Книга: Эгоистичная митохондрия. Как сохранить здоровье и отодвинуть старость
Назад: Глава 2
Дальше: Примечания

Глава 3

Ames B. N., Atamna H., Killilea D. W. Mineral and vitamin deficiencies can accelerate the mitochondrial decay of aging. Mol Aspects Med. 2005 Aug–Oct; 26(4–5):363–78. doi:10.1016/j.mam.2005.07.007.

Aw T. Y., Jones D. P. Nutrient supply and mitochondrial function. Annu Rev Nutr. 1989 Jul; 9:229–51. doi:10.1146/annurev.nu.09.070189.001305. Williams K. L., et al. Differing effects of metformin on glycemic control by race-ethnicity. J Clin Endocrinol Metab. 2014 Sep; 99(9):3160–8. Epub 2014 June 12. doi:10.1210/jc.2014–1539.

D-рибоза

Andreoli S. P. Mechanisms of endothelial cell ATP depletion after oxidant injury. Pediatr Res. 1989 Jan; 25(1):97–101. doi:10.1203/00006450-198901000-00021.

Asimakis G., et al. Postischemic recovery of mitochondrial adenine nucleotides in the heart. Circulation. 1992 Jul; 85(6):2212–20.

Baldwin D., et al. Myocardial glucose metabolism and ATP levels are decreased two days after global ischemia. J Surg Res. 1996 Jun; 63(1):35–8. doi:10.1006/jsre.1996.0218.

Befera N., et al. Ribose treatment preserves function of the remote myocardium after myocardial infarction. J Surg Res. 2007 Feb; 137(2):156. doi:10.1016/j.jss.2006.12.022.

Bengtsson A., Heriksson K.G., Larsson J. Reduced high-energy phosphate levels in the painful muscles of patients with primary fibromyalgia. Arth Rheum. 1986 Jul; 29(7):817–21. doi:10.1002/art.1780290701.

Bengtsson A., Henriksson K. G. The muscle in fibromyalgia—a review of Swedish studies. J Rheumatol Suppl. 1989 Nov; 19:144–9.

Brault J. J., Terjung R. L. Purine salvage to adenine nucleotides in different skeletal muscle fiber types. J Appl Physiol. 2001; 91:231–8.

Chatham J. C., et al. Studies of the protective effect of ribose in myocardial ischaemia by using 31P-nuclear magnetic resonance spectroscopy. Biochem Soc Proc. 1985 Oct; 13(5):885–8. doi:10.1042/bst0130885.

Clay M. A., et al. Chronic alcoholic cardiomyopathy. Protection of the isolated ischemic working heart by ribose. Biochem Int. 1988 Nov; 17(5):791–800.

Dodd S. L., et al. The role of ribose in human skeletal muscle metabolism. Med Hypotheses. 2004; 62(5):819–24. doi:10.1016/j.mehy.2003.10.026.

Dow J., et al. Adenine nucleotide synthesis de novo in mature rat cardiac myocytes. Biochim Biophys Acta. 1985 Nov 20; 847(2):223–7. doi:10.1016/0167-4889(85)90024-2.

Ellison G. M., et al. Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart (British Cardiac Society). 2012 Jan; 98(1):5–10.

Enzig S., et al. Myocardial ATP repletion with ribose infusion. Pediatr Res. 1985; 19:127A.

Gebhart B., Jorgenson J. A. Benefit of ribose in a patient with fibromyalgia. Pharmacotherapy. 2004 Nov; 24(11):1646–8. doi:10.1592/ phco.24.16.1646.50957.

Gross M., Kormann B., Zollner N. Ribose administration during exercise: effects on substrates and products of energy metabolism in healthy subjects and a patient with myoadenylate deaminase deficiency. Klin Wochenschr. 1991; 69(4):151–5.

Harmsen E., et al. Enhanced ATP and GTP synthesis from hypoxanthine or inosine after myocardial ischemia. Am J Physiol. 1984 Jan; 246(1 Pt 2): H37–H43.

Hass G. S., et al. Reduction of postischemic myocardial dysfunction by substrate repletion during reperfusion. Circulation. 1984 Sep; 70(3 Pt 2):165–74. Hellsten Y., Skadhauge L., Bangsbo J. Effect of ribose supplementation on resynthesis of nucleotides after intense intermittent training in humans. Am J Physiol. 2004 Jan 1; 286(1): R182–R188. doi:10.1152/ajp-regu.00286.2003.

Ibel H., Zimmer H. G. Metabolic recovery following temporary regional myocardial ischemia in the rat. J Mol Cell Cardiol. 1986; 18(Suppl 4):61–5. Ingwall J. S., Weiss R. G. Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res. 2004 Jul 23; 95(2):135–45. doi:10.1161/01.RES.0000137170.41939.d9.

LaNoue K. F., Watts J. A., Koch C. D. Adenine nucleotide transport during cardiac ischemia. Am J Physiol. 1981 Nov; 241(5):H663–H671.

Lund N., Bengtsson A., Thorborg P. Muscle tissue oxygen in primary fibromyalgia. Scan J Rheumatol. 1986; 15(2):165–73. doi:10.3109/03009748609102084.

Mahoney J. R. Jr. Recovery of postischemic myocardial ATP levels and hexosemonophosphate shunt activity. Med Hypoth. 1990 Jan; 31(1):21–3. doi:10.1016/0306-9877(90)90047-I.

Maron B. J., Pelliccia A. The heart of trained athletes: cardiac remodeling and the risks of sports, including sudden death. Circulation. 2006 Oct 10; 114(15):1633–44. doi:10.1161 /CIRCULATIONAHA.106.613562.

Muller C., et al. Effect of ribose on cardiac adenine nucleotides in a donor model for heart transplantation. Eur J Med Res. 1998 Dec 16; 3(12):554–8.

