Книга: Рассеянный ум
Назад: Выводы
Дальше: Сноски

Сноски

1

AARP – Американская ассоциация пенсионеров (прим. перев.).

2

Теория, или модель, оптимального поиска пищи (OFT) была создана для количественного прогнозирования оптимальных методов поиска и сбора пищи у разных видов живых существ в зависимости от их типологии. Она создана несколькими группами исследователей и использует математический аппарат для сравнительной оценки. В дальнейшем авторы предпочитают называть ее моделью MVT (аббревиатура от «теоремы критической пользы» Э. Чарнова) – (прим. перев.).

3

W. C. Clapp and A. Gazzaley, “Distinct Mechanisms for the Impact of Distraction and Interruption on Working Memory in Aging,” Neurobiology of Aging 33, no. 1 (2012): 134–148.

4

M. A. Killingsworth and D. T. Gilbert, “A Wandering Mind Is an Unhappy Mind,” Science, 330, no. 6006 (2010): 932.

5

F. Coolidge and T. Wynn, “Executive Functions of the Frontal Lobes and the Evolutionary Ascendancy of Homo Sapiens,” Cambridge Archaeological Journal 11, no. 2 (2001): 255–260; M. Tomasello and E. Herrmann, “Ape and Human Cognition: What’s the Difference?” Current Directions in Psychological Science 19 (2010): 3–8.

6

S. Inoue and T. Matsuzawa, “Working Memory of Numerals in Chimpanzees,” Current Biology 17, no. 23 (2007): R1004–R1005; N. Kawai and T. Matsuzawa, “Numerical Memory Span in a Chimpanzee,” Nature 403, no. 6765 (2000): 39–40; M. J.-M. Mace, G. Richard, A. Delorme, and M. Fabre-Thorpe, “Rapid Categorization of Natural Scenes in Monkeys: Target Predictability and Processing Speed,” NeuroReport 16, no. 4 (2005): 349–354; S. F. Sands and A. A. Wright, “Monkey and Human Pictorial Memory Scanning,” Science 216, no. 4552 (1982): 1333–1334.

7

M. Anderson, Technology Device Ownership: 2015, Pew Research Center report, retrieved on March 2, 2016, from ; Pew Research Center, U.S. Smartphone Use in 2015, retrieved on March 2, 2016, from .

8

“Global Mobile Statistics 2012, Part A: Mobile Subscribers, Handset Market Share, Mobile Operators,” mobithinking.com, December 2012, .

9

L. M. Carrier, N. A. Cheever, L. D. Rosen, S. Benitez, and J. Chang, “Multitasking across Generations: Multitasking Choices and Difficulty Ratings in Three Generations of Americans,” Computers in Human Behavior 25 (2009): 483–489.

10

J. Q. Anderson and L. Rainie, Millennials Will Benefit and Suffer due to Their Hyperconnected Lives, PEW Internet and American Life Project, 2012, ; Carrier, Cheever, Rosen, Benitez, and Chang, “Multitasking across Generations”; U. G. Foehr, Media Multitasking among American Youth: Prevalence, Predictors, and Pairings: Report (Menlo Park, CA: Kaiser Family Foundation, 2006), ; S. A. Brasel and J. Gips, “Media Multitasking Behavior: Concurrent Television and Computer Usage,” Cyberpsychology, Behavior, and Social Networking 14, no. 9 (2011): 527–534; S. Kessler, “38 % of College Students Can’t Go 10 Minutes without Tech [STATS],” Mashable Tech, 2011, .

11

T. Ahonen, “Main Trends in the Telecommunications Market,” presentation at MoMo mobile conference, Kiev, Ukraine, ; “Anxiety UK Study Finds Technology Can Increase Anxiety,” AnxietyUK.org, July 9, 2012, ; Lockout Mobile Security, “Mobile Mindset Study” (2012), .

12

Harris Interactive, “Americans Work on Their Vacation: Half of Those Vacationing Will Work on Their Vacation, Including Checking Emails, Voicemails, and Taking Calls,” July 28, 2011, .

13

Y. Hwang, H. Kim, and S. H. Jeong, “Why Do Media Users Multitask? Motives for General, Medium-Specific, and Content-Specific Types of Multitasking,” Computers in Human Behavior 36 (2014): 542–548; S. Chinchanachokchai, B. R. Duff, and S. Sar, “The Effect of Multitasking on Time Perception, Enjoyment, and Ad Evaluation,” Computers in Human Behavior 45 (2015): 185–191.

14

L. Yeykelis, J. J. Cummings, and B. Reeves, “Multitasking on a Single Device: Arousal and the Frequency, Anticipation, and Prediction of Switching between Media Content on a Computer,” Journal of Communication 64, no. 1 (2014): 167–192.

15

B. C. Wittmann, N. Bunzeck, R. J. Dolan, and E. Duzel, “Anticipation of Novelty Recruits Reward System and Hippocampus While Promoting Recollection,” NeuroImage 38, no. 1 (2007): 194–202.

16

O. Hikosaka, S. Yamamoto, M. Yasuda, and H. F. Kim, “Why Skill Matters,” Trends in Cognitive Sciences, 17, no. 9 (2013): 434–441.

