Книга: Дарвинизм в XXI веке
Назад: Интерлюдия или сюита? Или Легенда о Золотом веке
Дальше: Глава 14. Эволюция в плотной среде. Дарвинизм и экология

Глава 13

Развитие развития. Дарвинизм и эмбриология

Замечательный английский ученый ХХ века Джон Бёрдон Сандерсон Холдейн – физиолог, биохимик, генетик, один из создателей СТЭ – был также известен как талантливый популяризатор науки и блестящий лектор. О его остроумных приемах объяснения материала ходили легенды. Одна из них гласит, что после очередной публичной лекции к нему подошла одна скептически настроенная слушательница и заявила: “Профессор, что бы вы там ни говорили, а я все-таки не могу себе представить, чтобы единственная крошечная клеточка превратилась в такой сложный и совершенный организм, как человек, – пусть даже и за миллиарды лет!” “Но, сударыня, – возразил Холдейн, – ведь вы же сами проделали такое превращение, причем всего за девять месяцев!”

Действительно, если изменения, происходящие с живыми существами в ряду поколений, непосредственно наблюдать почти невозможно, то изменения, происходящие с каждой отдельной особью в ходе ее онтогенеза, в принципе, может увидеть собственными глазами всякий достаточно любознательный человек. Правда, в случае животных (особенно высокоразвитых – таких, как млекопитающие, птицы или насекомые) это тоже не так просто: мало того, что на ранних стадиях зародыш очень мал, так он еще и скрыт от взгляда наблюдателя оболочками яйца или телом матери. Если же извлечь его оттуда, то на этом развитие обычно прекращается, и исследователь может получить только “мгновенную фотографию” – строение зародыша на том этапе развития, которого он достиг к моменту извлечения. И все же еще Аристотель наблюдал и описывал развитие куриного эмбриона. Правда, с крушением античного мира исследования эмбрионального развития надолго прервались, но в конце XVI века начались снова. А через несколько десятилетий в арсенале исследователей появились первые микроскопы, открывшие новые возможности для исследований такого рода.





Эти направления, разумеется, приносили не только новые открытия, но и новые заблуждения. Больше ста лет – с середины XVII до второй половины XVIII века – в умах исследователей безраздельно господствовал преформизм – представление о том, что эмбриональное развитие сводится к количественному росту зародыша, а все его структуры и органы сформированы еще до зачатия. Спор шел лишь о том, где именно спрятан микроскопический человечек, вырастающий потом в младенца, – в яйцеклетке (как полагали “овисты”)

или в сперматозоиде (как утверждали “анималькулисты”). Ученые (в том числе и самые блестящие анатомы и микроскописты своего времени, включая самого Левенгука) порой ухитрялись даже “разглядеть” этого человечка внутри клеток. Наиболее последовательные из них утверждали даже, что в половых органах этого человечка (если он принадлежит к тому полу, в клетках которого, по мнению данного ученого, содержатся зародыши) уже сформированы зародыши следующего поколения, а у них тоже есть половые клетки, а в них – зародыши третьего поколения… и так до бесконечности. Сторонниками этой идеи были, в частности, выдающийся зоолог и анатом Ян Сваммердам и великий математик Готфрид Лейбниц (заметим: главным достижением которого было создание дифференциального исчисления, то есть анализа бесконечно малых величин). А известный швейцарский анатом XVIII века (и убежденный “овист”) Альбрехт фон Галлер даже не поленился подсчитать, какое минимальное общее число вложенных друг в друга зародышей должно было находиться в яичниках библейской Евы, чтобы их хватило для рождения всех людей, живших от сотворения мира до 1766 года, когда Галлер опубликовал эти расчеты. Получилось, что не менее 200 миллиардов.

Здесь у читателя наверняка возникнет вопрос: как это вообще было возможно? Как могли ученые, в том числе выдающиеся, столько времени верить в то, что зародыш получает наследственные признаки только от одного из родителей, когда наглядные опровержения этого во множестве были у них перед глазами? Неужели не нашлось никого, кто бы задумался: как же тогда могут существовать мулы – гибриды лошади и осла, сочетающие в себе признаки обоих видов? Почему кожа мулатов темнее, чем у европейцев, но светлее, чем у негров? Как вообще можно объяснить бесчисленные случаи, когда у ребенка “глаза мамины, а нос папин”?

Ученые, задумывавшиеся обо всем этом, действительно находились – хотя их было на удивление мало. И наиболее глубокие и ясные мысли на эту тему высказал в 1744–1745 годах Пьер Луи Моро де Мопертюи – один из самых ярких деятелей Просвещения, математик, физик, астроном, географ, натуралист и философ. Он сформулировал “принцип наименьшего действия”, сыгравший огромную роль в разных областях физики. Он доказал, что Земля несколько сплюснута с полюсов. Он во многом предвосхитил основные идеи генетики (которые, как мы знаем, и сто с лишним лет спустя оказались слишком новыми для научного сообщества). А “побочным продуктом” работ Мопертюи по наследственности стала уничтожающая критика преформизма – знаменитый ученый буквально не оставил камня на камне от представлений как овистов, так и анималькулистов, приведя целый ряд разнообразных фактов, необъяснимых с преформистской точки зрения.







Возразить на доводы Мопертюи преформистам было нечего – но они и не возражали. Если принцип наименьшего действия вызвал бурную полемику, то работы Мопертюи по наследственности научное сообщество просто проигнорировало – несмотря на всю славу их автора. Проигнорировало так же бестрепетно, как до того игнорировало существование мулов и мулатов и наследование детьми признаков обоих родителей.

Мопертюи умер в 1759 году. В том же году молодой анатом Каспар Фридрих Вольф прямыми наблюдениями доказал, что зародыш не содержится в готовом виде ни в яйцеклетке, ни в сперматозоиде: его структуры возникают в ходе развития. В частности, Вольф наблюдал, как энтодерма зародыша цыпленка, первоначально плоская (поскольку у птиц зародыш на самых ранних стадиях распластан по поверхности желтка), сворачивается сначала в желоб, а потом замыкается в трубку, которой предстоит стать кишечником. Работы Вольфа стали началом новой науки – эмбриологии, изучающей процессы индивидуального развития организмов и прежде всего его ранних (зародышевых) стадий.

Впрочем, взгляды Вольфа далеко не сразу стали общепринятыми – многие натуралисты еще долго придерживались преформизма, то есть представлений, что развивающийся зародыш с самого начала устроен в принципе так же, как и взрослая особь, а все его развитие сводится к “разворачиванию”, то есть чисто количественному росту и некоторому изменению пропорций. Однако ряды противников преформизма постепенно множились, и среди них появлялись такие блестящие экспериментаторы, как Ладзаро Спалланцани и Иоганн Фридрих Блюменбах, чьи остроумные опыты было невозможно объяснить с преформистской точки зрения. К началу XIX века в эмбриологии начинает преобладать взгляд на индивидуальное развитие именно как на развитие – в ходе которого появляется то, чего прежде не было, и весь организм многократно усложняется. Окончательно эти представления утверждаются с появлением в 1827–1828 гг. классических работ выдающегося эмбриолога Карла Эрнста фон Бэра.

Необъяснимый параллелизм

Заслуги Бэра перед эмбриологией не ограничиваются окончательным утверждением в ней взглядов Вольфа (которого Бэр, надо сказать, чтил чрезвычайно высоко). Ему принадлежит множество частных открытий и первых описаний в этой области. Но, пожалуй, самым крупным и важным достижением великого эмбриолога стал сформулированный им в общей форме закон зародышевого сходства.

При всей обширности и оригинальности собственных исследований Бэра этот закон опирался не только на них – он стал обобщением фактов, накопленных всей эмбриологией первой четверти XIX века. В это время идея преформизма наконец-то вышла из моды, и исследованием реального индивидуального развития организмов занялись многие ученые. И очень скоро стали замечать, что у зародышей разных, непохожих друг на друга организмов на определенных стадиях появляются очень сходные структуры. Причем если для одних из этих организмов появление таких структур вполне ожидаемо и логично, то наличие их у зародышей других выглядит абсолютно неуместным.

Так, в частности, в 1825 году данцигский врач и натуралист Мартин Генрих Ратке, исследуя зародыш свиньи, неожиданно обнаружил у него характерные складки, удивительно похожие на те, из которых у зародыша акулы развиваются жаберные щели. Продолжая работу, Ратке выяснил, что такие зачатки жаберных щелей есть у зародышей не только свиньи, но и других млекопитающих, включая человека, а также у зародышей птиц – хотя ни у кого из этих существ ни на какой стадии развития не бывает жабр и жаберного дыхания.

Подобные странные явления замечали и другие ученые. Кое-кто даже пытался если не объяснить их, то хотя бы вывести некоторое общее правило. Именно эту задачу и удалось решить Бэру, предложившему наиболее общую и в то же время корректную формулировку: зародыши самых разных видов позвоночных животных, начиная с определенной стадии развития, сходны между собой, в дальнейшем же развитии это сходство неуклонно убывает от ранних стадий развития к более поздним. Если мы смотрим, допустим, на эмбрион собаки на разных стадиях, то сначала мы можем понять только то, что это зародыш какого-то позвоночного, затем – что это зародыш млекопитающего, еще позже – что это представитель отряда хищных и т. д. В этом и состоит закон зародышевого сходства – он же закон Бэра.

