Книга: Космологические коаны. Путешествие в самое сердце физической реальности
Назад: 43. Дуга повторно соединенных траекторий (Где-то внутри меняющегося прогнозируемого квантового состояния)
Дальше: 46. В основании (Хирадо, Япония, 1620 год)

45. Чистое лазурное небо

(Внутренняя Монголия, 1614 год)

Рассудком ты понимаешь, что на самом деле небо здесь не может быть больше, чем в любом другом месте, где ты побывал: оно занимает примерно половину окружающей тебя сферы. Но иногда оно, вне всякого сомнения, кажется бескрайним, растянувшимся от горизонта до горизонта убегающей вдаль степи.

Ты замечаешь это во время одного из редких привалов. Твой монгольский проводник, взглянув на небо, отвечает: «Говорят, что в чистом лазурном небе существует все земное, но там оно совершенно и вечно. Мы возвращаемся туда, когда закончилось наше время здесь».

Его ответ тебя заинтриговал. «Из чего же они сделаны, эти живые существа, населяющие ясное небо?» – спрашиваешь ты.

«Ну, они ни из чего не сделаны, – отвечает он. – Это сама суть вещи, отделенная от ее материальной формы». Ты, вспомнив древних греков, идеи которых подробно обсуждал с Галилео, спрашиваешь: «Значит, ты считаешь, что в огромном лазурном небе есть много такого, что не отображается здесь, на Земле?»

«Хм, должно быть, так, – соглашается монгол, – поскольку я могу представить себе много, очень много вещей, кажущихся настолько же реальными, как те, которые отображаются на Земле».

«Я думаю, мой наставник Галилео считает так же. Он говорит о „Книге природы“, описывающей устройство мира, и верит, что мир меняется, но правила, изложенные в этой книге, нет». Ты поворачиваешься к монаху из вашей группы, проделавшему вместе с тобой весь пути от Гандена: «Как ты думаешь, Трипа Драгпа считает, что сама дхарма вечна и неизменна?»

Монах улыбается: «Да, он считал, что это – истина, но затем передумал».

Какое-то время назад я сформулировал теорему…

Леонард Эйлер

В 1687 году Ньютон впервые опубликовал универсальный закон гравитации; через 228 лет Эйнштейн предложил его уточненный вариант.

В 1748 году Эйлер опубликовал свое красивое равенство е = -1.

В начале XVIII века Хакуин Экаку нарисовал картину «Слепой человек, переходящий через мост».

В конце XIX века Цукерторт придумал названный его именем дебют, но, как ни странно, не использовал его во время шахматного турнира на звание чемпиона мира в 1886 году. Турнир он проиграл.

В 1897 году Дж. Дж. Томсон открыл существование отрицательно заряженной частицы – электрона.

В 1992 году при наблюдении пульсаров впервые были открыты планеты за пределами Солнечной системы.

В 2005 году была обнаружена неизвестная ария Баха и подтверждена ее аутентичность.



В каком из этих случаев что-то было придумано, а в каком – открыто?



Мы склонны считать открытиями те события, которые, после того, как о них стало известно, воспринимаются нами как нечто уже существовавшее и ожидавшее, что на него случайно наткнутся. Именно так воспринимаются потерянная ария Баха, планеты вокруг звезды PSR B1257+12 и электрон. Изобретения же – или творения – это нечто, вновь осуществленное в результате усилий их создателей. Картина Хакуина Экаку и оригинальная ария Баха – типичные примеры творений. А вот другие достаточно важные случаи не столь очевидны. Существовала ли формула Эйлера до того, как он ее записал? А закон гравитации Ньютона или уравнение поля Эйнштейна? Или дебют Цукерторта?

Убедительный аргумент в пользу того, что формула Эйлера или закон Ньютона были открыты (первая относится к комплексным числам, а второй – к гравитации), таков: представляется очевидным, что они были справедливы и до того, как ими занялись их первооткрыватели или вообще кто-то из людей. Могло ли е’п равняться чему-либо другому? Поскольку показано, что это -1, мы немедленно делаем вывод, что это всегда была и всегда будет именно -1. То же самое относится и к закону гравитации Ньютона. Может, это и не идеальное описание мира (описание Эйнштейна лучше, хотя не исключено, что его можно еще уточнить), но мы уверены, что и за миллиарды лет до открытия Ньютона планеты в своем движении с невероятной точностью следовали этому закону.



Это свидетельствует о том, что – по предложению известного философа Карла Поппера – все сущее в мире можно в каком-то смысле разделить на три категории. К первой категории относятся реально существующие объекты и события, такие как стулья, книги и последняя шахматная партия между Цукертортом и Стейницем.