17

T. T. Hills, “Animal Foraging and the Evolution of Goal-Directed Cognition,” Cognitive Science 30, no. 1 (2006): 3–41.

18

R. A. Wise, “Dopamine, Learning, and Motivation,” Nature Reviews Neuroscience 5, no. 6 (2004): 483–494; M. van Schouwenburg, E. Aarts, and R. Cools, “Dopaminergic Modulation of Cognitive Control: Distinct Roles for the Prefrontal Cortex and the Basal Ganglia,” Current Pharmaceutical Design 16, no. 18 (2010): 2026–2032; M. Wang, S. Vijayraghavan, and P. S. Goldman-Rakic, “Selective D2 Receptor Actions on the Functional Circuitry of Working Memory,” Science 303 (2004): 853–856; M. Watanabe, T. Kodama, and K. Hikosaka, “Increase of Extracellular Dopamine in Primate Prefrontal Cortex During a Working Memory Task,” Journal of Neurophysiology 78, no. 5 (1997): 2795–2798.

19

E. S. Bromberg-Martin and O. Hikosaka, “Midbrain Dopamine Neurons Signal Preference for Advance Information about Upcoming Rewards,” Neuron 63, no. 1 (2009): 119–126.

20

T. T. Hills, “Animal Foraging.”

21

P. Pirolli and S. Card, “Information Foraging,” Psychological Review 106, no. 4 (1999): 643.

22

E. L. Charnov, “Optimal Foraging: The Marginal Value Theorem,” Theoretical Population Biology 9, no. 2 (1976): 129–136.

23

M. H. Cassini, A. Kacelnik, and E. T. Segura, “The Tale of the Screaming Hairy Armadillo, the Guinea Pig, and the Marginal Value Theorem,” Animal Behavior 39, no. 6 (1990: 1030–1050; R. J. Cowie, “Optimal Foraging in the Great Tits (Parus Major),” Nature 268 (1977): 137–139.

24

Pirolli and Card, “Information Foraging”; T. Hills, P. M. Todd, and R. L. Goldstone, “Priming and Conservation between Spatial and Cognitive Search,” in Proceedings of the 29th Annual Cognitive Science Society (Austin: Cognitive Science Society, 2007), 359–364; P. E. Sandstrom, “An Optimal Foraging Approach to Information Seeking and Use,” Library Quarterly (1994): 414–449; M. Dwairy, A. C. Dowell, and J. C. Stahl, “The Application of Foraging Theory to the Information Searching Behavior of General Practitioners,” BMC Family Practice, 12, no. 1 (2011): 90.

25

R. Marois and J. Ivanoff, “Capacity Limits of Information Processing in the Brain,” Trends in Cognitive Sciences 9, no. 6 (2005): 296–305.

26

J. M. Fuster, “Upper Processing Stages of the Perception-Action Cycle,” Trends in Cognitive Sciences 8, no. 4 (2004): 143–145.

27

Термин «цикл восприятия/действия» был введен и популяризован Хоакином Фустером, но концепция Упоминалась несколькими другими учеными, начиная с 1950 года. See J. M. Fuster, The Prefrontal Cortex, 2nd ed. (New York: Raven Press, 1989); J. M. Fuster, Cortex and Mind: Unifying Cognition (Oxford: Oxford University Press, 2003).

28

Подколенный рефлекс можно точнее описать как рефлекс ощущения/действия, так как головной мозг не принимает участия в процессе.

29

F. L. Coolidge and T. Wynn, “Executive Functions of the Frontal Lobes and the Evolutionary Ascendancy of Homo Sapiens,” Cambridge Archeological Journal 11, no. 2 (2001): 255–260.

30

N. J. Emery and N. S. Clayton, “The Mentality of Crows: Convergent Evolution of Intelligence in Corvids and Apes,” Science 306, no. 5703 (2004): 1903–1907.

31

Quoted material in this paragraph is from Charles Sabine, “Senses Helped Animals Survive the Tsunami,” NBC News with Brian Williams, .

32

National Highway Traffic Safety Administration and Virginia Tech Transportation Institute, “Breakthrough Research on Real-World Driver Behavior Released,” April 20, 2006, .

33

William James, Principles of Psychology (New York: Holt, 1890), 404.

34

S. J. Luck and S. P. Vecera, “Attention,” in Stevens’ Handbook of Experimental Psychology, vol. 1: Sensation and Perception, ed. H. Pasher and S. Yantis (New York: John Wiley, 2002), 235–286.

35

A. Baddeley, Working Memory (Oxford: Oxford University Press, 1986).

36

A. Gazzaley and A. C. Nobre, “Top-Down Modulation: Bridging Selective Attention and Working Memory,” Trends in Cognitive Sciences 16, no. 2 (2012): 129–135.

37

D. Premack, “Human and Animal Cognition: Continuity and Discontinuity,” Proceedings of the National Academy of Sciences of the United States of America 104, no. 35 (2007): 13861–13867.

38

A. Gazzaley and M. D’Esposito, “Unifying Prefrontal Cortex Function: Executive Control, Neural Networks, and Top-Down Modulation,” in The Human Frontal Lobes, ed. B. Miller and J. Cummings (New York: Guilford, 2007).

39

G. Fritsch and E. Hitzig, “Uber die elektrische Erregbarkeit des Grosshiirns,” Archiv der Anatomie, Physiologie und Wissenschaftlichen Medizin 37 (1870): 300–332.

40

B. J. Baars and N. M. Gage, Cognition, Brain, and Consciousness: Introduction to Cognitive Neuroscience (New York: Academic Press, 2010).

41

A. M. Glenberg, J. L. Schroeder, and D. A. Robertson, “Averting the Gaze Disengages the Environment and Facilitates Remembering,” Memory and Cognition 26 (1998): 651–658.