Бросается в глаза одна странность: хотя во времена Бэра (и даже во времена Вольфа) идея эволюции живых организмов широко обсуждалась в кругах натуралистов и философов, ни эмбриологи, ни “трансформисты” не пытались провести параллель между индивидуальным развитием и предполагаемым изменением видов. В ту пору такой параллели не видел и сам Бэр – признававший возможность ограниченной (в пределах рода, максимум – группы близких родов) эволюции, а для отдаленного прошлого Земли допускавший и более масштабные изменения. Эти взгляды сейчас могут показаться очень робкими и половинчатыми, но не надо забывать, что Бэр высказывал их в 1830-е годы – в период наименьшей популярности эволюционной идеи, когда после убедительной победы Жоржа Кювье (уже знакомого нам по главе 10) в его знаменитом публичном диспуте с Этьенном Жоффруа Сент-Илером представления о возможности изменения видов стали восприниматься как маргинальные и необоснованные фантазии. Высказывал несмотря на то, что в целом был убежденным последователем Кювье, – так что интеллектуального мужества и независимости суждений великому эмбриологу было не занимать. И если он в ту пору ничего не говорил о сходстве между индивидуальным развитием особи и эволюцией вида, то, вероятно, только потому, что и в самом деле не видел тогда этого сходства.

Сегодня нам трудно представить, как можно было, уже зная закон Бэра и при этом признавая идею эволюции, не связать одно с другим. Но те натуралисты первой половины XIX века, которые вообще признавали возможность изменения видов, чаще всего представляли их примерно так же, как Бэр: ограниченные изменения в пределах рода, максимум – близких родов, не меняющие принципиально общее строение организма. Понятно, что заметить сходство такой эволюции с развитием эмбриона было нелегко. В нарастающих же различиях зародышей натуралисты видели не отражение видового прошлого, а последовательное разворачивание идеи: первыми возникают признаки типа, затем – класса, потом отряда и т. д., вплоть до видовых. Что же касается зародышей животных разных типов, то между ними Бэр никакого сходства не видел – что прекрасно подтверждало теорию Кювье: в основе организации каждого типа лежит уникальный план строения, принципиально не преобразуемый в план строения другого типа. (Кстати, сам Кювье по достоинству оценил работы Бэра, использовав их в споре с Сент-Илером.)

Все изменилось с выходом “Происхождения видов”: идея эволюции безраздельно завладела умами практически всех натуралистов, и теперь уже в ней видели не просто возможность постепенного превращения одного вида в другой, а процесс, пронизывающий всю живую природу и создающий все ее формы. Многие мыслили эволюцию прежде всего как “восхождение от простого к сложному”, развитие более сложных и совершенных организмов из относительно примитивных. И тут, конечно, сходство зародышей не могло не получить эволюционного толкования.

Уже сам Дарвин в “Происхождении видов” предположил, что в зародышах можно увидеть “более или менее затемненный образ общего прародителя, во взрослом или личиночном его состоянии, всех членов одного и того же большого класса”. В 1864 году работавший в Бразилии немецкий зоолог Фриц Мюллер опубликовал небольшую брошюру, из которой следовало, что у ракообразных и некоторых других беспозвоночных зародыши разных видов тоже поначалу весьма сходны между собой и лишь постепенно обретают отличительные черты. Мюллер тоже предположил, что в такой последовательности развития как-то отражается эволюционная история видов. Наконец, еще через два года знаменитый зоолог и пламенный пропагандист эволюционного подхода Эрнст Геккель уже без обиняков сформулировал то, что он сам чуть позже назвал “основным биогенетическим законом”: “Онтогенез есть быстрое и краткое повторение (рекапитуляция) филогенеза”. Иными словами, всякий организм за время своего эмбрионального развития вкратце повторяет тот эволюционный путь, который проделал его вид – начиная от единственной клетки.

Вынужденное отступление: фальшивая “подделка”

Прежде чем продолжать наш рассказ о взаимоотношении эмбриологии и эволюции, придется сделать некоторое отступление – в общем-то не имеющее прямого отношения к теме данной главы. По бесчисленным креационистским сочинениям кочует утверждение, что якобы весь “биогенетический закон” основан на рисунках, выполненных лично Геккелем и представляющих собой его фантазию или сознательную подделку (иногда с добавлением, что его-де даже официально обвинили в фальсификации и вынудили уйти из Йенского университета, профессором которого он был). “На самом же деле” эмбрионы разных существ выглядят, мол, совсем не так и вовсе не похожи друг на друга. Стараниями некоторых моих коллег-журналистов (почему-то считающих, что слово “версия” или “гипотеза” служит индульгенцией для любой ахинеи) эта “версия” получила широкое распространение в масс-медиа – в том числе на федеральных российских телеканалах. “Смешно, но нарисованные Геккелем человеческие эмбрионы с жабрами и хвостиками до сих пор кочуют из одного учебника биологии в другой. Подтверждая тем самым закон живучести бредовых идей”, – уверенно вещает закадровый дикторский голос в “познавательном” (!) фильме “Страсти по Дарвину”, выпущенном в 2009 году к двойному дарвиновскому юбилею каналом “Культура” (!!).

Насчет “закона живучести бредовых идей” – это, конечно, “просветителям” с “Культуры” виднее. Но если бы они дали себе труд хотя бы поверхностно вникнуть в сюжет, выбранный ими для фильма, то им пришлось бы обвинить в фальсификации не только Геккеля, но и Бэра, и Ратке (увидевшего, как мы помним, те самые жаберные щели у зародышей птиц и млекопитающих за сорок лет до того, как Геккель их “выдумал”), и их современника Иоганна Меккеля, и Фрица Мюллера, и множество других зоологов и эмбриологов, наблюдавших поразительное сходство ранних эмбрионов животных разных классов. А заодно объявить фальшивками и современные микрофотографии, упорно изображающие человеческий эмбрион на третьей-четвертой неделях после зачатия именно с хвостом и с такими же складками, как те, из которых у зародыша акулы развиваются жаберные щели (“жабры” – это уже собственная фантазия господ “разоблачителей”: на рисунках Геккеля не было никаких жабр, а в его описаниях эмбрионов – никаких упоминаний о них).

Разумеется, в 1860-е (а тем более – в 1820-е) годы техники микрофотографии еще не существовало, так что Геккелю, как и Бэру, приходилось от руки зарисовывать то, что они видели. Рисунок всегда в той или иной мере субъективен, и на знаменитых рисунках Геккеля сходство зародышей в самом деле несколько преувеличено: в отличие от фотоаппарата человеческий мозг всегда интерпретирует поступающую в него “картинку”, автоматически ища в ней значимые для него смыслы. Вспомним, что преформисты-анималькулисты (см. начало этой главы) ухитрялись “разглядеть” в головке сперматозоида крохотный человеческий эмбрион – и увековечить его на своих рисунках. Сейчас мы точно знаем, что никакого “человечка” там нет – но никому не приходит в голову на этом основании обвинять Сваммердама или Левенгука в подделке. Что же до реальных человеческих зародышей, то убедиться в наличии у них на определенной стадии хвоста и зачатков жаберных щелей может всякий желающий – не по рисункам Геккеля, а по современным микрофотографиям. Имеющий глаза да узрит.

К сказанному можно добавить, что в ходе развития у зародыша появляются и признаки, невидимые ни на рисунках, ни на фотографиях, но также свидетельствующие об эволюционном прошлом. Так в процессе эмбрионального развития у человеческого зародыша формируются по очереди три разных почки. На третьей неделе внутриутробной жизни возникает так называемый пронефрос – примитивная почка. Такие почки закладываются у зародышей всех позвоночных, но всю жизнь работают только у миксин. У миног (собратьев миксин по классу круглоротых), рыб и амфибий они работают только у зародышей и у свободно живущих личинок – в частности, у головастиков до определенной стадии. У рептилий, птиц и млекопитающих пронефрос закладывается, но не функционирует вовсе. У человеческого эмбриона он существует всего 40–50 часов, а затем бесследно рассасывается. Тем временем ближе к хвосту формируется мезонефрос – почка, устройство которой соответствует почкам взрослых миног, рыб и амфибий. Она работает до конца второго месяца, а дальше частью рассасывается, частью входит в состав некоторых других структур мочеполовой системы. А к концу ее существования еще дальше от головы образуется метанефрос – та почка, с которой мы рождаемся и которая работает у нас всю последующую жизнь.

“Эстафета почек” – возможно, самый яркий, но далеко не единственный пример формирования у зародыша структуры, отсутствующей у взрослого животного, но имевшейся у его предков. Скажем, как известно из школьного курса биологии, наш вид относится к типу хордовых, то есть животных, обладающих хордой – длинным эластичным продольным тяжем из соединительной ткани вдоль спинной стороны тела. Между тем ни у кого из читающих эти строки (как и у пишущего их) никакой хорды нет. Она у нас была, но очень давно и недолго – возникла в середине третьей недели внутриутробного развития, сыграла свою роль, индуцировав формирование зачатков ряда важнейших тканей и органов, и через несколько дней, когда вокруг нее стали формироваться зачатки позвонков, распалась. Клетки, из которых она состояла, вошли в состав студенистых ядер межпозвонковых дисков, но годам к семи исчезли и там. Примерно такова же судьба хорды у большинства других представителей нашего типа, в том числе у всех наземных позвоночных. А вот у ланцетника, круглоротых и некоторых рыб (в частности, осетровых) хорда сохраняется всю жизнь.