Omran H., et al. D-ribose improves diastolic function and quality of life in congestive heart failure patients: a prospective feasibility study. Eur J Heart Fail. 2003 Oct;5(5):615–9. doi:10.1016/S1388-9842(03)00060-6.

Omran H., et al. D-ribose aids congestive heart failure patients. Exp Clin Cardiol. 2004 Summer; 9(2):117–8.

Pauly D. F., Johnson C., St. Cyr J. A. The benefits of ribose in cardiovascular disease. Med Hypotheses. 2003 Feb; 60(2):149–51.

Pauly D. F., Pepine C. J. D-ribose as a supplement for cardiac energy metabolism. J Cardiovasc Pharmacol Ther. 2000 Oct; 5(4):249–58. doi:10.1054/ JCPT.2000.18011.

Pauly D. F., Pepine C. J. Ischemic heart disease: metabolic approaches to management. Clin Cardiol. 2004; 27(8):439–4l. doi:10.1002/ clc.4960270802.

Pelliccia A., Di Paolo F. M., Maron B. J. The athlete’s heart: remodeling, electrocardiogram and preparticipation screening. Cardiol Rev. 2002 Mar–Apr; 10(2):85–90.

Perkowski D., et al. D-ribose improves cardiac indices in patients undergoing “off ” pump coronary arterial revascularization. J Surg Res. 2007; 137(2)295.

Pliml W., et al. Effects of ribose on exercise-induced ischaemia in stable coronary artery disease. Lancet. 1992 Aug 29; 340(8818):507–10. doi:10.1016/0140-6736(92)91709-H.

Pouleur H. Diastolic dysfunction and myocardial energetics. Eur Heart J. 1990 May; 11(Suppl C):30–4. doi:10.1093/eurheartj/11.suppl_C.30.

Rich B. S., Havens S. A. The athletic heart syndrome. Curr Sports Med Rep. 2004 Mar; 3(2):84–8.

Sami H., Bittar N. The effect of ribose administration on contractile recovery following brief periods of ischemia. Anesthesiology. 1987; 67(3A):A74. Schachter C. L., et al. Effects of short versus long bouts of aerobic exercise in sedentary women with fibromyalgia: a randomized controlled trial. Phys Ther. 2003 Apr; 83(4):340–58.

Sinatra S. T. The Sinatra solution: metabolic cardiology. Laguna Beach, CA: Basic Health Publications, Inc; 2011.

Taegtmeyer H. Metabolism – the lost child of cardiology. J Am Coll Car-diol. 2000; 36(4):1386–8.

Taegtmeyer H., et al. Energy metabolism in reperfused heart muscle: Metabolic correlates to return of function. J Am Coll Cardiol. 1985 Oct; 6(4):864–70. doi:10.1016/S0735-1097 (85)80496-4.

Taegtmeyer H., King L. M., Jones B. E. Energy substrate metabolism, myocardial ischemia, and targets for pharmacotherapy. Am J Cardiol. 1998 Sep 3; 82(5A):54K–60K. doi:10.1016 /S0002-9149(98)00538-4.

Teitelbaum J.E., Johnson C., St. Cyr J. The use of D-ribose in chronic fatigue syndrome and fibromyalgia: a pilot study. J Altern Complement Med. 2006 Nov;12(9)857–62. doi:10.1089 /acm.2006.12.857.

Tullson P. C., Terjung R. L. Adenine nucleotide synthesis in exercising and endurance-trained skeletal muscle. Am J Physiol. 199l Aug; 261: C. 342–C. 347.

Van Gammeren D., Falk D., Antonio J. The effects of four weeks of ribose supplementation on body composition and exercise performance in healthy, young male recreational bodybuilders: a double-blind, placebo-controlled trial. Curr Ther Res. 2002 Aug; 63(8): 486–95. doi:10.1016/ S0011-393X(02)80054-6.

Wilson R., MacCarter D, St. Cyr J. D-ribose enhances the identification of hibernating myocardium. Heart Drug. 2003; 3:61–2. doi:10.1159/000070908. Zarzeczny R., et al. Influence of ribose on adenine salvage after intense muscle contractions. J Appl Physiol. 2001; 91:1775–81.

Zimmer H. G. Restitution of myocardial adenine nucleotides: acceleration by administration of ribose. J Physiol (Paris). 1980; 76(7):769–75.

Zimmer H. G. Significance of the 5-phosphoribosyl-1-pyrophosphate pool for cardiac purine and pyrimidine nucleotide synthesis: studies with ribose, adenine, inosine, and orotic acid in rats. Cardiovasc Drug Ther. 1998 Apr; 12(Suppl 2):179–87.

Zimmer H. G., et al. Ribose intervention in the cardiac pentose phosphate pathway is not species-specific. Science. 1984 Feb 17; 223(4637):712–4. doi:10.1126/science.6420889.

Zimmer H. G., Ibel H. Effects of ribose on cardiac metabolism and function in isoproterenol treated rats. Am J Physiol. 1983 Nov; 245: H880–H886.

Пирролохинолинхинон

Aizenman E., et al. Interaction of the putative essential nutrient pyrroloquinoline quinone with the N-methyl-daspartate receptor redox modulatory site. J Neurosci. 1992 Jun; 12(6):2362–9.

Aizenman E., et al. Further evidence that pyrroloquinoline quinone interacts with the N-methyl—aspartate receptor redox site in rat cortical neurons in vitro. Neurosci Lett. 1994 Feb 28; 168(1–2):189–92. doi:10.1016/0304-3940(94)90447-2.

Bauerly K. A., et al. Pyrroloquinoline quinone nutritional status alters lysine metabolism and modulates mitochondrial DNA content in the mouse and rat. Biochim Biophys Acta. 2006 Nov; 1760(11):1741–8. doi:10.1016/j. bbagen.2006.07.009.