42

P. E. Wais, M. T. Rubens, J. Boccanfuso, and A. Gazzaley, “Neural Mechanisms Underlying the Impact of Visual Distraction on Retrieval of Long-Term Memory,” Journal of Neuroscience 30, no. 25 (2010): 8541–8550.

43

H. J. Bigelow, “Dr. Harlow’s Case of Recovery from the Passage of an Iron Bar through the Head,” American Journal of the Medical Sciences 16, no. 39 (1850): 13–22. See also the Phineas Gage Information Page at .

44

H. Damasio, T. Grabowski, R. Frank, A. M. Galaburda, and A. R. Damasio, “The Return of Phineas Gage: Clues about the Brain from the Skull of a Famous Patient,” Science 264, no. 5162 (1994): 1102–1105.

45

Harlow, “Recovery from the Passage of an Iron Bar through the Head”; reprinted as J. M. Harlow, Recovery from the Passage of an Iron Bar through the Head (Boston: David Clapp & Son), 13.

46

G. A. Mashour, E. E. Walker, and R. L. Martuza, “Psychosurgery: Past, Present, and Future,” Brain Research Reviews 48, no. 3 (2005): 409–419.

47

W. Freeman and J. W. Watts, “Physiological Psychology,” Annual Review of Physiology 6, no. 1 (1944): 517–542.

48

W. Freeman and J. W. Watts, “Physiological Psychology”.

49

A. L. Benton, “Differential Behavioral Effects in Frontal Lobe Disease,” Neuropsychologia 6, no. 1 (1968): 53–60; A. R. Luria, Human Brain and Psychological Processes (New York: Harper & Row, 1968); B. Milner, “Effects of Different Brain Regions on Card Sorting,” Archives of Neurology 9 (1963): 90–100.

50

P. T. Schoenemann, M. J. Sheehan, and L. D. Glotzer, “Prefrontal White Matter Volume Is Disproportionately Larger in Humans Than in Other Primates,” Nature Neuroscience 8, no. 2 (2005): 242–252.

51

A. Gazzaley and M. D’Esposito, “Neural Networks: An Empirical Neuroscience Approach toward Understanding Cognition,” Cortex 42, no. 7 (2006): 1037–1040.

52

J. van Whye, “The History of Phrenology on the Web” (2004), .

53

E. A. Berker, A. H. Berker, and A. Smith, “Translation of Broca’s 1865 Report: Localization of Speech in the Third Left Frontal Convolution,” Archives of Neurology 43, no. 10 (1986): 1065–1072.

54

R. M. Sabbatini, “Phrenology: The History of Brain Localization,” Brain and Mind 1 (1997), .

55

B. Tizard, “Theories of Brain Localization from Flourens to Lashley,” Medical History 3 (1959): 132–145.

56

J. M. Fuster, Cortex and Mind: Unifying Cognition (Oxford: Oxford University Press, 2003).

57

M. Mesulam, “A Cortical Network for Directed Attention and Unilateral Neglect,” Annals of Neurology 10, no. 4 (1981): 309–325.

58

Gazzaley and D’Esposito, “Unifying Prefrontal Cortex Function.”

59

A. Gazzaley, J. W. Cooney, K. McEvoy, R. T. Knight, and M. D’Esposito, “Top-Down Enhancement and Suppression of the Magnitude and Speed of Neural Activity,” Journal of Cognitive Neuroscience 17, no. 3 (2005): 507–517.

60

E. K. Miller and J. D. Cohen, “An Integrative Theory of Prefrontal Cortex Function,” Annual Review of Neuroscience 24, no. 1 (2001): 167–202.

61

Левое полушарие мозга отображает правостороннее видение мира, поэтому зрительная кора правого полушария соответствует левостороннему зрительному полю, куда направлено внимание нашего предка.

62

Gazzaley et al., “Top-Down Enhancement.”

63

J. Z. Chadick, T. P. Zanto, and A. Gazzaley, “Structural and Functional Differences in Medial Prefrontal Cortex Underlie Distractibility and Suppression Deficits in Ageing,” Nature Communications 5 (2014): 4223.

64

J. Rissman, A. Gazzaley, and M. D’Esposito, “Measuring Functional Connectivity during Distinct Stages of a Cognitive Task,” Neuroimage 23, no. 2 (2004): 752–763.

65

A. Gazzaley, J. Rissman, and M. D’Esposito, “Functional Connectivity during Working Memory Maintenance,” Cognitive, Affective, and Behavioral Neuroscience 4, no. 4 (2004): 580–599.

66

T. P. Zanto, M. T. Rubens, A. Thangavel, and A. Gazzaley, “Causal Role of the Prefrontal Cortex in Top-Down Modulation of Visual Processing and Working Memory,” Nature Neuroscience 14, no. 5 (2011): 656–661.

67

C. F. Jacobsen, “Studies of Cerebral Function in Primates,” Comparative Psychology Monographs 13 (1938): 1–68.

68

J. M. Fuster and G. E. Alexander, “Neuron Activity Related to Short-Term Memory,” Science 173, no. 3997 (1971): 652–654; K. Kubota and H. Niki, “Prefrontal Cortical Unit Activity and Delayed Alternation Performance in Monkeys,” Journal of Neurophysiology 34 (1971): 337–347.

69

P. S. Goldman-Rakic, “Cellular Basis of Working Memory,” Neuron 14, no. 3 (1995): 477–485.

70

J. M. Fuster, R. H. Bauer, and J. P. Jervey, “Functional Interactions between Inferotemporal and Prefrontal Cortex in a Cognitive Task,” Brain Research 330, no. 2 (1985): 299–307.