Может быть, эти сложные и незаметные для внешнего наблюдателя перестройки и можно истолковать как-то иначе, нежели как свидетельство эволюционного прошлого. Но их уж точно невозможно списать на чьи-то фальсификации или иллюзии.

Так что никакими фальсификациями Геккель (в отличие от некоторых современных “критиков” и “разоблачителей”) не занимался. Никто никогда не изгонял его из Йенского университета – он профессорствовал там непрерывно с 1865 года до своей отставки в 1909-м в возрасте 75 лет (о чем нетрудно узнать, прочитав любую биографическую справку о нем). Что, впрочем, не означает, что его “биогенетический закон” абсолютно справедлив и неколебим – но об этом мы поговорим несколько позже. А пока вернемся в 60-е годы XIX века и продолжим наш рассказ, вынужденно прерванный разбором популярной небылицы.

Эволюция с конечной остановкой

“Биогенетический закон” (он же “закон Геккеля” или “закон Геккеля – Мюллера”) сразу же стал чрезвычайно востребованным инструментом в попытках выяснить происхождение и родственные связи различных групп животных. Даже обнаруживавшиеся там и сям (и потихоньку накапливавшиеся) факты, явно противоречащие этому закону, до поры до времени почти никого не смущали. Тот же неутомимый Геккель сформулировал для этого направления исследований “принцип тройного параллелизма” (часто называемый также “триадой Геккеля”): реконструкция родословной любой группы животных должна опираться на данные палеонтологии, сравнительной анатомии и эмбриологии. Понятно, что указания, которые может дать каждая из этих дисциплин, скорее всего, будут неполны и неоднозначны, но проверяя их друг другом, мы можем с достаточной надежностью реконструировать происхождение любой группы и в идеале – все генеалогическое древо жизни. Задача была масштабной и дерзкой, и в последующие 35–40 лет едва ли не все зоологи (и значительная часть ботаников) занимались в основном ее решением. На этом пути было сделано немало замечательных открытий – хотя ошибок, умозрительных теорий и почти схоластических (ввиду невозможности их непосредственной проверки) споров на нем тоже случилось предостаточно.

Нас, однако, интересует другой аспект – именно тогда очень многим ученым пришла в голову естественная мысль: если индивидуальное развитие особи так похоже на эволюцию вида, так, может быть, в основе этих процессов лежат одни и те же механизмы?

Правда, это не мог быть тот механизм, который для эволюции предложил Дарвин. Никакого отбора мелких случайных отклонений по критерию их полезности в онтогенезе наблюдать не удавалось. Наоборот – этот процесс целеустремленно идет ко вполне определенному конечному состоянию – взрослой форме. Что до “полезности”, то, как мы видели в случае с развитием почки, в онтогенезе могут формироваться совершенно ненужные признаки и структуры. Впрочем, и жизненно важные органы долгое время существуют и развиваются в виде абсолютно бесполезных зачатков. А некоторые, даже полностью сформировавшись, еще долго не начинают функционировать – например, легкие у детенышей млекопитающих (в том числе и у наших детей) “включаются” только после рождения. То есть в развивающемся организме целенаправленно формируются структуры, которые понадобятся ему только в более-менее отдаленном будущем – чего, конечно, совершенно не может быть в дарвиновской модели эволюции.

Однако именно это и привлекало многих теоретиков того времени. В дарвинизме им как раз не хватало “общей цели и плана” и “восхождения от низшего к высшему”. Параллелизм индивидуального и эволюционного развития вкупе с явной целестремительностью первого представлялись им отличным подтверждением того, что и “постепенное превращение организмов во все более совершенные формы и, наконец, в человека было развитием, стремлением к цели”, – как писал в те годы Бэр, совершенно захваченный теперь идеей сходства между онтогенезом и филогенезом. Огромный авторитет Бэра автоматически вывел его в лидеры финализма (как принято называть это направление эволюционной мысли), однако он был далеко не единственным крупным ученым, придерживавшимся финалистских взглядов на эволюцию.

Популярность финализма в последней трети XIX века при полном отсутствии каких-либо фактов, свидетельствующих в его пользу, а также сколько-нибудь вразумительных представлений о механизмах, которые могли бы обеспечить такую эволюцию, сегодня кажется удивительной и невероятной. Однако вспомним: известные в то время примеры действия естественного отбора в природе тоже можно было пересчитать по пальцам одной руки, а доказанных случаев вызванных им эволюционных сдвигов не было известно вовсе. Что же до механизмов, то ведь и о механизмах, обеспечивающих эмбриональное развитие, тогда знали не больше – однако его целенаправленность была очевидной, и эта очевидность становилась еще нагляднее по мере того, как эмбриология из описательной науки превращалась в экспериментальную. В 1892 году знаменитый немецкий эмбриолог Ганс Дриш взял зиготу (оплодотворенную яйцеклетку) морского ежа и после того, как она первый раз поделилась, разъединил получившиеся клетки-бластомеры. Из каждой половинки развилась нормальная личинка, а затем и здоровый морской еж – хотя если бы не вмешательство экспериментатора, каждый из бластомеров дал бы начало только некоторым (строго определенным) тканям и органам иглокожего. Позднее Дриш проделывал этот трюк и после второго, и после третьего деления зиготы – и если из отделенной клеточки вырастало хоть что-то, это был опять-таки нормальный морской еж. Правда, вероятность такого исхода стремительно падала: из бластомеров, образовавшихся при третьем делении, выживало всего несколько процентов, из образовавшихся при четвертом – ни одного. Тем не менее было очевидно, что не только нормальная яйцеклетка, но и каждый бластомер “знает”, в кого ему нужно развиться. Это трудно было истолковать иначе, нежели стремление к цели. Каковы бы ни были механизмы, обеспечивающие такое развитие, почему бы не предположить, что и эволюцией управляют они или их аналоги?

Незаданные вопросы

Правда, при знакомстве с этими концепциями возникает впечатление, что их авторам и сторонникам что-то упорно мешало додумать их до логического конца. В самом деле, если эволюция так же однозначна и целеустремленна, как эмбриональное развитие – то как вообще могут образовываться различные формы?

В дарвиновской модели все просто: новые виды возникают путем дивергенции – разделения видов имеющихся. Но если эволюция каждого вида нацелена на строго определенный результат и управляется неким механизмом, пресекающим и исправляющим любые отклонения от этого идеала, то никакой дивергенции, никаких “вилок” в ней быть не может – как их не бывает в эмбриональном развитии. Там если отклонения от стандартной схемы развития слишком велики, чтобы механизмы коррекции могли их компенсировать, развивающийся зародыш или личинка, скорее всего, просто погибнет. Бывает, что такой зародыш все же доживает до рождения или вылупления, но появляется на свет с тяжелыми врожденными уродствами – морфозами (к такому результату приводит, например, печально известный талидомид). Но это все явные патологии, а примеров “альтернативного онтогенеза”, который мог бы заканчиваться разными, но одинаково жизнеспособными формами, нет.

Выходит, если эволюция подобна эмбриональному развитию, то у каждого современного вида должна быть собственная эксклюзивная вереница предков, ни один из которых не является также предком какого-либо другого современного вида. А это уже противоречит не только здравому смыслу, но и данным палеонтологии: как правило, та или иная группа впервые появляется в геологической летописи в виде одной или немногих форм и лишь позже наращивает свое разнообразие. Скажем, наш собственный тип – хордовые – известен с начала кембрийского периода, но тогда он был представлен немногочисленными мелкими существами, напоминающими современного ланцетника. Позже появляются весьма разнообразные рыбы, в девонском периоде к ним добавляются амфибии, затем – рептилии, млекопитающие. Последними, уже в середине юрского периода появляются птицы – самый многочисленный сегодня (если считать по числу видов) класс наземных хордовых. При этом каждый новый класс не сменял прежние, а добавлялся к ним. Как это может быть, если эволюция имеет цель? Почему одним видам кистеперых рыб суждено было развиться в амфибий (и далее – в рептилий и т. д.), а другим, очень похожим – так и остаться кистеперыми рыбами? Неужели у эволюции одних и других были разные цели? А какая цель могла быть у эволюции тех групп, которые не оставили потомков, – скажем, у трилобитов? Привести их к вымиранию?

Все эти вопросы (а главное – то, что многочисленные сторонники финалистской трактовки эволюции их словно бы и не замечали) наводят на мысль, что популярность финализма была основана не на том, что он лучше соответствовал известным фактам или позволял понять в эволюции что-то, что не могли объяснить другие теории, а на том, что слишком многим ученым того времени очень хотелось видеть в эволюции именно такой процесс. Очень хотелось думать, что эволюция – это не безличный, самопроизвольный и непредсказуемый процесс, а реализация мудрого и величественного замысла – конечная цель которого, разумеется, куда более благородна и возвышенна, чем презренная приспособленность. Недаром среди авторов-финалистов мы видим не только биологов, но и философов, причем исключительно идеалистического направления.

