tackle Vitamin-A Deficiency in Asia,” Genetic Literacy Project, 2018, .

252

Peggy G. Lemaux, “Genetically Engineered Plants and Foods: A Scientist’s Analysis of the Issues (Part I),” Annual Review of Plant Biology 59, no. 1 (2008): 771–812, ; Wilhelm Klumper and Matin Qaim, “A Meta-Analysis of the Impacts of Genetically Modified Crops,” PLoS ONE 9, no. 11 (2014), ; Mark Lynas, “How I Got Converted to G.M.O. Food,” New York Times, April 25, 2015, ; Mitch Daniels, “Avoiding GMOs Isn’t Just Anti-Science. It’s Immoral,” Washington Post, December 27, 2017, ; Michael Gerson, “Are You Anti-GMO? Then You’re Anti-Science, Too,” Washington Post, May 3, 2018, .

253

Маниок, маниока – тропическое растение, клубни которого употребляют в пищу в Африке, Азии и Южной Америке. – Прим. науч. ред.

254

Wangxia Wang, Basia Vinocur, and Arie Altman, “Plant Responses to Drought, Salinity and Extreme Temperatures: Towards Genetic Engineering for Stress Tolerance,” Planta 218, no. 1 (2003): 1–14, ; Huayu Sun et al., “The Bamboo Aquaporin Gene PeTIP4;1–1 Confers Drought and Salinity Tolerance in Transgenic Arabidopsis,” Plant Cell Reports 36, no. 4 (2017): 597–609, ; Kathleen Greenham et al., “Temporal Network Analysis Identifies Early Physiological and Transcriptomic Indicators of Mild Drought in Brassica Rapa,” ELife 6 (2017): 1–26, .

Назад: Сноски
Дальше: Сноски