71

P. E. Dux, J. Ivanoff, C. L. Asplund, and R. Marois, “Isolation of a Central Bottleneck of Information Processing with Time-Resolved fMRI,” Neuron 52, no. 6 (2006): 1109–1120.

72

P. E. Dux, J. Ivanoff, C. L. Asplund, and R. Marois, “Isolation of a Central Bottleneck of Information Processing with Time-Resolved fMRI,” Neuron 52, no. 6 (2006): 1109–1120.

73

R. Kanai, M. Y. Dong, B. Bahrami, and G. Rees, “Distractibility in Daily Life Is Reflected in the Structure and Function of Human Parietal Cortex,” Journal of Neuroscience 31, no. 18 (2011): 6620–6626.

74

R. Desimone and J. Duncan, “Neural Mechanisms of Selective Visual Attention,” Annual Review of Neuroscience 18, no. 1 (1995): 193–222.

75

T. P. Zanto and A. Gazzaley, “Neural Suppression of Irrelevant Information Underlies Optimal Working Memory Performance,” Journal of Neuroscience 29, no. 10 (2009): 3059–3066.

76

E. K. Vogel, A. W. McCollough, and M. G. Machizawa, “Neural Measures Reveal Individual Differences in Controlling Access to Working Memory,” Nature 438, no. 7067 (2005): 500–503.

77

A. M. Glenberg, J. L. Schroeder, and D. A. Robertson, “Averting the Gaze Disengages the Environment and Facilitates Remembering,” Memory and Cognition 26 (1998): 651–658.

78

P. E. Wais, M. T. Rubens, J. Boccanfuso, and A. Gazzaley, “Neural Mechanisms Underlying the Impact of Visual Distraction on Retrieval of Long-Term Memory,” Journal of Neuroscience 30, no. 25 (2010): 8541–8550.

79

P. E. Wais, O. Y. Kim, and A. Gazzaley, “Distractibility during Episodic Retrieval Is Exacerbated by Perturbation of Left Ventrolateral Prefrontal Cortex,” Cerebral Cortex 22, no. 3 (2011): 717–724.

80

P. E. Wais and A. Gazzaley, “The Impact of Auditory Distraction on Retrieval of Visual Memories,” Psychonomic Bulletin and Review 1, no. 6 (2011): 1090–1097.

81

M. A. Killingsworth and D. T. Gilbert, “A Wandering Mind Is an Unhappy Mind,” Science 330, no. 6006 (2010): 932–932.

82

M. D. Mrazek, J. Smallwood, M. S. Franklin, B. Baird, J. M. Chin, and J. W. Schooler, “The Role of Mind-Wandering in Measurements of General Aptitude,” Journal of Experimental Psychology: General 141 (2012): 788–798.

83

C. E. Rolle, B. Voytek, and A. Gazzaley, “Examining the Performance of the iPad and Xbox Kinect for Cognitive Science Research,” Games for Health Journal 4, no. 3 (2015): 221–224.

84

B. S. Oken, M. C. Salinsky, and S. M. Elsas, “Vigilance, Alertness, or Sustained Attention: Physiological Basis and Measurement,” Clinical Neurophysiology 117, no. 9 (2006): 1885–1901.

85

S. Bioulac, S. Lallemand, C. Fabrigoule, A. L. Thoumy, P. Philip, and M. P. Bouvard, “Video Game Performances Are Preserved in ADHD Children Compared with Controls,” Journal of Attention Disorders 18, no. 6 (2014): 542–550.

86

K. L. Shapiro, J. E. Raymond, and K. M. Arnell, “The Attentional Blink,” Trends in Cognitive Sciences, 1, no. 8 (1997): 291–296.

87

K. Fukuda and E. K. Vogel, “Human Variation in Overriding Attentional Capture,” Journal of Neuroscience 29, no. 27 (2009): 8726–8733; K. Fukuda and E. K. Vogel, “Individual Differences in Recovery Time from Attentional Capture,” Psychological Science 22, no. 3 (2011): 361–368.

88

T. F. Brady, T. Konkle, and G. A. Alvarez, “A Review of Visual Memory Capacity: Beyond Individual Items and toward Structured Representations,” Journal of Vision 11, no. 5 (2011): 4.

89

G. A. Miller, “The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information,” Psychological Review 63, no. 2 (1956): 81.

90

N. Cowan, “The Magical Number 4 in Short-Term Memory: A Reconsideration of Mental Storage Capacity,” Behavioral and Brain Sciences 24 (2001): 87–185.

91

S. J. Luck and E. K. Vogel, “The Capacity of Visual Working Memory for Features and Conjunctions,” Nature 390, no. 6657 (1997): 279–281.

92

M. Daneman and P. A. Carpenter, “Individual Differences in Working Memory and Reading,” Journal of Verbal Learning and Verbal Behavior 19, no. 4 (1980): 450–466; A. R. Conway, M. J. Kane, and R. W. Engle, “Working Memory Capacity and Its Relation to General Intelligence,” Trends in Cognitive Sciences 7, no. 12 (2003): 547–552.

93

T. F. Brady, T. Konkle, J. Gill, A. Oliva, and G. A. Alvarez, “Visual Long-Term Memory Has the Same Limit on Fidelity as Visual Working Memory,” Psychological Science 24, no. 6 (2013): 981–990.