Как бы там ни было, финализм разделил судьбу прочих недарвиновских эволюционных концепций XIX века: не достигнув за несколько десятилетий своей популярности никаких заметных успехов в понимании эволюции, с приходом нового столетия он начал тихо увядать. Дольше всего финалистские концепции держались в палеонтологии (которая по разным причинам оставалась своеобразным заповедником антидарвинизма вплоть до 1950-х годов), но после прихода в эту область идей СТЭ он вышел из моды и там. Сегодня в научных журналах вы не найдете, пожалуй, ни одного конкретного исследования, авторы которого исходили бы из финалистской (или вообще телеологической) трактовки эволюции. Но за пределами собственно научного дискурса финалистские опусы можно встретить и сегодня – причем в качестве довода в них по-прежнему приводится сходство между онтогенезом и филогенезом. Пишут это обычно люди, чей основной род занятий далек от биологии – что позволяет предположить, что их представления об этой науке (в том числе и о требованиях к теориям в ней) остались на уровне XIX века. Но бывают и исключения. “Едва ли правильно думать, что развертывание заключенной в ДНК наследственной информации осуществляется в этих процессах [онтогенезе и филогенезе – Б. Ж.] принципиально различными способами”, – писал, например, уже в нашем веке один известный российский генетик (ныне покойный, так что имя его я называть не буду). Трудно предположить, что уважаемый ученый не понимает, что в процессе эволюции заключенная в ДНК наследственная информация не “развертывается” (как в онтогенезе), а изменяется – и что в этом-то, собственно, и состоит процесс эволюции. Однако ни профессиональное образование, ни докторская степень не избавляют человека от детского взгляда на мир, требующего во всем видеть чей-то замысел, а самого себя считать главной ценностью мироздания – если уж не “венцом творения”, то хотя бы Целью Эволюции.

Но мы отвлеклись от того, с чего все началось: почему животное, развиваясь, часто повторяет вкратце эволюционный путь своего вида? Финалистские теории, вдохновленные этим сходством, не смогли предложить в качестве объяснения ничего, кроме туманных рассуждений о цели и замысле. А нет ли объяснений получше?

Биогенетическое беззаконие

К началу ХХ века стало ясно, что соответствие между онтогенезом и филогенезом не такое уж точное. Причем степень этой “неточности” и ее конкретные проявления могут быть самыми разными – вплоть до того, что порой только будучи абсолютно уверенным в том, от кого произошла та или иная группа животных, можно углядеть в их онтогенезе какие-то смутные следы этого происхождения.

Накопились и чисто теоретические проблемы. Например, было непонятно, как трактовать феномен личинок. С одной стороны, всякая личинка – несомненная стадия онтогенеза и в качестве таковой должна, согласно Геккелю, воспроизводить какие-то этапы видовой эволюции. С другой – личинка, в отличие от зародыша высших позвоночных, обитает не внутри яйца или материнского тела, где ей были бы обеспечены все необходимые ресурсы. Это активный организм, которому надо достаточно долго прожить в собственной среде обитания (часто не совпадающей со средой обитания взрослой формы), а порой и выполнить ряд специфических функций, не связанных непосредственно с ростом и развитием. У многих насекомых продолжительность личиночной стадии во много раз превышает продолжительность жизни взрослой формы; у некоторых взрослая форма вообще не питается, живя за счет запасов, накопленных личинкой. Едва ли не у всех сидячих и многих малоподвижных животных личинка так или иначе выполняет расселительную функцию (вспомним речную жемчужницу и ее личинку-глохидия из главы 11). У многих паразитов со сложным жизненным циклом взрослой форме предшествуют несколько последовательно сменяющих друг друга стадий, каждая из которых тонко приспособлена к попаданию в тело соответствующего хозяина и развитию в нем.

Для выполнения всех этих многочисленных задач личинкам, естественно, нужны собственные приспособления – которых могло и не быть у их предков. Личинки мясных мух (знакомые всем рыболовам опарыши) способны превращать мертвые ткани позвоночных в жижу – что, конечно, не означает, что нечто подобное проделывали взрослые формы древних мух. Личинки крупных стрекоз дышат жабрами, расположенными в прямой кишке; у них есть реактивный водяной движитель и замечательный ротовой аппарат, позволяющий выбрасывать нижние челюсти далеко вперед на складном рычаге. Ничего подобного у предков стрекоз не было. А как быть с куколкой тех насекомых, у которых есть эта стадия развития? Внутри куколки почти все ткани личинки распадаются, превращаясь в питательный бульон, а ткани и органы взрослого насекомого формируются заново из имагинальных дисков – небольших скоплений неспециализированных клеток, ждавших своего часа внутри личиночных тканей. Как должны были бы выглядеть предки таких насекомых, соответствующие этой стадии онтогенеза?

Наконец, у многих видов животных известно явление неотении – личинки, способные размножаться, не превращаясь во взрослую форму. Таков, например, всем известный аксолотль – неотеническая личинка амбистомы (центральноамериканской амфибии, сходной с саламандрами). Как показали сравнительные исследования, в ходе дальнейшей эволюции взрослая форма в конце концов может выпасть вовсе, и то, что было неотенической личинкой, станет самостоятельным видом. (Видимо, именно так возникли некоторые полностью водные хвостатые амфибии – в частности, знаменитый протей, обитатель подземных рек и озер в карстовых пещерах.) Понятно, что в онтогенезе такого существа никак не может отразиться строение его непосредственных предков, поскольку данный вид возник именно в результате выпадения конечной фазы развития этих самых предков!

Можно, конечно, уйти от этих противоречий, выведя свободноживущих личинок из-под “юрисдикции” биогенетического закона и ограничив его действие только теми зародышами, которые развиваются “на всем готовом” и не имеют других задач, кроме собственно развития. Но животных, у которых нет активных личинок, не так уж много – причем это как раз не те, чью эволюционную историю труднее всего реконструировать без привлечения сравнительно-эмбриологических данных. Правда, даже те, у кого есть личинки, самые ранние стадии развития обычно проходят в яйце. Но оказалось, что как раз эти первые этапы развития могут сильно различаться даже у сравнительно близких родственников. Например, у разных групп позвоночных тип дробления оплодотворенной яйцеклетки и самые ранние формы зародыша – бластула и гаструла – различаются очень сильно (что вообще-то было известно еще Бэру). А поразившее Бэра и его коллег сходство зародышей всех классов возникает позже – на стадии формирования общего плана строения будущего организма. И это тоже было непонятно: если весь онтогенез рассматривать как повторение филогенеза, то нужно сделать вывод, что какие-то совершенно разные древние существа сначала слились в единого “общего предка всех позвоночных”, но при этом каждое из них каким-то образом сохранило свою индивидуальность и впоследствии породило отдельных собственных потомков – что уже было явным абсурдом.

С другой стороны, даже и у тех зародышей, которые развиваются в яйце или в утробе матери, есть приспособления, необходимые именно для зародышевой жизни и не нужные взрослой форме ни данного вида, ни его предков (и потому отсутствующие у них). Например, одним из важнейших эволюционных приобретений позвоночных в ходе освоения по-настоящему наземного образа жизни (то есть при переходе от амфибий к рептилиям) стали зародышевая оболочка (амнион) и аллантоис – уникальный орган, совмещающий функции легких и мочевого пузыря. Именно эти структуры позволяют зародышу, развивающемуся в яйце, вести активный газообмен и при этом не пересыхать. У большинства млекопитающих этой проблемы нет: эмбрион развивается в теле матери, снабжение его кислородом и удаление углекислоты и продуктов азотистого обмена берет на себя плацента – структура, которая образована в основном клетками зародыша и потому тоже является его органом. Понятно, что ни у каких предков высших позвоночных – ни у амфибий, ни у рыб, ни у более ранних хордовых – ничего соответствующего всем этим образованиям не было.

Таких “исключений” к началу ХХ века накопилось столько, что многие биологи вполне обоснованно засомневались в самом существовании “основного биогенетического закона”, а тем более – в том, что он что-то дает для понимания эволюционных механизмов или хотя бы для реконструкции происхождения конкретной группы животных. Впрочем, как мы помним, это время вообще было временем кризиса эволюционной мысли и своеобразной усталости биологов от эволюционного подхода. Разочарование в “биогенетическом законе” порождалось не только обилием не укладывающихся в него фактов, но и разочарованием в классическом эволюционизме как таковом – и в свою очередь усиливало его.

Однако и в то время находились ученые, пытавшиеся, не отказываясь от критического подхода, все же не выплескивать вместе с водой и ребенка, а найти в построениях предшественников рациональное зерно. Их работы постепенно формировали новый взгляд на соотношение онтогенеза и филогенеза. И снова, как во времена Бэра, нашелся автор, сумевший свести свои данные и достижения коллег в единую стройную концепцию. В этой роли выступил известный русский зоолог Алексей Николаевич Северцов, опубликовавший в 1912 году книгу “Этюды по теории эволюции”.

Шаги онтогенеза

В науке бывает так, что некая идея, будучи сформулирована и высказана в явном виде, кажется настолько очевидной, что непонятно даже, зачем нужно было ее высказывать – ведь все это и так понимают. Но почему-то, пока она не высказана, ее как-то упускают из виду или по крайней мере не осознаю́т вытекающих из нее следствий. Одна из таких идей и стала отправной точкой для рассуждений Северцова: всякое морфологическое изменение есть изменение онтогенеза. Для того чтобы у взрослого организма изменился какой-то признак, нужно, чтобы те онтогенетические процессы, которые формируют этот признак, стали проходить по-иному.

Исходя из этого, Северцов рассматривает в самом общем виде различные способы изменения индивидуального развития. В любом онтогенезе можно выделить некоторое число стадий. Переходы между ними могут быть резкими, как у насекомых с полным превращением (невозможно представить себе “промежуточное состояние” между гусеницей и куколкой или между куколкой и бабочкой), или более плавными – нам сейчас это неважно. Примем просто, что этих стадий достаточно много и что среди них можно выделить начальную, сколько-то промежуточных и конечную, а среди промежуточных – более ранние и более поздние.