Chowanadisai W., et al. Pyrroloquinoline quinone (PQQ) stimulates mitochondrial biogenesis. FASEB J. 2007 Apr; 21:854. doi:10.1074/jbc. M109.030130.

Chowanadisai W., et al. Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1α expression. J Biol Chem. 2010 Jan 1; 285(1):142–52. doi:10.1074/jbc.M109.030130.

Debray F. G., Lambert M., Mitchell G. A. Disorders of mitochondrial function. Curr Opin Pediatr. 2008 Aug; 20(4):471–82. doi:10.1097/ MOP.0b013e328306ebb6.

Felton L. M., Anthony C. Biochemistry: role of PQQ as a mammalian enzyme cofactor? Nature. 2005 Feb 3; 433(7025):E10; discussion E11–E12. doi:10.1038/nature03322.

Harris C. B., et al. Dietary pyrroloquinoline quinone (PQQ) alters indicators of inflammation and mitochondrial-related metabolism in human subjects. J Nutr Biochem. 2013 Dec; 24(12):2076–84. doi:10.1016/j.jnut-bio.2013.07.008.

Hirakawa A., et al. Pyrroloquinoline quinone attenuates iNOS gene expression in the injured spinal cord. Biochem Biophys Res Commun. 2009 Jan 9; 378(2):308–12. doi:10.1016 /j.bbrc.2008.11.045.

Jensen F. E., et al. The putative essential nutrient pyrroloquinoline quinone is neuroprotective in a rodent model of hypoxic/ischemic brain injury. Neuroscience. 1994 Sep;62(2):399–406. doi:10.1016/0306-4522(94)90375-1.

Kasahara T., Kato T. Nutritional biochemistry: a new redox-cofactor vitamin for mammals. Nature. 2003 Apr 24; 422:832. doi:10.1038/422832a. Kumazawa T., Seno H., Suzuki O. Failure to verify high levels of pyrroloquinoline quinone in eggs and skim milk. Biochem Biophys Res Commun. 1993 May 28; 193(1):1–5. doi:10.1006 /bbrc.1993.1581.

Kumazawa T., et al. Levels of pyrroloquinoline quinone in various foods. Biochem J. 1995;307: 331–3. doi:10.1042/bj3070331.

Kumazawa T., et al. Activation of ras signaling pathways by pyrroloquinoline quinone in NIH3T3 mouse fibroblasts. Int J Mol Med. 2007 May; 19(5):765–70. doi:10.3892/ijmm.19.5.765.

Li H. H., et al. Pyrroloquinoline quinone enhances regeneration of transected sciatic nerve in rats. Chin J Traumatol. 2005 Aug; 8(4):225–9.

Magnusson O. T., et al. Quinone biogenesis: structure and mechanism of PqqC, the final catalyst in the production of pyrroloquinoline quinone. Proc Natl Acad Sci U S A. 2004 May 25;101(21):7913–8. doi:10.1073/ pnas.0402640101.

Magnusson O. T., et al. Pyrroloquinoline quinone biogenesis: characterization of PqqC and its H84N and H84A active site variants. Biochemistry. 2007; 46(24):7174–86. doi:10.1021 /bi700162n.

Matsushita K., et al. Escherichia coli is unable to produce pyrroloquinoline quinone (PQQ). Microbiology. 1997; 143:3149–56. doi:10.1099/00221287-143-10-3149.

Mitchell A. E., et al. Characterization of pyrroloquinoline quinone amino acid derivatives by electrospray ionization mass spectrometry and detection in human milk. Anal Biochem. 1999 May 1; 269(2):317–25. doi:10.1006/abio.1999.4039.

Muoio D. M., Koves T. R. Skeletal muscle adaptation to fatty acid depends on coordinated actions of the PPARs and PGC-1alpha: implications for metabolic disease. Appl Physiol Nutr Metab. 2007 Oct; 32(5):874–83. doi:10.1139/H07-083.

Murase K., et al. Stimulation of nerve growth factor synthesis/secretion in mouse astroglial cells by coenzymes. Biochem Mol Biol Int. 1993 Jul; 30(4):615–21.

Nunome K., et al. Pyrroloquinoline quinone prevents oxidative stress-induced neuronal death probably through changes in oxidative status of DJ-1. Biol Pharm Bull. 2008 Jul; 31(7): 1321–6. doi:10.1248/bpb.31.1321. Ohwada K., et al. Pyrroloquinoline quinone (PQQ) prevents cognitive deficit caused by oxidative stress in rats. J Clin Biochem Nutr. 2008 Jan; 42(1):29–34. doi:10.3164/jcbn.2008005.

Ouchi A., et al. Kinetic study of the antioxidant activity of pyrroloquinoline-quinol (PQQH(2), a reduced form of pyrroloquinolinequinone) in micellar solution. J Agric Food Chem. 2009; 57(2):450–6. doi:10.1021/jf802197d.

Puehringer S., Metlitzky M., Schwarzenbacher R. The pyrroloquinoline quinone biosynthesis pathway revisited: a structural approach. BMC Biochem. 2008 Mar 27; 9:8. doi:10.1186/1471-2091-9-8.

Puigserver P. Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-alpha. Int J Obes (Lond). 2005 Mar; 29:S5–S9. doi:10.1038/sj.ijo.0802905.

Rucker R., Chowanadisai W., Nakano M. Potential physiological importance of pyrroloquinoline quinone. Altern Med Rev. 2009 Sep; 14(3):268– 77.

Rucker R, et al. Biochemistry: is pyrroloquinoline quinone a vitamin? Nature. 2005 Feb 3;433(7025): E10–E11; discussion E11–E12. doi:10.1038/ nature03323.

Sanchez R. M., et al. Novel role for the NMDA receptor redox modulatory site in the pathophysiology of seizures. J Neurosci. 2000 Mar 15; 20(6):2409–17.