94

W. C. Clapp, M. T. Rubens, and A. Gazzaley, “Mechanisms of Working Memory Disruption by External Interference,” Cerebral Cortex 20, no. 4 (2009): 859–872.

95

W. C. Clapp and A. Gazzaley, “Distinct Mechanisms for the Impact of Distraction and Interruption on Working Memory in Aging,” Neurobiology of Aging 33, no. 1 (2012): 134–148.

96

Vogel, McCollough, and Machizawa, “Neural Measures Reveal Individual Differences in Controlling Access to Working Memory.”

97

Bernard I. Witt and Ward Lambert, IBM Operating System/360 Concepts and Facilities, .

98

Jesus Diaz, “How Multitasking Works in the New iPhone OS 4.0,” Gizmodo.com, April 8, 2010, .

99

Diaz, “How Multitasking Works.”

100

Clapp, Rubens, and Gazzaley, “Mechanisms of Working Memory Disruption by External Interference”; A. S. Berry, T. P. Zanto, A. M. Rutman, W. C. Clapp, and A. Gazzaley, “Practice-Related Improvement in Working Memory Is Modulated by Changes in Processing External Interference,” Journal of Neurophysiology 102, no. 3 (2009): 1779–1789.

101

J. A. Anguera, J. Boccanfuso, J. L. Rintoul, O. Al-Hashimi, F. Faraji, J. Janowich, E. Kong, Y. Larraburo, C. Rolle, E. Johnston, and A. Gazzaley, “Video Game Training Enhances Cognitive Control in Older Adults,” Nature 501, no. 7465 (2013): 97–101.

102

J. S. Rubinstein, D. E. Meyer, and J. E. Evans, “Executive Control of Cognitive Processes in Task Switching,” Journal of Experimental Psychology: Human Perception and Performance 27, no. 4 (2001): 763.

103

J. R. Best, P. H. Miller, and L. L. Jones, “Executive Functions after Age 5: Changes and Correlates,” Developmental Review 29, no. 3 (2009): 180–200; M. C. Davidson, D. Amso, L. C. Anderson, and A. Diamond, “Development of Cognitive Control and Executive Functions from 4 to 13 Years: Evidence from Manipulations of Memory, Inhibition, and Task Switching,” Neuropsychologia 44, no. 11 (2006): 2037–2078.

104

S. A. Bunge and S. B. Wright, “Neurodevelopmental Changes in Working Memory and Cognitive Control,” Current Opinion in Neurobiology 17, no. 2 (2007): 243–250.

105

J. N. Giedd, J. Blumenthal, N. O. Jeffries, F. X. Castellanos, H. Liu, A. Zijdenbos, et al., “Brain Development during Childhood and Adolescence: A Longitudinal MRI Study,” Nature Neuroscience 2, no. 10 (1999): 861–863; N. Gogtay, J. N. Giedd, L. Lusk, K. M. Hayashi, D. Greenstein, A. C. Vaituzis, T. F. Nugent, et al., “Dynamic Mapping of Human Cortical Development during Childhood through Early Adulthood,” Proceedings of the National Academy of Sciences of the United States of America 101, no. 21 (2004): 8174–8179.

106

D. M. Lane and D. A. Pearson, “The Development of Selective Attention,” Merrill-Palmer Quarterly (1982): 317–337; L. M. Trick and J. T. Enns, “Lifespan Changes in Attention: The Visual Search Task,” Cognitive Development 13, no. 3 (1998): 369–386; J. T. Enns and S. Cameron, “Selective Attention in Young Children: The Relations between Visual Search, Filtering, and Priming,” Journal of Experimental Child Psychology 44, no. 1 (1987): 38–63.

107

J. T. Enns and J. S. Girgus, “Developmental Changes in Selective and Integrative Visual Attention,” Journal of Experimental Child Psychology 40, no. 2 (1985): 319–337.

108

L. P. McAvinue, T. Habekost, K. A. Johnson, S. Kyllingsb.k, S. Vangkilde, C. Bundesen, and I. H. Robertson, “Sustained Attention, Attentional Selectivity, and Attentional Capacity across the Lifespan,” Attention, Perception, and Psychophysics 74, no. 8 (2012): 1570–1582.

109

See, e.g., .

110

S. A. Bunge and S. B. Wright, “Neurodevelopmental Changes in Working Memory and Cognitive Control,” Current Opinion in Neurobiology 17, no. 2 (2007): 243–250.

111

F. R. Manis, D. P. Keating, and F. J. Morrison, “Developmental Differences in the Allocation of Processing Capacity,” Journal of Experimental Child Psychology 29, no. 1 (1980): 156–169; C. Karatekin, “Development of Attentional Allocation in the Dual Task Paradigm,” International Journal of Psychophysiology 52, no. 1 (2004): 7–21.

112

T. Zanto and A. Gazzaley, “Aging and Attention,” in Handbook of Attention, ed. A. C. Nobre and S. Kastner (Oxford: Oxford University Press, 2014), 927–971.

113

N. Raz, “Aging of the Brain and Its Impact on Cognitive Performance: Integration of Structural and Functional Findings,” in The Handbook of Aging and Cognition, 2nd ed., ed. F. I. M. Craik and T. A. Salthouse (New York: Erlbaum, 2000), 1–90.

114

Zanto and Gazzaley, “Aging and Attention.”

115

L. Hasher, R. T. Zacks, and C. P. May, “Inhibitory Control, Circadian Arousal, and Age,” in Attention and Performance, vol. 17 (Cambridge, MA: MIT Press, 1999), 653–675.