Изменения в ходе онтогенеза, вызванные мутациями и закрепленные эволюцией, могут проявляться на любых стадиях онтогенеза. Если изменения затрагивают только конечную стадию онтогенеза, то этим, собственно, все и ограничивается: взрослая форма отныне будет выглядеть несколько иначе, нежели выглядели ее предки, но это отличие формируется лишь в самом конце развития. Часто изменение сводится к тому, что процессы роста и развития продолжаются несколько дольше (в результате чего тот или иной орган или структура оказываются более развитыми, чем у предка). В этом случае мы видим идеальную геккелевскую рекапитуляцию: развитие потомка повторяет развитие предка, только с некоторой добавкой в конце. В результате то состояние признака или органа, которое у предка было характерно для взрослой формы, у потомка существует на одной из промежуточных стадий развития. Такой способ изменения онтогенеза Северцов назвал анаболией, то есть “надставкой”.

Анаболии особенно хорошо различимы в эволюции количественных признаков. Например, именно в конце онтогенеза может увеличиться число сегментов в теле кольчатого червя, число члеников в усиках насекомого и даже порядок ветвления у офиур (змеехвосток) – причудливых иглокожих, похожих на морских звезд с тонкими лучами, которые у некоторых видов еще и многократно ветвятся.

Своеобразной “анаболией с обратным знаком” можно считать изменение онтогенеза, при котором конечная стадия (взрослая форма) просто выпадает, а то, что прежде было неотенической личинкой, становится взрослой формой (мы уже упоминали этот феномен в предыдущей подглавке на примере постоянно-водных хвостатых амфибий). Такой способ эволюции – педоморфоз – в полном виде встречается не так уж часто (или, возможно, мы нечасто можем обнаружить его, реконструируя эволюцию той или иной группы). Но вот в эволюционных преобразованиях отдельных органов педоморфозы случаются нередко. У нелетающих птиц крылья обычно в большей или меньшей степени недоразвиты – они словно застыли на той стадии, которая у птиц летающих характерна для птенцов. Да и человеческий череп своими пропорциями гораздо больше походит на череп детеныша человекообразной обезьяны, чем на череп обезьяны взрослой.

Теперь представим, что изменение затронуло какую-то из промежуточных стадий онтогенеза. Тут сценарии могут быть разные: развивающийся организм может проявить эквифинальность (см. выше), вернувшись какими-то “объездными путями” на прежнюю траекторию развития (об этом варианте мы поговорим несколько ниже). Но может получиться и так, что отклонение от стандартного пути окажется слишком велико, и все дальнейшие стадии онтогенеза, включая конечную, окажутся измененными. Эволюцию посредством такого изменения онтогенеза Северцов назвал девиацией, то есть “отклонением”. При девиации развитие потомка повторяет развитие предка только до определенного момента – того самого, на котором начало проявляться изменение.

Это хорошо видно в классическом примере девиации – развитии передней конечности у бесхвостых амфибий. У большинства наземных позвоночных, в том числе и у человека, скелет предплечья (части передней конечности от локтя до запястья) образуют две кости – локтевая и лучевая. Но у бесхвостых амфибий – лягушек, жаб и т. д. – эти косточки срослись. Связано это со специфическим способом передвижения этих существ – прыжками. В конце прыжка лягушка приземляется на передние лапы. Их кости постоянно испытывают ударные нагрузки. Чтобы успешно их выдерживать, лучше иметь одну кость потолще, чем две потоньше. Но когда у головастика появляются зачатки передних лап, в них закладываются две косточки предплечья, которые к моменту выхода из воды сливаются в одну. Таким образом, “рекапитуляция” наблюдается только до определенного момента, начиная с которого развитие конечности все больше отклоняется от предкового “сценария”. И этот момент наступает на стадии, которая и у предков, и у потомков является промежуточной.

Наконец, можно представить ситуацию, когда изменения проявляются на самом раннем этапе онтогенеза – и дальше все развитие идет уже совсем не по тому пути, по какому оно шло у предков. Тут уже, конечно, никакую “рекапитуляцию” усмотреть невозможно. Такое эволюционное изменение Северцов назвал архаллаксисом (это слово, составленное из греческих корней, можно перевести как “изначальная смена направления”). В качестве примера эволюционной “инновации” такого типа он приводил развитие позвоночника у змей. Как известно, змеи отличаются необычайно большим числом позвонков – от 200 до 450 (в то время как, например, у ближайших родичей змей – ящериц – их всего 50–80). Эмбриологические исследования показывают, что у зародышей змей с самого начала, с того момента, как у эмбриона возникают хоть какие-то различимые зачатки позвоночника, число позвонков уже увеличено. Другой пример архаллаксиса – развитие волоса у млекопитающих. Шерсть, как и перья, является эволюционным производным чешуи. Но если развитие чешуйки и пера начинается с того, что группа эпидермальных клеток образует выступающий наружу бугорок, то при развитии волоса эпидермальные клетки, наоборот, впячиваются вглубь кожи, образуя ямку, которая затем развивается в волосяную сумку.

Анаболии, девиации и архаллаксисы объединяет то, что все эти изменения онтогенеза приводят к большему или меньшему изменению “окончательной” формы – взрослого организма. Но до этого этапа онтогенез может дойти только при условии, что развивающийся организм окажется достаточно жизнеспособным на каждой из предыдущих стадий. Иными словами, на любой фазе жизненного цикла организм участвует в борьбе за существование – а значит, должен обладать соответствующими приспособлениями, обеспечивающими его выживание именно на этой фазе. Свободноживущая личинка лягушки – головастик – довольно высокоорганизованное животное, он дышит, питается, плавает, ориентируется в пространстве и т. д. Причем все это он делает не так, как взрослая лягушка: дышит (первые несколько дней) жабрами, плавает при помощи хвоста, питается, обскабливая роговым клювом водные растения. Все эти сложно устроенные органы, отсутствующие у взрослой формы, сформированы в процессе эволюции – так же, как органы взрослого животного. Приспособления зародышей рептилий и птиц – амнион и аллантоис (у птиц и некоторых рептилий еще и скорлупа), зародышей млекопитающих – плацента. И все эти специфические структуры тоже могли появиться только в результате тех или иных изменений в онтогенезе.

Подобные изменения Северцов назвал ценогенезами. Этот термин он позаимствовал у Геккеля, но при этом придал ему более узкое значение. Геккель называл ценогенезами любые изменения индивидуального развития, нарушающие “биогенетический закон”, то есть ведущие к появлению у эмбриона или личинки признаков, которых не было у предков. (Легко видеть, что такое понимание включает, в частности, северцовские архаллаксисы.) Согласно Северцову же, ценогенезы – это изменения онтогенеза, в результате которых формируются признаки и структуры, характерные для эмбриона или личинки и полезные для них, но отсутствующие не только у предков, но и у взрослой формы данного организма. Они действительно не укладываются в картину рекапитуляции и биогенетический закон, но в концепции Северцова ценогенезы противопоставлены всем типам филэмбриогенезов – как тем, что подчиняются биогенетическому закону, так и тем, что его нарушают. Ценогенезы в северцовском понимании – это прежде всего приспособления эмбрионов, личинок и более ранних стадий жизненного цикла (включая сперматозоиды и яйцеклетки) к специфическим условиям их существования.

Не удивительно, что ценогенезы в эволюции встречаются на каждом шагу и отличаются необычайным разнообразием. Результатами ценогенезов могут быть формы половых клеток, способы эмбрионального развития тех или иных органов, механизмы питания зародыша или адаптаций свободноживущей личинки и т. д. Важным частным случаем ценогенеза является рационализация – сокращение и упрощение онтогенеза, выпадение из него структур и стадий, утративших функциональность и сохраняющихся лишь “в силу традиции”. (Так, превращение зародыша из однослойного в двухслойный у млекопитающих происходит не путем образования впячивания на одной из сторон, как у менее продвинутых позвоночных, а прямым расслоением зародышевого узелка на эктодерму и энтодерму.) Накапливающиеся рационализации постепенно стирают из онтогенеза следы древних исторических процессов – о чем писал еще Фриц Мюллер: “Исторические сведения, сохраненные в истории развития, постепенно стираются, так как развитие от яйца до взрослого животного идет все более прямым путем и часто фальсифицировано борьбой за существование, которой подвержены свободноживущие личинки”.

Теперь с учетом всего сказанного оглянемся на “биогенетический закон”. Нетрудно видеть, что ясно и недвусмысленно он выполняется только в тех случаях, когда предшествующая эволюция шла путем анаболии. Подверстать под него девиацию можно только с большими оговорками: при ней онтогенез потомка в лучшем случае повторяет (до определенного момента) зародышевые стадии предка, а не взрослую, как это было бы при анаболии. Для архаллаксисов и ценогенезов закон Геккеля не действует вообще, ни в каком приближении и ни с какими поправками. Наконец, в случае педоморфоза он действует как бы с обратным знаком: не ранняя стадия развития потомка соответствует взрослой форме предка, а одна из промежуточных стадий развития предка соответствует взрослой форме потомка.

Но если этот закон справедлив только для изменений, затрагивающих одну из множества стадий онтогенеза – как вообще удалось его заметить и сформулировать? Почему мы так часто видим в индивидуальном развитии потомков черты их эволюционных предков?

