«Это субъективное суждение. Люди не могут полностью во всем соглашаться».
«Да, это суждение субъективно, но некоторые оценки настолько оторваны от жизни, что просто не могут быть верными».
«Ваш выбор в пользу одного из кандидатов – отражение личных предпочтений, а не трезвое суждение».
«Для принятия решения необходимы как прогнозные, так и оценочные суждения».
Очевидно, что постоянное смещение обходится очень дорого. Если ваши весы неизменно ошибаются в бóльшую сторону каждый раз, когда вы на них встаете, если полный энтузиазма менеджер регулярно вдвое занижает предполагаемые сроки завершения проекта, а неуверенный в себе руководитель год за годом дает неоправданно пессимистичные прогнозы продаж, это приводит к многочисленным серьезным просчетам.
Мы уже убедились, что шум тоже ведет к возникновению дорогостоящих ошибок. Если менеджер в большинстве своих прогнозов вдвое занижает сроки окончания проекта, но при этом иногда вдвое их завышает, бессмысленно утверждать, что «в среднем» он оказывается прав. Такие ошибки не отменяют друг друга, а суммируются.
Вот почему так важно установить, каким образом и насколько сильно смещение и шум способствуют появлению погрешностей в суждениях. Мы постараемся ответить на эти вопросы в настоящей главе. Основная идея проста: во всех видах профессиональных суждений, целью которых является точность, при расчете общей погрешности смещение и шум играют одинаковую роль. В некоторых случаях больший вклад вносит смещение, в других – шум (и таких случаев гораздо больше, чем можно было бы ожидать). Однако сокращение уровня шума всегда оказывает такой же эффект на значение общей погрешности, как и уменьшение смещения. По этой причине измерению и снижению шума и смещения следует уделять одинаково пристальное внимание.
Подход к измерению погрешности, на основе которого сделан этот вывод, имеет давнюю историю и является общепринятым в науке и статистике. В этой главе мы дадим обзор истории этого подхода и вкратце опишем его основные тезисы.
Представьте себе крупную компанию розничной торговли под названием GoodSell, в которой работает множество специалистов, прогнозирующих объемы сбыта. Они занимаются расчетом будущей доли рынка компании в различных регионах. Возможно, прочитав некую книгу о шумовых помехах, глава отдела прогнозирования Эми Симкин провела ревизию шума: все прогнозисты GoodSell подготовили независимую оценку доли компании на рынке в одном и том же регионе.
На рисунке 3 изображен (неправдоподобно плавный) график с результатами этой ревизии. Эми видит, что прогнозы расположились на кривой, имеющей знакомые очертания колокола, также известной как нормальное распределение, или распределение Гаусса.
Рис. 3. Распределение прогнозов рыночной доли компании GoodSell в одном регионе
Чаще всего эксперты компании давали оценку в 44 %, что отражено в самой верхней точке кривой. Эми убеждается, что в системе прогнозирования компании довольно много шума, ведь будь прогнозы точны, они были бы идентичными, однако на деле они варьируются в широком диапазоне.
Уровень шума в прогнозах компании GoodSell можно оценить количественно. Мы можем рассчитать стандартное отклонение в заключениях экспертов – так же как мы это сделали, отмеряя временные интервалы при помощи секундомера. Как следует из названия, стандартное отклонение отражает типичное расстояние от среднего значения. В нашем примере это 10 процентных пунктов. Как и в любом нормальном распределении, примерно две трети прогнозов расположились в пределах одного стандартного отклонения по обе стороны от среднего значения – между 34 % и 54 % рыночной доли. Теперь у Эми появилась количественная оценка системного шума в прогнозах о доле рынка. (Для более достоверных результатов в ревизию шумовых помех следовало бы включить сразу несколько задач по прогнозированию, однако для наших целей будет достаточно и одной.)
Как и руководство реально существующей страховой компании из главы 2, Эми потрясена результатами и хочет принять меры. Непозволительно высокий уровень шума указывает на то, что прогнозисты недостаточно строго следуют необходимым процедурам. Чтобы сделать действия специалистов более единообразными и упорядоченными, Эми просит разрешения нанять консультанта по шуму, но, к сожалению, эта идея не находит поддержки. Ответ ее начальника кажется вполне разумным: «Как можно сократить погрешность, если мы не знаем, насколько верны наши прогнозы? Конечно, если погрешность в них действительно велика (то есть имеется большое смещение), мы должны приложить максимум усилий для их устранения. Прежде чем принимать меры по улучшению качества прогнозов, нужно подождать и посмотреть, насколько точными они окажутся».
Спустя год после ревизии шума стали известны результаты, которые пытались предугадать прогнозисты. Доля рынка компании в целевом регионе составила 34 %. Теперь мы можем оценить погрешность каждого прогноза: нужно просто подсчитать разницу между прогнозом и результатом. Если эксперты прогнозировали 34 %, то погрешность оказалась нулевой, для среднего прогноза в 44 % погрешность составила 10 %, а для заниженного прогноза в 24 % она оказалась – 10 %.
На рисунке 4 показано распределение ошибок. Выглядит так же, как и распределение прогнозов на рисунке 3, но из числового значения каждого прогноза было вычтено истинное значение (34 %). Кривая распределения не изменилась, и стандартное отклонение (выбранная нами единица измерения шума) все еще составляет 10 %.
Рис. 4. Распределение ошибок в прогнозах GoodSell о рыночной доле в одном регионе
Разница между кривыми на рисунках 3 и 4 аналогична разнице между разбросом попаданий, видимых на передней и задней поверхностях мишени с рисунков 1 и 2 (см. введение). Чтобы заметить шум в результатах стрельбы, необязательно знать точное расположение «яблочка» мишени; подобным же образом данные об истинной доле рынка ничего не меняют в том, что мы уже знаем об уровне шума в прогнозах.
Теперь Эми Симкин и ее руководителю стала известна информация, которой они раньше не располагали, а именно величина смещения в прогнозах. Смещение – это средняя погрешность, которая в нашем случае также составила 10 %. В этом наборе данных смещение и шум оказались одинаковыми в числовом выражении. (Уточним, что такое совпадение ни в коем случае не является нормой, однако роль смещения и шума становится понятнее на примере, где их числовые выражения равны.) Мы видим, что ошибки большинства прогнозистов получились оптимистичными, то есть эксперты переоценили будущую долю рынка: многие прогнозы оказались по правую сторону от вертикальной черты нулевой погрешности. (На самом деле благодаря свойствам нормального распределения мы знаем, что в этой части кривой расположилось 84 % прогнозов.)
С едва скрываемым удовлетворением шеф Эми отмечает, что был прав: в прогнозах выявлено огромное смещение! И в самом деле, теперь стало очевидно, что уменьшить его масштабы было бы весьма полезно. И все же Эми продолжает задаваться вопросом о том, стоило ли год назад – и стоит ли сейчас – пытаться также сократить и уровень шума. Насколько сильно выиграла бы компания от этого шага в сравнении с коррекцией смещения?