Sato K., Toriyama M. Effect of pyrroloquinoline quinone (PQQ) on melanogenic protein expression in murine B16 melanoma. J Dermatol Sci. 2009 Feb;53(2):140–5. doi:10.1016 /j.jdermsci.2008.08.017.

Scanlon J. M., Aizenman E., Reynolds I. J. Effects of pyrroloquinoline quinone on glutamate-induced production of reactive oxygen species in neurons. Eur J Pharmacol. 1997 May 12; 326(1):67–74. doi:10.1016/ S0014-2999(97)00137-4.

Steinberg F. M., Gershwin M. E., Rucker R. B. Dietary pyrroloquinoline quinone: growth and immune response in BALB/c mice. J Nutr. 1994 May; 124(5):744–53.

Steinberg F., et al. Pyrroloquinoline quinone improves growth and reproductive performance in mice fed chemically defined diets. Exp Biol Med (Maywood). 2003 Feb; 228(2):160–6. doi:10.1177/153537020322800205. Stites T. E., Mitchell A. E., Rucker R. B. Physiological importance of quinoenzymes and the O-quinone family of cofactors. J Nutr. 2000 Apr; 130(4):719–27.

Stites T., et al. Pyrroloquinoline quinone modulates mitochondrial quantity and function in mice. J Nutr. 2006 Feb; 136(2):390–6.

Tao R., et al. Pyrroloquinoline quinone preserves mitochondrial function and prevents oxidative injury in adult rat cardiac myocytes. Biochem Biophys Res Commun. 2007 Nov 16; 363(2):257–62. doi:10.1016/j. bbrc.2007.08.041.

Yamaguchi K., et al. Stimulation of nerve growth factor production by pyrroloquinoline quinone and its derivatives in vitro and in vivo. Biosci Biotechnol Biochem. 1993 Jul;57(7):1231–3. doi:10.1271/bbb.57.1231.

Zhang P., et al. Protection of pyrroloquinoline quinone against methylmercury-induced neurotoxicity via reducing oxidative stress. Free Radic Res. 2009 Mar; 43(3):224–33. doi:10.1080/10715760802677348.

Zhang Y., Feustel P. J., Kimelberg H. K. Neuroprotection by pyrroloquinoline quinone (PQQ) in reversible middle cerebral artery occlusion in the adult rat. Brain Res. 2006 Jun 13; 1094(1): 200–6. doi:10.1016/j. brainres.2006.03.111.

Zhang Y., Rosenberg P. A. The essential nutrient pyrroloquinoline quinone may act as a neuroprotectant by suppressing peroxynitrite formation. Eur J Neurosci. 2002 Sep; 16(6): 1015–24. doi:10.1046/j.1460–9568.2002.02169.x.

Zhu B.Q., et al. Pyrroloquinoline quinone (PQQ) decreases myocardial infarct size and improves cardiac function in rat models of ischemia and ischemia/reperfusion. Cardiovasc Drugs Ther. 2004 Nov; 18(6):421–31. doi:10.1007/s10557-004-6219-x.

Zhu B. Q., et al. Comparison of pyrroloquinoline quinone and/or metoprolol on myocardial infarct size and mitochondrial damage in a rat model of ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther. 2006 Jun; 11(2):119–28. doi:10.1177/1074248406288757.

Темный шоколад

Al-Safi S. A., et al. Dark chocolate and blood pressure: a novel study from Jordan. Curr Drug Deliv. 2011 Nov; 8(6):595–9. doi:10.2174/156720111797635496.

Buitrago-Lopez A., et al. Chocolate consumption and cardiometabolic disorders: systematic review and meta-analysis. BMJ. 2011 Aug 26; 343:d4488. doi:10.1136/bmj.d4488.

Ellinger S., et al. Epicatechin ingested via cocoa products reduces blood pressure in humans: a nonlinear regression model with a Bayesian approach. Am J Clin Nutr. 2012 Jun;95(6): 1365–77. Epub 2012 May 2. doi:10.3945/ajcn.111.029330.

Golomb B. A., Koperski S., White H. L. Association between more frequent chocolate consumption and lower body mass index. Arch Intern Med. 2012 Mar 26; 172(6):519–21. doi:10.1001 /archinternmed.2011.2100.

Messerli F. H. Chocolate consumption, cognitive function, and Nobel laureates. N Engl J Med. 2012 Oct 18; 367(16):1562–4. Epub 2012 Oct 10. doi:10.1056/NEJMon1211064.

Nehlig A. The neuroprotective effects of cocoa flavanol and its influence on cognitive performance. Br J Clin Pharmacol. 2013 Mar; 75(3):716–27. doi:10.1111/j.1365–2125.2012.04378.x.

Nogueira L., et al. (-)-Epicatechin enhances fatigue resistance and oxidative capacity in mouse muscle. J Physiol. 2011 Sep 15; 589(Pt 18):4615–31. Epub 2011 Jul 25. doi:10.1113/ jphysiol.2011.209924.

Persson I. A., et al. Effects of cocoa extract and dark chocolate on angiotensin-converting enzyme and nitric oxide in human endothelial cells and healthy volunteers—a nutrigenomics perspective. J Cardiovasc Pharmacol. 2011 Jan; 57(1):44–50. doi:10.1097/FJC.0b013 e3181fe62e3.

Sathyapalan T., et al. High cocoa polyphenol rich chocolate may reduce the burden of the symptoms in chronic fatigue syndrome. Nutr J. 2010 Nov 22; 9:55. doi:10.1186/1475-2891-9-55.

Кофермент Q10

Cooper J. M., et al. Coenzyme Q10 and vitamin E deficiency in Friedreich’s ataxia: predictor of efifcacy of vitamin E and coenzyme Q10 therapy. Eur J Neurol. 2008 Dec; 15(12):1371–9. doi:10.1111/j.1468–1331.2008.02318.x.