Наиболее четкий ответ на этот вопрос дал примерно в те же годы швейцарский зоолог Адольф Нэф. Он обратил внимание на то, что развитие организма кумулятивно: изменения той или иной его стадии, скорее всего, будут сказываться и на всех последующих стадиях, причем отличия от исходного “сценария” будут нарастать от стадии к стадии. Дело в том, что у клеток, образующих зачаток того или иного органа или структуры, часто есть функции и помимо формирования этого органа – они своими химическими сигналами участвуют в управлении развитием других (прежде всего соседних, но иногда также и отдаленных) структур, закладывающихся позже. Именно поэтому в эмбриональном развитии часто сохраняются структуры, давно утратившие свою основную функцию и исчезающие на более поздних стадиях – как в уже знакомых нам случаях с эмбриональными почками или хордой. Соответственно любое изменение в развитии структур, возникающих на определенной стадии онтогенеза (их увеличение, уменьшение, смещение в пространстве, более ранняя или более поздняя закладка и т. д.) должно сказываться на тех формообразовательных процессах, в управлении которыми они участвуют.

Правда, как мы помним, программа индивидуального развития может в определенных пределах исправлять такие отклонения, обходными путями возвращая развивающийся организм на основную линию. Именно эта особенность онтогенеза делает вообще возможными северцовские ценогенезы – изменения, проявляющиеся на промежуточных стадиях, но не сказывающиеся на конечной. Но пределы устойчивости онтогенеза не безграничны – иначе никакой эволюции вообще не могло бы быть: обладай механизмы коррекции развития абсолютной эффективностью, зародыши с любыми изменениями в генотипе развивались бы в одну и ту же навечно заданную взрослую форму. Если же изменение хода развития не удается подкорректировать, то каждая последующая стадия неизбежно будет все сильнее отличаться от того, как она должна была бы выглядеть при стандартном “сценарии”. Между тем “программа индивидуального развития” – это не что иное, как геном, и изменения в нем так или иначе сводятся к случайным мутациям. Понятно, что случайное изменение, затрагивающее только одну стадию онтогенеза, имеет меньше шансов оказаться неприемлемо-вредным, чем случайное изменение нескольких или даже вообще всех стадий. Ведь если некая мутация ведет к гибели зародыша (или хотя бы резко снижает его жизнеспособность) на какой-то из промежуточных стадий, то уже неважно, насколько полезной она оказалась бы организму во взрослом состоянии. Поэтому чем позже в онтогенезе проявляется то или иное изменение, тем выше его шансы закрепиться в качестве новой нормы – а значит, среди эволюционных изменений онтогенеза анаболии неизбежно будут встречаться чаще, чем девиации, и тем более – чем архаллаксисы. Это и создает впечатление, что геккелевская рекапитуляция – это норма, общее правило, а не соответствующие ей сценарии онтогенеза – отклонения и исключения.

Концепция Северцова стала исследовательской программой для сложившейся вокруг него школы эволюционных морфологов (одним из которых был уже знакомый нам Иван Шмальгаузен). Однако в целом в тогдашней мировой биологии она оказалась довольно слабо востребованной – хотя многим зарубежным ученым (не говоря уж о практически всех российских) она стала известна своевременно. Такая судьба концепции, наиболее внятно объясняющей механизмы действия знаменитого “биогенетического закона” (а заодно и не укладывающиеся в него факты), кажется странной. Видимо, причиной такой глухоты коллег стал опять-таки “дух времени”: первые десятилетия ХХ века были годами не только глубокого кризиса эволюционизма, но и охлаждения биологов (прежде всего молодых) к проблемам и методам биологии XIX века – и более всего к морфологии как к дисциплине неисправимо-описательной, закрытой для экспериментов и точных методов. Поразительно, но даже те современники, которые обратили внимание на концепцию Северцова и одобрительно отозвались о ней, часто не замечали в ней ее наиболее ценных и интересных идей – настолько эти идеи были чужды тому, что обсуждалось в тогдашней биологии.

От гена к форме…

Последние десять лет жизни Северцова пришлись на время нового подъема эволюционной биологии. Но основой его стал синтез эволюционизма с генетикой, а основным предметом интереса – генетические механизмы эволюции и микроэволюционные процессы (в которых морфологические изменения, как правило, очень невелики, а плодотворность применения к ним северцовских категорий близка к нулю). При этом любые эволюционные процессы рассматривались так, словно естественный отбор оценивает непосредственно гены – то есть связь между геном и некоторым фенотипическим признаком (который только и может оцениваться отбором) мыслилась как однозначное взаимное соответствие.

Не нужно полагать, что создатели СТЭ были так наивны. Они прекрасно понимали, что на самом деле ген и признак связывает длинная и сложная цепочка взаимодействий, в той или иной мере чувствительных к воздействию окружающих условий. И что само понятие “признак” достаточно условно, и та наследственная черта, которую мы называем признаком, может определяться работой множества генов (и наоборот – один ген может влиять на целый ряд особенностей, которые мы воспринимаем как отдельные признаки). Но у них в то время практически не было инструментов и методов, позволяющих исследовать конкретную работу генов (о самой природе которых в ту пору не было известно практически ничего) в ходе индивидуального развития. В такой ситуации естественно было абстрагироваться от тех процессов, которые невозможно изучать, и принять представление об однозначной связи гена и признака как рабочее упрощение. “Мы обещаем, что когда-нибудь подберем ключик к этой шкатулке, а пока давайте займемся тем, что можно сделать, не открывая ее”, – сформулировал много лет спустя эту позицию известный английский эволюционист Джон Мейнард Смит, ученик уже знакомого нам Джона Холдейна.

Проблемы крупных морфологических преобразований и эволюции онтогенеза надолго отошли на второй план.

Правда, и в это время находились ученые, сохранявшие взгляд на эволюцию не как на “изменение генных частот”, а как на преобразование целостного организма, причем на всех стадиях его жизненного цикла. Наиболее плодотворно работали в этом направлении уже знакомый нам Иван Шмальгаузен и английский биолог Конрад Уоддингтон. Оба они искали пути, которые позволили бы связать генетические изменения с изменениями хода онтогенеза и в конечном счете – форм организмов.

Уоддингтон, начинавший как эмбриолог-экспериментатор, попытался использовать уже разработанные к тому времени генетиками методы анализа мутаций для расшифровки механизма регуляции эмбрионального развития. Эта работа привела его к идее “эпигенетического ландшафта”: развивающийся зародыш Уоддингтон уподоблял тяжелому шарику, скатывающемуся по склону горы от вершины (зачатия) до подножия (зрелого состояния). Рельеф этого склона довольно прихотлив, и его гребни и борозды определяют траекторию движения шарика. Этот рельеф задается генами, регулирующими развитие, и может быть изменен в результате мутаций (как реальный рельеф горного склона может быть изменен землетрясением или оползнем). Поскольку распределение “выступов” и “впадин” задает траекторию развития организма, мутации, меняющие это распределение, тем самым могут пустить развитие по другому пути. Понятно, что при любом конкретном состоянии ландшафта число возможных онтогенетических путей ограничено: “шарик” не может перекатываться через “выступы”, выскакивать из “желобов” и вообще катиться “вверх”. Эти возможные онтогенетические пути Уоддингтон назвал креодами.

Подход Шмальгаузена был несколько иным. Центральным в нем стало понятие нормы реакции, введенное в 1909 году немецким гидробиологом Рихардом Вольтереком. Суть его в том, что практически у любого признака, определяемого генами, есть некоторый “люфт” – пределы, в которых он может изменяться при заданном генотипе. Вспомним опыты Иогансена: даже фасолины, вызревшие на одном кусте, несколько отличались друг от друга по размеру и пропорциям, хотя были генетически идентичны и развивались в одних и тех же условиях. Если же условия развития сильно отличаются, то один и тот же генотип может формировать очень разные фенотипы. Вспомним альтернативные программы развития у саранчи, животных с физиологическим (то есть задаваемым условиями внешней среды) определением пола, вспомним результаты опытов Боннье, Шманкевича и других неоламаркистов. Наконец, можно вспомнить любимый пример самого Шмальгаузена – стрелолист (об особенностях формообразования у которого мы уже немного говорили в главе “…Что любое движенье направо начинается с левой ноги”). Как известно, это растение имеет три типа листьев. Листья, расположенные над водой, имеют весьма характерную форму, напоминающую наконечник стрелы (откуда и название растения), и обладают довольно мощными стоячими черешками. По поверхности воды плавают округлые листья, соединенные с растением шнуровидными черешками – длинными, тонкими и гибкими. А листья подводные имеют лентовидную форму и не разделены на черешок и пластинку. Все три типа листьев могут присутствовать на одном индивидуальном растении и, следовательно, быть сформированы в результате работы одного и того же генома.