Вторая категория – это мир произведенных человеком информационных объектов, таких как все доказанные математические теоремы, произведения литературы, сонаты и кантаты и последовательность ходов в десятой партии Цукерторта и Стейница. В этих случаях информация может создаваться по-разному: в виде книг, или на отдельных листках бумаги, или в памяти компьютера, или в нейронных структурах. Эта информация представляет собой выборку из всего огромного пространства возможностей того, что представляет интерес.

К третьей категории относится меньшее подмножество «всего», что в каком-то смысле «объективно»: законы физики, справедливые теоремы абстрактной математики и другие поддающиеся обнаружению абстрактные объекты. Что-то вроде мира идей Платона – чистое лазурное небо, существующее независимо от его физического воплощения.



Однако чем пристальнее мы вглядываемся в такое распределение по категориям, тем менее четким оно становится. Посмотрим на выражение «реально существующие». Что это означает? Что значит существовать в «земном» мире (если использовать термин, употребленный монголом) и быть чем-то, а не, так сказать, чем-то другим?

Оригинал картины «Слепой человек, переходящий через мост» сейчас висит в музее. Мы можем сказать, что этот объект обязан своим «существованием» тому, что обладает прочностью, энергией и так далее. Если же говорить более конкретно (на языке физики), – тому, что он состоит из атомов. Тогда «быть чем-то» практически означает «быть определенной конфигурацией этих атомов». Из пространственной формы данной структуры и свойств атомов следуют такие свойства рисунка, как его форма, запах, вес, цвет и так далее.

Почему атомы считают основой всего существующего? Частично из-за их долговечности – способности продолжительно существовать во времени. Это их свойство основывается на том, что физики называют сохраняющимися величинами. Наиболее известная сохраняющаяся величина – энергия. Большинство людей, если у них спросить, почему энергия сохраняется, скажут – или зная что-то, или чисто интуитивно, – что «вещи не могут просто появляться и исчезать». Это, разумеется, верно, поскольку, согласно знаменитому уравнению Эйнштейна E = mc2 энергия и масса взаимозаменяемы, то есть сохранение энергии означает и сохранение массы.

Однако дело не только в энергии. Протоны и нейтроны принадлежат к семейству частиц, называемых барионами. Барионы состоят из трех кварков. Как и энергия, полное число барионов в физической системе сохраняется и не меняется со временем. Если бы такого закона сохранения не было, то, например, два нейтрона при столкновении аннигилировали бы с образованием двух фотонов, и точно так же был бы нестабилен протон, а обычная материя очень быстро испарялась бы, превращаясь в поток тепла и света. Сходным образом еще одна сохраняющаяся величина, лептонное число, предотвращает аннигиляцию электронов и протонов. Сохранение другой величины, полного электрического заряда, не допускает превращения электронов в нейтрино.

Мы привыкли к тому, как эти законы проявляют себя в окружающем нас повседневном мире, где объекты и вещества устойчивы, даже если их форму легко изменить. Законы сохранения – хлеб насущный физиков, изучающих элементарные частицы: они позволяют понять, как и каким образом одни частицы взаимодействуют с другими. Но и эти законы не являются чем-то неприкосновенным. В общей теории относительности закон сохранения, в его обычной форме, может быть вопиющим образом нарушен. Например, в расширяющейся вселенной энергия фотонов, составляющих реликтовое излучение, просто «исчезает» при расширении вселенной и остывании излучения, и разумного ответа на вопрос, куда она девается, нет. В стандартной модели физики элементарных частиц при достаточно высоких энергиях (которые возможны на очень ранних стадиях развития вселенной) барионное число перестает быть сохраняющимся и слегка меняется. Этот закон сохранения грубо нарушается в процессе образования черных дыр, которые могут образовываться из барионов. Затем черная дыра испаряется, превращаясь в «суп» из излучения и частиц с полным барионным зарядом равным нулю. Когда черная дыра достаточно маленькая, то, если захотеть, дестабилизировать и превратить ее в радиацию – дело нехитрое.

Более того, как мы уже видели, само понятие частица, кажущееся вполне надежным в классической физике, становится не столь определенным в квантовой механике, а особенно – в квантовой теории поля, где частицы – это возбуждения полей (которые, в свою очередь, способны образовывать частицы; вот круг и замкнулся). Действительно, в релятивистской квантовой теории поля, объединяющей квантовую теорию поля и теорию относительности Эйнштейна, разные наблюдатели могут быть категорически не согласны с тем, какие именно частицы они наблюдают.

И наконец, мы видели, что, если вернуться в мир больших совокупностей частиц и макроскопических объектов, одно квантовое состояние может соответствовать большому количеству объектов: в процессе квантовой эволюции и декогеренции объект может расщепиться на две или большее число версий, расположенных в разных местах или различающихся в деталях.