116

A. Gazzaley, J. W. Cooney, J. Rissman, and M. D’Esposito, “Top-Down Suppression Deficit Underlies Working Memory Impairment in Normal Aging,” Nature Neuroscience 8, no. 10 (2005): 1298–1300.

117

T. P. Zanto, B. Toy, and A. Gazzaley, “Delays in Neural Processing during Working Memory Encoding in Normal Aging,” Neuropsychologia 48, no. 1 (2010): 13–25; T. P. Zanto, P. Pan, H. Liu, J. Bollinger, A. C. Nobre, and A. Gazzaley, “Age-Related Changes in Orienting Attention in Time,” Journal of Neuroscience 31, no. 35 (2011): 12461–12470; W. C. Clapp and A. Gazzaley, “Distinct Mechanisms for the Impact of Distraction and Interruption on Working Memory in Aging,” Neurobiology of Aging 33, no. 1 (2012): 134–148.

118

J. Z. Chadick, T. P. Zanto, and A. Gazzaley, “Structural and Functional Differences in Medial Prefrontal Cortex Underlie Distractibility and Suppression Deficits in Aging,” Nature Communications 5 (2014): 4223.

119

A. Gazzaley, W. Clapp, J. Kelley, K. McEvoy, R. T. Knight, and M. D’Esposito, “Age-Related Top-Down Suppression Deficit in the Early Stages of Cortical Visual Memory Processing,” Proceedings of the National Academy of Sciences 105, no. 35 (2008): 13122–13126.

120

Gazzaley et al., “Age-Related Top-Down Suppression Deficit”; P. E. Wais, M. T. Rubens, J. Boccanfuso, and A. Gazzaley, “Neural Mechanisms Underlying the Impact of Visual Distraction on Retrieval of Long-Term Memory,” Journal of Neuroscience 30, no. 25 (2010): 8541–8550.

121

Clapp and Gazzaley, “Distinct Mechanisms for the Impact of Distraction and Interruption”; J. Mishra, T. Zanto, A. Nilakantan, and A. Gazzaley, “Comparable Mechanisms of Working Memory Interference by Auditory and Visual Motion in Youth and Aging,” Neuropsychologia 51, no. 10 (2013): 1896–1906.

122

T. S. Braver and R. West, “Working Memory, Executive Control, and Aging,” Handbook of Aging and Cognition 3 (2008): 311–372; L. Hasher, C. Chung, C. P. May, and N. Foong, “Age, Time of Testing, and Proactive Interference,” Canadian Journal of Experimental Psychology 56, no. 3 (2002): 200.

123

F. I. Craik and E. Dirkx, “Age-Related Differences in Three Tests of Visual Imagery,” Psychology and Aging 7, no. 4 (1992): 661.

124

J. Kalkstein, K. Checksfield, J. Bollinger, and A. Gazzaley, “Diminished Top-Down Control Underlies a Visual Imagery Deficit in Normal Aging,” Journal of Neuroscience 31, no. 44 (2011): 15768–15774.

125

Zanto and Gazzaley, “Aging and Attention.”

126

Clapp and Gazzaley, “Distinct Mechanisms for the Impact of Distraction and Interruption”; Gazzaley et al., “Age-Related Top-Down Suppression Deficit.”

127

Y. Gazes, B. C. Rakitin, C. Habeck, J. Steffener, and Y. Stern, “Age Differences of Multivariate Network Expressions during Task-Switching and Their Associations with Behavior,” Neuropsychologia 50, no. 14 (2012): 3509–3518; D. J. Madden, M. C. Costello, N. A. Dennis, S. W. Davis, A. M. Shepler, J. Spaniol, et al., “Adult Age Differences in Functional Connectivity during Executive Control,” Neuroimage 52, no. 2 (2010): 643–657; B. T. Gold, D. K. Powell, L. Xuan, G. A. Jicha, and C. D. Smith, “Age-Related Slowing of Task Switching Is Associated with Decreased Integrity of Frontoparietal White Matter,” Neurobiology of Aging 31, no. 3 (2010): 512–522.

128

R. Helman, M. Greenwald, C. Copeland, and J. VanDerhei, “The 2010 Retirement Confidence Survey: Confidence Stabilizing, but Preparations Continue to Erode,” EBRI Issue Brief 340 (Washington, DC: Employee Benefit Research Institute, 2010).

129

A. Wingfield and E. A. L. Stine-Morrow, “Language and Speech,” in The Handbook of Aging and Cognition, 359–416.

130

При этих исходных параметрах максимальные показатели обозначены низшей точкой.

131

Неопубликованные данные лаборатории Газзали.

132

J. A. Anguera, J. Boccanfuso, J. L. Rintoul, O. Al-Hashimi, F. Faraji, J. Janowich, et al., “Video Game Training Enhances Cognitive Control in Older Adults,” Nature 501, no. 7465 (2013): 97–101.

133

W. F. Chaplin, O. P. John, and L. R. Goldberg, “Conceptions of States and Traits: Dimensional Attributes with Ideals as Prototypes,” Journal of Personality and Social Psychology 54, no. 4 (1988): 541.

134

D. I. Boomsma, “Genetic Analysis of Cognitive Failures (CFQ): A Study of Dutch Adolescent Twin Pairs and Their Parents,” European Journal of Personality 12 (1998): 321–330.

135

R. Ratcliff and H. P. Van Dongen, “Sleep Deprivation Affects Multiple Distinct Cognitive Processes,” Psychonomic Bulletin and Review 16, no. 4 (2009): 742–751.