По мысли Шмальгаузена, ген определяет не признак как таковой, а его норму реакции – пределы, в которых этот признак может изменяться. Внутри этого диапазона то, каким именно будет данный признак, определяется факторами окружающей среды (а также, возможно, влиянием других генов). У организмов с жестко определенной конечной формой этот выбор обычно делается на определенной стадии онтогенеза и уже не меняется всю дальнейшую жизнь: взрослый саранчук уже никогда не превратится в одиночную кобылку, самец крокодила – в самку, каковы бы ни были параметры среды, в которой им придется жить. У выросших на холоде мышей после перевода в теплое помещение не увеличиваются уши и хвосты. Но даже у таких организмов есть признаки, которые могут меняться “туда-сюда”: летняя и зимняя окраска многих млекопитающих умеренных и приполярных областей, брачные наряды (включающие порой не только смену цвета покровов, но и отрастание весьма причудливых “украшений”), пигментация человеческой кожи и т. д. В конечном счете на сдвигах в пределах нормы реакции основаны все адаптивные модификации – закономерные изменения характерных видовых признаков в сторону, более адекватную изменившимся условиям. Однако это не изначально присущее всему живому свойство (как полагали ламаркисты), а результат действия сложного механизма, устанавливающего связь между определенными воздействиями среды и сдвигами некоторых признаков (в пределах их нормы реакции) в определенную сторону. Иными словами, всякая адаптивная модификация – это всегда результат предшествующей эволюции. Но она в самом деле может стать первым шагом в эволюции дальнейшей – если те условия, ответом на которые была данная модификация, в какой-то момент станут постоянными для вида или каких-то его популяций. В этом случае отбор пойдет на сужение нормы реакции тех генов, что обеспечивали модификацию, и развитие, которое раньше могло в зависимости от условий пойти в сторону “обычной” или “модифицированной” формы, теперь при любых условиях будет развиваться по “модифицированному” варианту. Возможно даже, что у одной части вида развитие стабилизируется на одном “краю” прежней широкой нормы реакции, а у другой – на другом. И то, что было разными жизненными формами одного вида, превратится в разные виды. Например, ряд пресноводных рыб в некоторых водоемах (обычно в озерах) образует две “расы”, резко различающиеся как экологически, так и морфологически. В частности, у всем известного обыкновенного окуня одна такая форма – крупный светлоокрашенный хищник, другая – мелкий темноокрашенный поедатель планктона и донных беспозвоночных. У окуней обе формы остаются внутривидовыми, а вот у некоторых байкальских рыб подобные формы представляют собой отдельные виды.







Взгляд Уоддингтона и Шмальгаузена на эволюцию из нашего времени представляется куда более глубоким и, если угодно, диалектичным, чем прямое (и часто не осознаваемое) отождествление генов с определяемыми ими признаками. Однако несмотря на широкую известность и авторитет обоих ученых, их идеи оказались не восприняты СТЭ, формировавшейся как раз в те годы, на которые приходится расцвет творчества обоих выдающихся биологов. Важнейшие работы Шмальгаузена не стали своевременно известны в мире – сказывалась нарастающая самоизоляция советской науки, дополненная затем неизбежным разрывом научных связей во время мировой войны. А в 1948 году основные области фундаментальной биологии – прежде всего генетика и теория эволюции – и вовсе были заменены в СССР мóроком “мичуринской биологии”, полностью заслонившим работы серьезных советских исследователей от их зарубежных коллег. (Главный труд Шмальгаузена – монография “Факторы эволюции” – был издан по-английски только в 1973 году, через 27 лет после написания и через десять – после смерти автора.) Уоддингтону ни с чем подобным столкнуться не пришлось, его работы были хорошо известны коллегам – но принесли ему лишь репутацию оригинала, неустанного критика СТЭ и даже чуть ли не антидарвиниста.

В чем были причины такой глухоты? Как уже говорилось, биологи середины ХХ века ясно осознавали, что в основе “синтетистского” подхода лежит ряд явных упрощений. Но именно такое упрощенное рассмотрение позволяло создать стройную модель элементарных эволюционных процессов, опираясь на которую можно было надеяться разобраться в более сложных случаях. (Точно так же в свое время Мендель, проанализировав простейший тип наследования отдельных элементарных признаков, смог разработать теоретическую модель, на основе которой впоследствии удалось понять куда более сложные и загадочные случаи – включая те, что явно нарушали все менделевские соотношения.) Да у ученых, по сути, и не было выбора: как ни привлекательны были идеи Уоддингтона и Шмальгаузена, для воплощения их в конкретные исследования требовались инструменты и методы, которых в те времена просто не существовало.

Прошли десятилетия, прежде чем эволюционная биология вновь обратилась к теме индивидуального развития организмов. Ключом к “шкатулке”, о которой говорил Мейнард Смит, стала технология секвенирования – определения последовательности нуклеотидов в конкретных фрагментах ДНК, позволяющего сравнивать между собой гены разных организмов. Уже в 1984 году были открыты некие гены, чрезвычайно сходные у насекомых и позвоночных и явно представляющие собой варианты одной и той же нуклеотидной последовательности. Вообще-то подобные гены, мало различающиеся даже у очень отдаленных друг от друга организмов, были известны и ранее, но это были так называемые “гены домашнего хозяйства”, необходимые для собственных нужд клетки: гены ДНК- и РНК-полимераз, цитохромов, транспортных и рибосомных РНК и т. д. Понятно, что такие гены работают (пусть даже и с разной интенсивностью) во всех живых клетках и очень неохотно изменяются в ходе эволюции.

“Новые” же гены работали только в некоторых клетках и только на определенных этапах онтогенеза. Но при этом, как уже говорилось, они имелись у мыши и дрозофилы (а как выяснилось позже – вообще у всех многоклеточных животных, кроме губок), у всех были удивительно сходны и у всех играли важную роль в индивидуальном развитии. В частности, определенная мутация в одном из hox-генов (такое название получило семейство этих генов, открытое первым) приводила к тому, что у дрозофилы вместо усика вырастала нога. Другая мутация превращала жужжальца (рудименты второй пары крыльев у мух) в полноценные крылья. Немного позже было открыто еще одно семейство подобных генов – pax6. Гены этого семейства играют важную роль в развитии глаза у позвоночных, насекомых и головоногих моллюсков. Последний общий предок этих трех групп был, вероятно, общим предком вообще всех двустороннесимметричных животных. Были ли у него какие бы то ни было глаза – крайне сомнительно. Во всяком случае, настоящих сложных глаз точно не было: они у всех трех групп возникли независимо и устроены настолько по-разному, что ни одна из этих конструкций не может быть преобразована в другую. Но у всех у них развитие глаз контролируется похожими генами. Настолько похожими, что если в геном дрозофилы искусственно ввести несколько копий мышиного варианта гена pax6 (в дополнение к имеющемуся у мухи собственному гену того же семейства), то по всему телу мухи разовьются маленькие неправильные глазки. То есть химический сигнал, подаваемый геном млекопитающего, понятен тканям насекомого.

Когда биологи научились не только сравнивать “тексты” генов в геномах разных существ, но и отслеживать, в каких именно тканях, в какие именно моменты онтогенеза и насколько интенсивно работает тот или иной ген, исследования такого рода сложились в целое крупное направление – эволюционную биологию развития, или, как ее обычно называют, “эво-дево” (от английского evolutionary developmental biology). Сегодня это одна из наиболее бурно развивающихся областей современной биологии, непрерывно поставляющая все новые и новые удивительные открытия. Причем речь идет не только об ошеломляющих и часто противоречащих всем ожиданиям фактах, но и о концепциях – новых, но порой неожиданно перекликающихся с классическими и позволяющих по-новому взглянуть на них. Такова, например концепция генно-регуляторных сетей – ансамблей генов-регуляторов, которые, взаимодействуя друг с другом и с другими генами посредством своих продуктов (белков или РНК), координируют активность больших “коллективов” генов и управляют сложными процессами – в том числе всевозможным формообразованием в ходе онтогенеза. Моделей такого рода в генетике (и вообще в биологии) до возникновения эво-дево не было. Но именно в свете представления о генно-регуляторных сетях удалось объяснить значительную часть знаменитых корреляций – сопряженной эволюции признаков, функционально не связанных друг с другом. Аналогичным образом сложившееся в эво-дево понятие “глубокой гомологии” (когда некая структура, имеющаяся у двух далеких друг от друга групп организмов, не была присуща их последнему общему предку и, следовательно, не является гомологичной в традиционно-морфологическом смысле, однако в обоих случаях развивается благодаря активности гомологичных генов – как в вышеупомянутом случае с глазами и генами pax6) стало естественным объяснением для многочисленных случаев эволюционного параллелизма, вокруг которых в XIX и большей части XX века было сломано столько теоретических копий.

О достижениях и проблемах эво-дево, об открытых ею удивительных фактах и ее остроумных концепциях можно написать увлекательнейшую книгу – и я надеюсь, что кто-нибудь такую книгу напишет. Для нашей же темы важно, что основным предметом этого направления исследований является именно эволюция онтогенеза – наконец-то занявшая подобающее место в системе наших представлений об эволюции живого.

…и обратно?

Итак, материалом для эволюции служат случайные изменения в генотипе, поступающие на суд естественного отбора. Но отбор не может оценивать их непосредственно: ему “видны” только их фенотипические проявления. А между генетическим изменением и его фенотипическим проявлением лежит онтогенез – сложный процесс, требующий согласованной работы множества генов, подверженный внешним влияниям, но обладающий собственными системами регуляции, которые обеспечивают ему определенную устойчивость к этим воздействиям – как исходящим от внешней среды, так и порождаемым генетическими мутациями. Чтобы мутация имела эволюционное значение, она должна что-то изменить в онтогенезе.

А не может ли быть наоборот? Не могут ли эволюционные сдвиги начинаться с изменения онтогенеза и только затем закрепляться в генотипе?