Все это полезно помнить, когда слышишь, например, такое утверждение: «Невозможно, чтобы что-то появилось из ничего!» Как правило, оно некорректно, если только заранее не договориться, что в точности означают слова «что-то» и «ничего». (Но так почти никогда не бывает!)



Итак, не стоит слишком полагаться на утверждение, что существовать физически – значит состоять из атомов, даже если вслед за наиболее несговорчивыми физиками так принято думать. А что значит быть чем-то, если мы тоже думаем об этом чём-то как о структуре из атомов? Нет, полагаться явно не стоит!

Мы видели, что структура из атомов «сделана» из того, что мы назвали (структурной) информацией, которая представляет собой определенную конфигурацию или набор конфигураций из полного множества возможных конфигураций, состоящего из того же набора элементов. Такое представление полезно, но мы быстро обнаруживаем, что граница между наличием этой структурной информации и существованием частиц достаточно размыта, поскольку сама частица – это структура, состоящая из других частиц, или структура в квантовом поле, или эквивалент квантового состояния.

Более того, рассматривая эту информацию в количественном или качественном аспекте, мы видим, что становится очень трудно сохранить объективность вещей. При количественном рассмотрении надо помнить, что мы определили информацию как дефицит «случайности» (которая, в свою очередь, определялась как неоднозначность вероятностей, описывающих состояние системы), а порядок – как дефицит «беспорядка» (который, в свою очередь, определялся тем, насколько общим является состояние, когда оно сглаживается при макроскопическом описании более высокого уровня). Таким образом, обе эти величины зависят от вероятностей (которые хотя бы в какой-то мере могут быть субъективны), и порядок также зависит от определения макроскопического состояния, выбранного наблюдателем для описания системы.

Помимо того, сколько информации имеется, можно поставить вопрос и о качественных характеристиках, как-то связанных с такой структурной информацией. Совершенно ясно, что подобные качества (которые можно считать сутью того, что такое данная вещь) не представляют собой объективные свойства системы, не зависящие от наблюдателя, ее изучающего. Что, например, значит, что вещи присуща «зеленость»? Ни один отдельный атом зеленым не является (атомы меньше, чем цвет!). Собрание молекул может обладать свойством преимущественного отражения света определенной длины волны. Но слово «зеленый», ощущение зеленого, связывается у нас с зеленью растений и тому подобного, а все это существует только в связи с кем-то, кто видит зеленый объект с помощью определенного набора цветовых рецепторов. Абсолютно неясно, представляет ли зеленый цвет какое-то значимое свойство даже для других животных, имеющих глаза (особенно если их цветовые рецепторы подразделяются на две или четыре группы, а не на три, как у человека). И совершенно ясно, что в отсутствие какой бы то ни было биологии «зеленый цвет» вообще не был бы вещью – отдельным объектом материального мира. Это не значит, что изумруды не зеленые, когда рядом нет людей, или что длина волны света, испускаемого силикатами бериллия и алюминия, меняется, когда появляются люди; скорее речь идет о том, что сам зеленый цвет должен дождаться людей.

Схожие соображения касаются вообще всех свойств, которые мы можем приписать вещам. (А не только таких, как полезность и красота, у которых – мы это знаем! – есть субъективная составляющая.) Если присмотреться, они справедливы и в отношении таких свойств, как, например, твердость и острота: большинство людей, возможно, оценят их одинаково, но, как и с зеленым цветом, есть ли они без людей?



Когда речь идет о том, существуют ли вещи и как, эта неустранимая субъективная составляющая заставляет слегка переформулировать вопрос об открытии (как о противоположности изобретению), поскольку несколько нелепо описывать нечто как «открытое», когда связь этого «нечто» с его первооткрывателем не слишком отличается от связи, объединяющей изобретение с его изобретателем.

Но что можно сказать о таких открытиях, как теорема Эйлера? Они представляются независимыми от любых физических систем, и кажется, что они существовали задолго до того, как появились наблюдатели, чтобы открыть, обсудить или изобрести их.

Да, формула Эйлера (была и будет) верна, потому что ее можно Доказать. То есть была сформулирована система математических аксиом и правил, и, применяя эти правила к этим аксиомам, можно вывести и формулу Эйлера, и много других формул. Гораздо менее ясно, были ли сами аксиомы открыты или изобретены. Кажется, что определенным образом подобранные аксиомы порождают многочисленные полезные и интересные математические «плоды». Но почему не представить себе, что другая система аксиом тоже может привести к разнообразной и интересной математической конструкции? И даже если конструкции, являющиеся следствием другой системы аксиом, скучны и бедны, сделает ли это их менее «открытыми», чем те, которые мы используем?