136

J. S. Durmer and D. F. Dinges, “Neurocognitive Consequences of Sleep Deprivation,” Seminars in Neurology 25, no. 1 (2005): 117–129.

137

C. E. Sexton, A. B. Storsve, K. B. Walhovd, H. Johansen-Berg, and A. M. Fjell, “Poor Sleep Quality Is Associated with Increased Cortical Atrophy in Community-Dwelling Adults,” Neurology 83, no. 11 (2014): 967–973.

138

K. M. Edwards, R. Kamat, L. M. Tomfohr, S. Ancoli-Israel, and J. E. Dimsdale, “Obstructive Sleep Apnea and Neurocognitive Performance: The Role of Cortisol,” Sleep Medicine 15, no. 1 (2014): 27–32; E. Gaio, P. DeYoung, A. R. Elliott, T. Limberg, A. Villa, M. Baylon, R. Sison- Tojino, et al., “High Prevalence of Obstructive Sleep Apnea in Patients with Moderate to Severe COPD,” American Journal of Respiratory Critical Care Medicine 189 (2014): A5844–A5844.

139

E. H. Telzer, A. J. Fuligni, M. D. Lieberman, and A. Galvan, “The Effects of Poor Quality Sleep on Brain Function and Risk Taking in Adolescence,” Neuroimage 71 (2013): 275–283.

140

R. Gruber, J. Cassoff, S. Frenette, S. Wiebe, and J. Carrier, “Impact of Sleep Extension and Restriction on Children’s Emotional Lability and Impulsivity,” Pediatrics 130, no. 5 (2012): e1155–e1161.

141

L. Wade, “Kids with More Sleep Cope Better,” CNN.com, October 16, 2012, .

142

R. M. Yerkes and J. D. Dodson, “The Relation of Strength of Stimulus to Rapidity of Habit-Formation,” Journal of Comparative Neurology and Psychology 18, no. 5 (1908): 459–482.

143

M. A. Staal, “Stress, Cognition, and Human Performance: A Literature Review and Conceptual Framework,” NASA Technical Memorandum, 212824 (2004): 1–86.

144

M. J. Dry, N. R. Burns, T. Nettelbeck, A. L. Farquharson, and J. M. White, “Dose-Related Effects of Alcohol on Cognitive Functioning,” PLoS ONE 7, no. 11 (2012): e50977; T. L. Martin, P. A. Solbeck, D. J. Mayers, R. M. Langille, Y. Buczek, and M. R. Pelletier, “A Review of Alcohol-Impaired Driving: The Role of Blood Alcohol Concentration and Complexity of the Driving Task,” Journal of Forensic Sciences 58, no. 5 (2013): 1238–1250.

145

D. A. Brodeur and M. Pond, “The Development of Selective Attention in Children with Attention Deficit Hyperactivity Disorder,” Journal of Abnormal Child Psychology 29, no. 3 (2001): 229–239; S. Forster, D. J. Robertson, A. Jennings, P. Asherson, and N. Lavie, “Plugging the Attention Deficit: Perceptual Load Counters Increased Distraction in ADHD,” Neuropsychology 28, no. 1 (2014): 91–97.

146

C. S. Carter, P. Krener, M. Chaderjian, C. Northcutt, and V. Wolfe, “Abnormal Processing of Irrelevant Information in Attention Deficit Hyperactivity Disorder,” Psychiatry Research 56, no. 1 (1995): 59–70; B. M. Ben-David, L. L. Nguyen, and P. H. van Lieshout, “Stroop Effects in Persons with Traumatic Brain Injury: Selective Attention, Speed of Processing, or Color-Naming? A Meta-Analysis,” Journal of the International Neuropsychological Society 17, no. 2 (2011): 354–363; A. M. Epp, K. S. Dobson, D. J. Dozois, and P. A. Frewen, “A Systematic Meta-Analysis of the Stroop Task in Depression,” Clinical Psychology Review 32, no. 4 (2012): 316–328; J. M. Cisler, K. B. Wolitzky-Taylor, T. G. Adams, K. A. Babson, C. L. Badour, and J. L. Willems, “The Emotional Stroop Task and Posttraumatic Stress Disorder: A Meta-Analysis,” Clinical Psychology Review 31, no. 5 (2011): 817–828; A. R. Moradi, M. R. Taghavi, H. T. Neshat Doost, W. Yule, and T. Dalgleish, “Performance of Children and Adolescents with PTSD on the Stroop Color-Naming Task,” Psychological Medicine 29, no. 2 (1999): 415–419; A. Henik and R. Salo, “Schizophrenia and the Stroop Effect,” Behavioral and Cognitive Neuroscience Reviews 3, no. 1 (2004): 42–59; B. M. Ben-David, A. Tewari, V. Shakuf, and P. H. van Lieshout, “Stroop Effects in Alzheimer’s Disease: Selective Attention Speed of Processing, or Color-Naming? A Meta-Analysis,” Journal of Alzheimer’s Disease 38, no. 4 (2014): 923–938.

147

A. Christakou, C. M. Murphy, K. Chantiluke, A. I. Cubillo, A. B. Smith, V. Giampietro, et al., “Disorder-Specific Functional Abnormalities during Sustained Attention in Youth with Attention Deficit Hyperactivity Disorder (ADHD) and with Autism,” Molecular Psychiatry 18, no. 2 (2013): 236–244.