На первый взгляд, такое предположение неизбежно возвращает нас к тому или иному варианту ламаркизма – о фактической обоснованности и теоретической плодотворности которого уже было достаточно сказано в главе 4. Однако еще с конца XIX века в эволюционной науке известен “эффект Болдуина”. Суть его состоит вот в чем. Допустим, что при некотором изменении условий полезным оказался сдвиг того или иного признака в определенную сторону – ну, скажем, уменьшение размера у растений, которые сотрудники Гастона Боннье или другие превратности судьбы занесли из окрестностей Парижа в Альпы, или умение быстро забраться на дерево у анолисов, на родном острове которых вдруг появились хищные игуаны (см. главу “Отбор в натуре”). Первоначально некоторый сдвиг в нужную сторону может быть достигнут без изменения генотипа: растения, выросшие в горах из собранных на равнине семян, уже ниже ростом своих равнинных собратьев; анолисы, приобретшие опыт спасения от хищника, все быстрее и ловче забираются на деревья. Но если действие фактора, вызвавшего эти изменения, продолжается на протяжении многих поколений, фенотипические изменения постепенно словно бы переходят в генетические: потомки переселенных в горы растений теперь уже и на равнине вырастают низкорослыми, а юные анолисы сразу после вылупления, не дожидаясь появления хищника, лезут на деревья. И дело тут не в том, что фенотипические изменения каким-то образом записались в генотипе, а в том, что одновременно с приспособительными физиологическими реакциями включился и механизм естественного отбора: в новых условиях лучше выживают и размножаются те организмы, которые в силу своих генетических особенностей быстрее и легче перестраивают свою форму и/или поведение в нужном направлении. И если фактор продолжает действовать, то отбор постепенно начинает поддерживать уже не легкость изменения, а стабильное развитие по новому пути: у растений повышается частота аллелей, предопределяющих врожденную низкорослость; у анолисов формируется врожденная реакция избегания земной поверхности.

В 1930-е годы уже упоминавшийся Уоддингтон показал возможность такой “псевдоламарковской” эволюции экспериментально. Он подвергал куколки дрозофил воздействию повышенной температуры. Часть мух, вышедших из таких куколок, отличалась характерными отклонениями в форме и размере крыльев, напоминающими эффект некоторых уже известных к тому времени генетических мутаций. Уоддингтон скрещивал таких мух между собой и полученное потомство снова прогревал. Через некоторое время уже все мухи очередного поколения появлялись на свет с измененными нужным образом крыльями. А затем стал не нужен и подогрев – мухи с такими крыльями появлялись из куколок, развивавшихся при обычной температуре. Уоддингтон назвал этот эффект “генетической ассимиляцией”, имея в виду, что он внешне выглядит как ламаркистская “ассимиляция внешних условий”, но обеспечивается чисто дарвиновскими механизмами.

Дело, конечно, не в названии. Опыты Уоддингтона прямо демонстрируют, что при определенных изменениях внешних условий облик организма может сильно изменяться при неизменном генотипе. Такие изменения не обязательно адаптивны, но они, безусловно, повышают разнообразие популяции (как мы помним, первоначально не все подогретые куколки развивались в мух с измененными крыльями, да и эти крылья были не единственным морфозом, возникавшим среди подогретых мух). Но если среди вызванных необычными условиями развития морфозов окажутся полезные, отбор будет способствовать тем аллелям и их сочетаниям, которые наиболее склонны направлять развитие организма по этому альтернативному пути – и в итоге “генетически закрепит” такой вариант развития, сделав его уже независимым от внешних условий. Примерно такие взгляды на эволюцию онтогенеза развивал в середине прошлого века и Шмальгаузен.

В 1980-е годы некоторые российские авторы – и прежде всего палеонтолог Михаил Шишкин, – основываясь на идеях и понятиях Уоддингтона и Шмальгаузена, сделали следующий шаг: предположили, что эволюция (если понимать под ней не “изменение генных частот”, а морфологические преобразования) обычно именно так и происходит. Какие-то достаточно резкие изменения внешних условий дестабилизируют онтогенез, и зародыши с самыми обычными для данного вида генотипами развиваются в разные аномальные формы (при этом разные генотипы дают отчасти разный набор форм и разные вероятности их появления). Они вовсе не обязательно оказываются более выгодными в новых условиях – но поскольку они разнообразны, среди них могут найтись и полезные. А дальше начинается та самая уоддингтоновская “генетическая ассимиляция”: отбор начинает поддерживать те генотипы, которые с наибольшей вероятностью пускают развитие по такому пути. Такой отбор приводит к тому, что этот путь становится новой нормой: теперь по нему развивается подавляющее большинство особей. Но при такой перестройке систем регуляции онтогенеза неизбежно формируются новые скрытые возможности – потенциальные пути дальнейшей эволюции, которые могут активироваться в ответ на новые вызовы среды.

Таким образом получается довольно парадоксальная эволюционная модель, в которой важную роль играют и мутации, и создаваемое ими генетическое разнообразие, и естественный отбор (остающийся единственным направленным фактором эволюции) – но при этом эволюционный процесс начинается с чисто фенотипических изменений, а генотип изменяется в последнюю очередь. С легкой руки ее основоположника Михаила Шишкина она получила название эпигенетической теории эволюции (ЭТЭ).

Возможен ли такой сценарий? Из того, что мы знаем о живых организмах, прямого запрета не следует. Другой вопрос, насколько он вероятен: он может сработать, лишь если внешние условия изменятся достаточно сильно, чтобы корректирующие механизмы онтогенеза не смогли погасить вносимые ими возмущения, но при этом не настолько сильно, чтобы просто погубить развивающегося зародыша. Однако, как мы видели, в принципе такое влияние необычных внешних условий возможно – и наверняка не раз случалось в необозримом разнообразии событий, происходивших с миллионами видов за миллиарды лет. Правда, различить это “задним числом” практически невозможно: даже если мы имеем достаточно полный ряд ископаемых форм, позволяющих нам с уверенностью восстановить ход тех или иных эволюционных изменений – как узнать, начались ли эти изменения с мутаций или с морфозов?

Сегодня исследователям иногда удается наблюдать эволюцию, что называется, в режиме реального времени. Однако это возможно почти исключительно для достаточно простых признаков или/и на организмах с быстрой сменой поколений. Между тем модель ЭТЭ описывает изменение сложных структур путем “перевода стрелок” по ходу достаточно сложного (а значит – более-менее длительного) онтогенеза. Чтобы увидеть такое в природе, нужно “поймать” популяцию тех или иных организмов в самом начале процесса, когда в очередном поколении вдруг начнут необычайно часто появляться особи с разнообразными и необычными признаками; убедиться, что это именно морфозы, а не проявления мутаций, а затем на протяжении многих поколений наблюдать за тем, как некоторые из этих изменений будут встречаться все чаще и чаще, – и параллельно смотреть, как меняется генотип их обладателей по сравнению с исходной видовой нормой. Даже при самом благоприятном стечении обстоятельств на такую работу уйдет вся научная жизнь ученого – при том, что какой-либо интересный результат ничем не гарантирован.

Пока что подобный сизифов труд никто не проделал – и потому конкретные примеры эволюции “по ЭТЭ” остаются уязвимым местом теории. Даже в тех немногих случаях, где наблюдается нечто похожее на теоретические схемы ЭТЭ, начальная дестабилизация онтогенеза происходит не по механизму не затрагивающих генотип морфозов, а за счет мутаций. Да и вообще за три десятилетия своего существования ЭТЭ не смогла предложить сколько-нибудь развитой исследовательской программы – таких экспериментов или/и наблюдений, которые позволили бы подтвердить или опровергнуть ее теоретические положения. Возможно, поэтому известность ЭТЭ сегодня ограничена русскоязычным исследовательским сообществом, да и в нем эту теорию разделяет явное меньшинство.

Но не будем спешить с выводами. Вспомним, что через три десятилетия после выхода “Происхождения видов” теория естественного отбора опиралась лишь на единичные примеры селективных процессов в природе (ни один из которых не доказывал их эволюционного значения) да на аналогии с искусственным отбором. Будем надеяться, что расшифровка молекулярных механизмов регуляции онтогенеза либо прямо ответит на вопрос о том, реализуется ли в природе модель ЭТЭ (и если да, то насколько велико значение такого способа эволюции), либо позволит разработать эксперименты, призванные на этот вопрос ответить.

* * *

Как пишет один из самых ярких и креативных сторонников ЭТЭ, палеонтолог Александр Раутиан, все живые организмы (и только они) обладают двойным развитием – индивидуальным и историческим (эволюционным). Я не возьмусь сейчас защищать или оспаривать абсолютную справедливость этой мысли, рассматривая вопрос о применимости понятия “индивидуальное развитие”, допустим, к кишечной палочке и другим бактериям с простейшим жизненным циклом. Для нашей темы достаточно того, что двойное развитие – реальное свойство жизни, и вопрос о соотношении этих двух процессов – одна из самых важных и глубоких проблем фундаментальной биологии. Как мы увидели в этой главе, эта проблема оказалась очень непростой и окончательно не решена и по сей день. Даже сама ее постановка сильно запоздала: идея постепенного изменения видов и идея индивидуального развития на протяжении многих десятилетий присутствовали в умах естествоиспытателей почти не взаимодействуя.

Другая огромная (и даже более важная для дарвиновской эволюционной модели, чем эмбриология) область биологии окончательно сформировалась уже в ходе и после “дарвиновской революции” и в значительной мере под ее влиянием. Тем удивительнее, что и ее взаимодействие с эволюционной теорией долгое время было лишь эпизодическим. Но об этом – в следующей главе.

Назад: Интерлюдия или сюита? Или Легенда о Золотом веке
Дальше: Глава 14. Эволюция в плотной среде. Дарвинизм и экология