Crane F. L., Low H., Sun I. L. Evidence for a relation between plasma membrane coenzyme Q and autism. Front Biosci (Elite Ed). 2013 Jun 1; 5:1011–6.

Del Pozo-Cruz J., et al. Relationship between functional capacity and body mass index with plasma coenzyme Q10 and oxidative damage in community-dwelling elderly-people. Exp Gerontol. 2014 Apr; 52:46–54. Epub 2014 Feb 7.

Duberley K. E., et al. Effect of coenzyme Q10 supplementation on mitochondrial electron transport chain activity and mitochondrial oxidative stress in coenzyme Q10 deficient human neuronal cells. Int J Biochem Cell Biol. 2014 May; 50:60–3. Epub 2014 Feb 15. doi:10.1016/j. biocel.2014.02.003.

Liang J. M., et al. Role of mitochondrial function in the protective effects of ischaemic postconditioning on ischaemia/reperfusion cerebral damage. J Int Med Res. 2013 Jun 1; 41(3):618–27. Epub 2013 Apr 4. doi:10.1177/0300060513476587.

Langsjoen P. H., Langsjoen A. M. Supplemental ubiquinol in patients with advanced congestive heart failure. Biofactors. 2008; 32(1–4):119–28. doi:10.1002/biof.5520320114.

Lass A., Sohal R. S. Comparisons of coenzyme Q bound to mitochondrial membrane proteins among different mammalian species. Free Radic Biol Med. 1999 Jul; 27(1–2):220–6. doi:10.1016/S0891-5849(99)00085-4.

Mancuso M., et al. Coenzyme Q10 in neuromuscular and neurodegenerative disorders. Curr Drug Targets. 2010 Jan; 11(1):111–21. doi:10.2174/1 38945010790031018.

Matthews R. T., et al. Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci U S A. 1998 Jul 21; 95(15):8892–7.

Mortensen S. A., et al. Coenzyme Q10: clinical benefits with biochemical correlates suggesting a scientific breakthrough in the management of chronic heart failure. Int J Tissue React. 1990; 12(3):155–62.

Muroyama A. An alternative medical approach for the neuroprotective therapy to slow the progression of Parkinson’s disease. Yakugaku Zasshi. 2013; 133(8):849–56. doi:10.1248 /yakushi.13-00158.

Morris G., et al. Coenzyme Q10 depletion in medical and neuropsychiatric disorders: potential repercussions and therapeutic implications. Mol Neurobiol. 2013 Dec; 48(3):883–903. Epub 2013 Jun 13. doi:10.1007/ s12035-013-8477-8.

Nicolson G. L. Mitochondrial dysfunction and chronic disease: treatment with natural supplements. Altern Ther Health Med. 2013 Aug 15. pii: at5027. Epub ahead of print.

Ochoa J. J., et al. Coenzyme Q10 protects from aging-related oxidative stress and improves mitochondrial function in heart of rats fed a polyunsaturated fatty acid (PUFA)-rich diet. J Gerontol A Biol Sci Med Sci. 2005 Aug; 60(8):970–5. doi:10.1093/gerona/60.8.970.

Rodriguez M. C., et al. Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. Muscle Nerve. 2007 Feb; 35(2):235–42. doi:10.1002/mus.20688.

Rosenfeldt F. L., et al. Coenzyme Q10 improves the tolerance of the senescent myocardium to aerobic and ischemic stress: studies in rats and in human atrial tissue. Biofactors. 1999; 9(2–4):291–9. doi:10.1002/ biof.5520090226.

Rosenfeldt F. L., et al. Coenzyme Q10 protects the aging heart against stress: studies in rats, human tissues, and patients. Ann NY Acad Sci. 2002 Apr; 959:355–9; discussion 463–5. doi:10.1111/j.1749–6632.2002. tb02106.x.

Rosenfeldt F. L., et al. The effects of ageing on the response to cardiac surgery: protective strategies for the ageing myocardium. Biogerontology. 2002;3(1–2):37–40.

Salama M., et al. Co-enzyme Q10 to treat neurological disorders: basic mechanisms, clinical outcomes, and future research direction. CNS Neurol Disord Drug Targets. 2013 Aug; 12(5):641–4. Epub 2013 Apr 4. doi:1 0.2174/18715273113129990071.

Shults C. W., et al. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol. 2002 Oct; 59(10):1541–50. doi:10.1001/archneur.59.10.1541.

Sinatra S. T. The Sinatra solution: metabolic cardiology. Laguna Beach, CA: Basic Health Publications, Inc; 2011.

Sohal R. S., Forster M. J. Coenzyme Q, oxidative stress and aging. Mitochondrion. 2007 Jun; 7 Suppl:S103–11. doi:10.1016/j.mito.2007.03.006.

Spindler M., Beal M. F., Henchcliffe C. Coenzyme Q10 effects in neurodegenerative disease. Neuropsychiatr Dis Treat. 2009; 5:597–610. Epub 2009 Nov 16. doi:10.2147/NDT.S5212.

Совместное применение статинов и кофермента Q10

Brown M. S., inventor. Merck & Co., Inc., assignee. Coenzyme Q10 with HMG-CoA reductase inhibitors. United States patent US 4933165. 1989 Jan 18.

Caso G., et al. Effect of coenzyme Q10 on myopathic symptoms in patients treated with statins. Am J Cardiol. 2007 May 15; 99(10):1409–12. doi:10.1016/j.amjcard.2006.12.063.

Marcoff L., Thompson P. D. The role of coenzyme Q10 in statin-associated myopathy: a systematic review. J Am Coll Cardiol. 2007 Jun 12; 49(23):2231–7. doi:10.1016/j.jacc.2007.02.049.

Parker B. A., et al. Effect of statins on creatine kinase levels before and after a marathon run. Am J Cardiol. 2012 Jan 15; 109(2):282–7. doi:10.1016/j. amjcard.2011.08.045.