Более того: та же система аксиом и правил может быть источником поистине невероятного числа математических формул. Представьте себе, что джинн настроил свой джинниум так, что он просто выдает все возможные утверждения, которые можно вывести, исходя из стандартной системы математических аксиом. Строчка за строчкой джинниум будет исторгать из себя математически правильные утверждения. Но означает ли это – заниматься математикой? Трудно себе представить математика, который с этим согласится, как трудно вообразить писателя, который скажет об обезьяне, стучащей по клавишам пишущей машинки, что она пишет книгу.

В конце концов, когда аксиомы и правила установлены, множество всех следующих из них суждений – это просто бесконечный набор строго определенных (возможно, сложных) утверждений, который в принципе ничем не отличается от множества всех последовательностей ходов при игре в шахматы или цепочек слов. Однако почти все последовательности шахматных ходов, цепочки слов или математические утверждения полностью бессодержательны! Только крошечное их подмножество действительно представляет интерес, и истинный смысл креативного процесса – определение этого малого подмножества. В самом деле: существуют компьютерные системы, позволяющие доказывать теоремы автоматически, но они не слишком полезны. Например, чтобы доказать очень простое математическое утверждение, что 2 + 2 =4, начав с равенства 1 + 1 = 2, потребуются программа из 10 строк, 26 аксиом, 40 определений и невероятно большое число логических общезначимых высказываний, которые надо будет проверить. Чтобы такая система вообще смогла выстроить, например, 108-ми страничное доказательство Эндрю Уайлса последней теоремы Ферма, потребуется время, вероятно, сравнимое с метакальпой. Точно так же, как композиторы подбирают очень специфические последовательности нот, а опытные шахматисты предпочитают завораживающе красивые игры, где победа достается в упорной борьбе, математики при доказательстве красивых и содержательных теорем используют тщательно отобранную и убедительную последовательность логических рассуждений. Поступая так, они генерируют информацию ровно в том же смысле, что и река Лхаса: из большого, огромного числа возможностей они выбирают только ничтожно малую их часть.

С этой точки зрения тот факт, что формула e = -1 была справедлива до того, как на нее обратили внимание люди, не впечатляет, как не впечатляет и существование банальных математических утверждений, всех возможных шахматных игр и так далее. Если мы определили набор правил, то можно показать, что все возможные логические следствия из этих правил были и будут всегда. Почему же тогда математики, а не композиторы, привыкли думать, что они совершили открытие?

Одно из правдоподобных объяснений этому таково: изначально основные принципы и математики, и физики формулировались так, чтобы соответствовать реальному миру. Имеется огромное число математических конструкций, которые просто непригодны при выполнении таких действий, как счет, осмысление или прогнозирование. Для этого подходит только очень малое их число. Именно это небольшое число конструкций может быть открыто как часть того, что составляет сущность вселенной. В известном смысле это сравнимо с открытием электрона. (Неясно, впрочем, соответствует ли данное объяснение тому, как воспринимают математику сами математики.) Однако из такого объяснения становится понятно, что не просто все теоремы «объективны», а что определенные теоремы делает таковыми их уникальность, – даже если они абсолютно абстрактны и очень далеки от физики или материального мира. Есть также ощущение (его не очень легко передать тому, кто сам не занимался физикой), что в мире физики существует математическая «реальность», которая, если в нее упираешься, отражает удары, как стена. Меня не перестает удивлять, что физик, приступив к изучению какой-то проблемы реального мира, для начала представляет ее в виде математических формул, а затем производит какое-то количество чисто математических операций – одну за другой, одну за другой, практически забыв о физике, – чтобы наконец перевести математическую формулу обратно в утверждение, относящееся к физическому миру. И это утверждение оказывается истинным.



Таким образом, похоже, что нечто, будь то атом или теорема, в каком-то смысле «сделано» из информации, а количество и качество этой информации в какой-то мере определяются тем, кто ею обладает, характеризует ее или создает.

И тем не менее мы чувствуем, что некоторые объекты – особенные, выходящие за пределы пространства и времени в смысле вечного лазурного неба.



Но что это? Что конкретно принадлежит этому чистому лазурному небу?

Неправедность убийства?

Круги?

Метод логических рассуждений?

Тот факт, что неработающая программа джинна номер 364343234 зависла?

Или тот факт, что доказательство теоремы X следует из аксиомы Y?

И насколько красива должна быть теорема, чтобы занять свое место на чистом лазурном небе?

Назад: 43. Дуга повторно соединенных траекторий (Где-то внутри меняющегося прогнозируемого квантового состояния)
Дальше: 46. В основании (Хирадо, Япония, 1620 год)

eskadron schabrak dressyr
Pretty nice post. I simply stumbled upon your weblog and wished to say that I have truly loved browsing your weblog posts. After all I will be subscribing for your feed and I hope you write again very soon! eskadron schabrak dressyr prosri.teswomango.com/map5.php