148

M. A. Jenkins, P. J. Langlais, D. Delis, and R. A. Cohen, “Attentional Dysfunction Associated with Posttraumatic Stress Disorder among Rape Survivors,” Clinical Neuropsychologist 14, no. 1 (2000): 7–12; J. J. Vasterling, K. Brailey, J. I. Constans, and P. B. Sutker, “Attention and Memory Dysfunction in Posttraumatic Stress Disorder,” Neuropsychology 12, no. 1 (1998): 125; M.-L. Meewisse, M. J. Nijdam, G.-J. de Vries, B. P. R. Gersons, R. J. Kleber, P. G. van der Velden, A.-J. Roskam, et al., “Disaster-Related Posttraumatic Stress Symptoms and Sustained Attention: Evaluation of Depressive Symptomatology and Sleep Disturbances as Mediators,” Journal of Traumatic Stress 18, no. 4 (2005): 299–302.

149

J. Whyte, M. Polansky, M. Fleming, H. B. Coslett, and C. Cavallucci, “Sustained Arousal and Attention after Traumatic Brain Injury,” Neuropsychologia 33, no. 7 (1995): 797–813; P. P. Roy-Byrne, H. Weingartner, L. M. Bierer, K. Thompson, and R. M. Post, “Effortful and Automatic Cognitive Processes in Depression,” Archives of General Psychiatry 43, no. 3 (1986): 265–267.

150

R. J. Perry and J. R. Hodges, “Attention and Executive Deficits in Alzheimer’s Disease: A Critical Review,” Brain 122, no. 3 (1999): 383–404.

151

E. G. Willcutt, A. E. Doyle, J. T. Nigg, S. V. Faraone, and B. F. Pennington, “Validity of the Executive Function Theory of Attention-Deficit/Hyperactivity Disorder: A Meta-Analytic Review,” Biological Psychiatry 57, no. 11 (2005): 1336–1346.

152

M. D. Veltmeyer, C. R. Clark, A. C. McFarlane, K. A. Moores, R. A. Bryant, and E. Gordon, “Working Memory Function in Post-traumatic Stress Disorder: An Event-Related Potential Study,” Clinical Neurophysiology 120, no. 6 (2009): 1096–1106; M. E. Shaw, K. A. Moores, R. C. Clark, A. C. McFarlane, S. C. Strother, R. A. Bryant, et al., “Functional Connectivity Reveals Inefficient Working Memory Systems in Post-traumatic Stress Disorder,” Psychiatry Research: Neuroimaging 172, no. 3 (2009): 235–241.

153

T. W. McAllister, L. A. Flashman, M. B. Sparling, and A. J. Saykin, “Working Memory Deficits after Traumatic Brain Injury: Catecholaminergic Mechanisms and Prospects for Treatment – A Review,” Brain Injury 18, no. 4 (2004): 331–350.

154

C. Christodoulou, J. DeLuca, J. H. Ricker, N. K. Madigan, B. M. Bly, G. Lange, et al., “Functional Magnetic Resonance Imaging of Working Memory Impairment after Traumatic Brain Injury,” Journal of Neurology, Neurosurgery, and Psychiatry 71, no. 2 (2001): 161–168.

155

L. Pelosi, T. Slade, L. D. Blumhardt, and V. K. Sharma, “Working Memory Dysfunction in Major Depression: An Event-Related Potential Study,” Clinical Neurophysiology 111, no. 9 (2000): 1531–1543; E. J. Rose and K. P. Ebmeier, “Pattern of Impaired Working Memory during Major Depression,” Journal of Affective Disorders 90, no. 2 (2006): 149–161;S. Belleville, I. Peretz, and D. Malenfant, “Examination of the Working Memory Components in Normal Aging and in Dementia of the Alzheimer Type,” Neuropsychologia 34, no. 3 (1996): 195–207.

156

N. Honzel, T. Justus, and D. Swick, “Posttraumatic Stress Disorder Is Associated with Limited Executive Resources in a Working Memory Task,” Cognitive, Affective, and Behavioral Neuroscience 14, no. 2 (2014): 792–804; R. L. Aupperle, A. J. Melrose, M. B. Stein, and M. P. Paulus, “Executive Function and PTSD: Disengaging from Trauma,” Neuropharmacology 62, no. 2 (2012): 686–694; I. A. Rasmussen Jr., J. Xu, I. K. Antonsen, J. Brunner, T. Skandsen, D. E. Axelson, et al., “Simple Dual Tasking Recruits Prefrontal Cortices in Chronic Severe Traumatic Brain Injury Patients, but not in Controls,” Journal of Neurotrauma 25, no. 9 (2008): 1057–1070; G. S. Alexopoulos, D. N. Kiosses, S. Klimstra, B. Kalayam, and M. L. Bruce, “Clinical Presentation of the ‘Depression – Executive Dysfunction Syndrome’ of Late Life,” American Journal of Geriatric Psychiatry 10, no. 1 (2002): 98–106; E. G. Willcutt, A. E. Doyle, J. T. Nigg, S. V. Faraone, and B. F. Pennington, “Validity of the Executive Function Theory of Attention-Deficit/Hyperactivity Disorder: A Meta-Analytic Review,” Biological Psychiatry 57, no. 11 (2005): 1336–1346; J. A. Foley, R. Kaschel, R. H. Logie, and S. Della Sala, “Dual-Task Performance in Alzheimer’s Disease, Mild Cognitive Impairment, and Normal Aging,” Archives of Clinical Neuropsychology 39, no. 1 (2011): 23–31.

Назад: Выводы
Дальше: Сноски