Tobert J. A., inventor. Merck & Co Inc., assignee. Coenzyme Q10 with HMG-CoA reductase inhibitors. United States patent US 4929437. 1990 May 29.

L-карнитин

Akisu M., et al. Protective effect of dietary supplementation with L-arginine and L-carnitine on hypoxia/reoxygenation-induced necrotizing enterocolitis in young mice. Bio Neonate. 2002;81(4):260–5. doi:10.1159/000056757. Bahl J. J., Bressler R. The pharmacology of carnitine. Annu Rev Pharmacol Toxicol. 1987;27: 257–77. doi:10.1146/annurev.pa.27.040187.001353.

Binienda Z. K. Neuroprotective effects of L-carnitine in induced mitochondrial dysfunction. Ann NY Acad Sci. 2003 May; 993:289–95; discussion 345–9. doi:10.1111/j.1749–6632.2003.tb07536.

Brass E. P., Hoppel C. L. Relationship between acid-soluble carnitine and coenzyme A pools in vivo. Biochem J. 1980 Sep 15; 190(3):495–504. doi:10.1042/bj1900495.

Bremer J. Carnitine: metabolism and functions. Physiol Rev. 1983 Oct; 63(4):1420–80.

Ferrari R., et al. Therapeutic effects of L-carnitine and propionyl-L-carnitine on cardiovascular diseases: a review. Ann NY Acad Sci. 2004 Nov; 1033:79–91. doi:10.1196/annals.1320.007.

Geier D. A., Geier M. R. L-carnitine exposure and mitochondrial function in human neuronal cells. Neurochem Res. 2013 Nov; 38(11):2336–41. Epub 2013 Sep 5. doi:10.1007/s11064-013-1144-7.

Hagen T. M., et al. Acetyl-L-carnitine fed to old rats partially restores mitochondrial function and ambulatory activity. Proc Natl Acad Sci USA. 1998 Aug 4; 95(16):9562–6.

Hagen T. M., et al. Feeding acetyl-L-carnitine and lipoic acid to old rats significantly improves metabolic function while decreasing oxidative stress. Proc Natl Acad Sci U S A. 2002 Feb 19; 99(4):1870–5. doi:10.1073/ pnas.261708898.

Hoppel C. The role of carnitine in normal and altered fatty acid metabolism. Am J Kidney Dis. 2003 Apr; 41(4 Suppl 4):S4–12. doi:10.1016/ S0272-6386(03)00112-4.

Horne D. W., Broquist H. P. Role of lysine and e-N-trimethyllysine in carnitine biosynthesis. I: studies in Neurospora crassa. J Biol Chem. 1973; 248(6):2170–5.

Hulse J. D., Ellis S. R., Henderson L. M. Carnitine biosynthesis: beta-hydroxylation of trimethyllysine by an alpha-ketoglutarate-dependent mitochondrial dioxygenase. J Biol Chem. 1978 Mar 10; 253(5):1654–9.

Jacobs P. L., Goldstein E. R. Long-term glycine propionyl-l-carnitine supplemention and paradoxical effects on repeated anaerobic sprint performance. J Int Soc Sports Nutr. 2010 Oct 28; 7:35. doi:10.1186/1550-2783-7-35.

Kabaroglu C., et al. Effects of L-arginine and L-carnitine on hypoxia/ reoxygenation-induced intestinal injury. Pediatr Int. 2005 Feb; 47(1):10–4. doi:10.1111/j.1442-200x.2005.01999.x.

Kuratsune H., et al. Acylcarnitine deficiency in chronic fatigue syndrome. Clin Infect Dis. 1994 Jan; 18 Suppl 1:S. 62–7.

Lango R., et al. Propionyl-L-carnitine improves hemodynamics and metabolic markers of cardiac perfusion during coronary surgery in diabetic patients. Cardiovasc Drugs Ther. 2005 Aug; 19(4):267–75.

Liu J., et al. Memory loss in old rats is associated with brain mitochondrial decay and RNA/ DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-α-lipoic acid. Proc Natl Acad Sci U S A. 2002 Feb 19; 99(4):2356–61. doi:10.1073/pnas.261709299.

Lombard K. A., et al. Carnitine status of lactoovovegetarians and strict vegetarian adults and children. Am J Clin Nutr. 1989; 50(2):301–6.

McGarry J. D., Brown N. F. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem. 1997 Feb 15; 244(1):1–14. doi:10.1111/j.1432–1033.1997.00001.

Montgomery S. A., Thal L. J, Amrein R. Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer’s disease. Int Clin Psychopharmacol. 2003 Mar; 18(2):61–71. doi:10.1097/01. yic.0000058280.28578.79.

Mortensen S. A., et al. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from the Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail. 2014 Dec; 2(6):641–9. doi:10.1016/j. jchf.2014.06.008.

Noland R. C., et al. Carnitine insufifciency caused by aging overnutrition compromises mitochondrial performance and metabolic control. J Biol Chem. 2009 Aug 21; 284(34): 22840–52. doi:10.1074/jbc.M109.032888.

Osmundsen H., Bremer J., Pedersen J. I. Metabolic aspects of peroxisomal betaoxidation. Biochim Biophys Acta. 1991 Sep 11; 1085(2):141–58. doi:10.1016/0005-2760(91)90089-Z.

Pande S. V. A mitochondrial carnitine acylcarnitine translocase system. Proc Natl Acad Sci U S A. 1975 Mar; 72(3):883–7.

Pande S. V., Parvin R. Carnitine-acylcarnitine translocase catalyzes an equilibrating unidirectional transport as well. J Biol Chem. 1980 Apr 10; 255(7):2994–3001.

Plioplys A. V., Plioplys S. Serum levels of carnitine in chronic fatigue syndrome: clinical correlates. Neuropsychobiology 1995; 32:132–8.

