Заключительные замечания
Во всех рассмотренных нами системах аксиом свободно употреблялись понятия множества, функции и натурального числа. Иногда эти понятия были упрятаны внутрь других. Так, неоднократно использовавшееся понятие последовательности содержит внутри себя понятия натурального числа и функции: ведь последовательность – это не что иное, как функция, определённая на натуральном ряду. Мы не включали понятия множества, функции и натурального числа в наши списки исходных, неопределяемых понятий на том основании, что относили их к тому языку, на котором мы разговариваем. Точнее сказать, к логике этого языка. Однако пользование логикой – а лучше сказать, тем, что мы считаем логикой, – языка без каких-либо ограничений приводит к парадоксам. Удивляться этому особенно не приходится, потому что логика языка возникла и развивалась исходя прежде всего из бытовой практики, а потом уже её стали не вполне законно применять к сложным математическим образованиям.
Мы оказали бы дурную услугу читателю, призвав его усомниться в существовании натуральных чисел. Но всё же полезно задуматься над тем, чтó значит, что существует какое-нибудь очень большое число: например, число, превосходящее количество элементарных частиц в видимой Вселенной. А существование натурального ряда – т. е. совокупности всех натуральных чисел – вызывает ещё больше непростых философских вопросов.
Можно потребовать, чтобы и такие фундаментальные понятия математики, как понятия множества и натурального числа, определялись аксиоматически. Однако задача аксиоматического определения фундаментальных понятий таит в себе ловушки и опасности. Это уже совершенно другая и более сложная тема, относящаяся к компетенции математической логики.