Pons R., De Vivo D. C. Primary and secondary carnitine deficiency syndromes. J Child Neurol. 1995 Nov 1; 10 Suppl 2:S8–24.

Ramsay R. R., Arduini A. The carnitine acyltransferases and their role in modulating acyl-CoA pools. Arch Biochem Biophys. 1993 May; 302(2):307–14. doi:10.1006/abbi.1993.1216.

Rebouche C. J. Kinetics, pharmacokinetics, and regulation of L-carnitine and acetyl-L-carnitine metabolism. Ann NY Acad Sci. 2004 Nov;1033:30–41. Rebouche C. J., Paulson D. J. Carnitine metabolism and function in humans. Annu Rev Nutr. 1986; 6:41–66.

Rebouche C. J., Paulson D. J. Carnitine function and requirements during the life cycle. FASEB J. 1992; 6 (15):3379–86. doi:10.1146/annurev. nu.06.070186.000353.

Reuter S. E., Evans A. M. Carnitine and acylcarnitines: pharmacokinetic, pharmacological and clinical aspects. Clin Pharmacokinet. 2012 Sep 1; 51(9):553–72. doi:10.2165/11633940-000000000-00000.

Sachan D. S., Broquist H. P. Synthesis of carnitine from epsilon-N-trimethyllysine in post mitochondrial fractions of Neurospora crassa. Biochem Biophys Res Commun. 1980 Sep 30; 96(2):870–5. doi:10.1016/0006-291X(80)91436-9.

Sachan D. S., Hoppel C. L. Carnitine biosynthesis. Hydroxylation of N-6-trimethyl-lysine to 3-hydroxy-N6-trimethyl-lysine. Biochem J. 1980 May 15; 188 (2):529–34. doi:10.1042/bj1880529.

Serati A. R., et al. L-carnitine treatment in patients with mild diastolic heart failure is associated with improvement in diastolic function and symptoms. Cardiology. 2010; 116(3):178–82. doi:10.1159/000318810.

Sinatra S. T. The Sinatra solution: metabolic cardiology. Laguna Beach, CA: Basic Health Publications, Inc; 2011.

Steiber A., Kerner J., Hoppel C. L. Carnitine: a nutritional, biosynthetic, and functional perspective. Mol Aspects Med. 2004 Oct–Dec; 25(5–6):455–73. doi:10.1016/j.mam.2004.06.006.

Tanphaichitr V., Broquist H. P. Role of lysine and e–N-trimethyllysine in carnitine biosynthesis. II: studies in the rat. J Biol Chem. 1973; 248(6):2176–81.

Vaz F. M., Wanders R. J. Carnitine biosynthesis in mammals. Biochem J. 2002 Feb 1; 361(Part 3): 417–29. doi:10.1042/bj3610417.

Virmani A., et al. The protective role of L-carnitine against neurotoxicity evoked by drug of abuse, methamphetamine, could be related to mitochondrial dysfunction. Ann NY Acad Sci. 2002 Jun;965:225–32. doi:10.1111/j.1749–6632.2002.tb04164.

Магний

Abbott R. D., et al. Dietary magnesium intake and the future risk of coronary heart disease (the Honolulu Heart Program). Am J Cardiol. 2003 Sep 15; 92(6):665–9. doi:10.1016/S0002 -9149(03)00819-1.

Alloui A., et al. Does Mg2+ deficiency induce a long-term sensitization of the central nociceptive pathways? Eur J Pharmacol. 2003 May 23; 469(l–3)65–9. doi:10.1016/S0014-2999 (03)01719-9.

Amighi J., et al. Low serum magnesium predicts neurological patients with advanced atherosclerosis. Stroke. 2004 Jan;35(1):22–7. doi:10.1161/01. STR.0000105928.95124.1F.

Demougeot C., et al. Effect of diets with different magnesium content in ischemic stroke rats. Neurosci Lett. 2004 May 13;362(1):17–20. doi:10.1016/j.neulet.2004.01.034.

Eray O., et al. Magnesium efifcacy in magnesium deficient and nondeficient patients with rapid ventricular response atrial fibrillation. Eur J Emerg Med. 2000 Dec; 7(4):287–90.

Fox C., Ramsoomair D., Carter C. Magnesium: its proven and potential clinical significance. South Med J. 2001 Dec; 94(12):1195–201.

Hagen T. M., et al. (R)-alpha-lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate. FASEB J. 1999 Feb; 13(2):411–8.

Hagen T. M., et al. Mitochondrial decay in the aging rat heart: evidence for improvement by dietary supplementation with acetyl-L-carnitine and/or lipoic acid. Ann NY Acad Sci. 2002 Apr; 959:491–507. doi:10.1111/j.1749–6632.2002.tb02119.

Hans C. P., Chaudhary D. P., Bansal D. D. Magnesium deficiency increases oxidative stress in rats. Ind J Exp Biol. 2002 Nov; 40(11):1275–9.

Hans C. P., Chaudhary D. P., Bansal D. D. Effect of magnesium supplementation on oxidative stress in alloxanic diabetic rats. Magnes Res. 2003 Mar; l6(1):13–9.

Klevay L. M., Milne D. B. Low dietary magnesium increases supraventricular ectopy. Am J Clin Nutr. 2002 Mar; 75(3):550–4.

Kramer J. H., et al. Dietary magnesium intake influences circulating proinflammatory neuropeptide levels and loss of myocardial tolerance to postischemic stress. Exp Biol Med (Maywood). 2003 Jun; 228(6):665–73. Kubota T., et al. Mitochondria are intracellular magnesium stores: investigation by simultaneous fluorescent imagings in PC12 cells. Biochim Biophys Acta. 2005 May 15; 1744(1):19–28. Epub 2004 Nov 11. doi:10.1016/j. bbamcr.2004.10.013.

Laires M. J., Monteiro C. P., Bicho M. Role of cellular magnesium in health and human disease. Front Biosci. 2004 Jan; 9:262–76.

Lukaski H. C., Nielsen F. H. Dietary magnesium depletion affects metabolic responses during submaximal exercise in postmenopausal women. J Nutr. 2002 May; 132(5):930–5.

Maier J. A., et al. Low magnesium promotes endothelial cell dysfunction: implications for atherosclerosis, inflammation and thrombosis. Biochim Biophys Acta. 2004 May 24; 1689(l):13–21. doi:10.1016/j.bba-dis.2004.01.002.

Moreira P. I., et al. Lipoic acid and N-acetyl cysteine decrease mitochondrial-related oxidative stress in Alzheimer disease patient fibroblasts. J Alzheimers Dis. 2007 Sep; 12(2):195–206.

Nair R. R., Nair P. Alteration of myocardial mechanics in marginal magnesium deficiency. Magnes Res. 2002 Dec; 15(3–4):287–306.

Nakayama S., et al. Mechanisms for monovalent cation-dependent depletion of intracellular Mg2+:Na(+)-independent Mg2+ pathways in guinea-pig smooth muscle. J Physiol. 2003 Sep 15;551(Pt 3):843–53. doi:10.1113/ jphysiol.2003.047795.

Paolisso G., Barbagallo M. Hypertension, diabetes mellitus, and insulin resistance: the role of intracellular magnesium. Am J Hyperten. 1997 Mar 1;10(3):346–55. doi:10.1016/S0895 -7061(96)00342-1.

Resnick L. M., et al. Cellular-free magnesium depletion in brain and muscle of normal and preeclamptic pregnancy: a nuclear magnetic resonance spectroscopic study. Hypertension. 2004 Sep:44(3):322–6. doi:10.1161/01. HYP.0000137592.76535.8c.

Rubenowitz E., Axelsson G., Rylander R. Magnesium in drinking water and death from myocardial infarction. Am J Epidemiol. l996; 143:456–62.

Sinatra S. T. The Sinatra solution: metabolic cardiology. Laguna Beach, CA: Basic Health Publications, Inc; 2011.

Takaya J., Higashino H., Kobayashi Y. Intracellular magnesium and insulin resistance. Magnes Res. 2004 Jun; 17(2):126–36.

Touyz R. M. Role of magnesium in the pathogenesis of hypertension. Mol Aspects Med. 2003 Feb–Jun; 24(1–3):107–36. doi:10.1016/S0098-2997(02)00094-8.

Touyz R. M., et al. Effects of low dietary magnesium intake on development of hypertension in stroke-prone spontaneously hypertensive rats: role of reactive oxygen species. J Hypertens. 2002 Nov; 20(11):2221–32.

Альфа-липоевая кислота

Biewenga G. P., Haenen G. R., Bast A. The pharmacology of the antioxidant lipoic acid. Gen Pharmacol. 1997 Sep; 29(3):315–31. doi:10.1016/ S0306-3623(96)00474-0.

Femiano F., Scully C. Burning mouth syndrome (BMS): double blind controlled study of alphalipoic acid (thioctic acid) therapy. J Oral Pathol Med. 2002 May; 31(5):267–9. doi:10.1034/j.1600–0714.2002.310503.

Hagen T. M., et al. (R)-alpha-lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate. FASEB J. 1999 Feb; 13(2):411–8.

Hagen T. M., et al. Feeding acetyl-L-carnitine and lipoic acid to old rats significantly improves metabolic function while decreasing oxidative stress. Proc Natl Acad Sci USA. 2002 Feb 19; 99(4):1870–5. doi:10.1073/ pnas.261708898.

Hagen T. M., et al. Mitochondrial decay in the aging rat heart: evidence for improvement by dietary supplementation with acetyl-L-carnitine and/or lipoic acid. Ann NY Acad Sci. 2002 Apr; 959:491–507. doi:10.1111/j.1749–6632.2002.tb02119.

Hager K., et al. Alpha-lipoic acid as a new treatment option for Alzheimer type dementia. Arch Gerontol Geriatr. 2001 Jun; 32(3):275–82.

Jia L., et al. Acrolein, a toxicant in cigarette smoke, causes oxidative damage and mitochondrial dysfunction in RPE cells: protection by (R)-alpha-lipoic acid. Invest Ophthalmol Vis Sci. 2007 Jan; 48(1):339–48. doi:10.1167/iovs.06-0248.

Jiang T., et al. Lipoic acid restores age-associated impairment of brain energy metabolism through the modulation of Akt/JNK signaling and PGC1α transcriptional pathway. Aging Cell. 2013 Dec; 12(6):1021–31. doi:10.1111/acel.12127. doi:10.1111/acel.12127.

Kim D. C., et al. Lipoic acid prevents the changes of intracellular lipid partitioning by free fatty acid. Gut Liver. 2013 Mar; 7(2):221–7. doi:10.5009/ gnl.2013.7.2.221.

Li C. J., et al. Attenuation of myocardial apoptosis by alpha-lipoic acid through suppression of mitochondrial oxidative stress to reduce diabetic cardiomyopathy. Chin Med J (Engl). 2009 Nov 5; 122(21):2580–6.

Liu J., Killilea D. W., Ames B. N. Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-L-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci U S A. 2002 Feb 19; 99(4):1876–81. doi:10.1073/pnas.261709098.

Liu J, et al. Delaying brain mitochondrial decay and aging with mitochondrial antioxidants and metabolites. Ann NY Acad Sci. 2002 Apr;959:133– 66. doi:10.1111/j.1749–6632.2002.tb02090.x.

Liu J., et al. Memory loss in old rats is associated with brain mitochondrial decay and RNA/ DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha- lipoic acid. Proc Natl Acad Sci U S A. 2002 Feb 19; 99(4):2356–61. doi:10.1073/pnas.261709299.

Meydani M., et al. The effect of long-term dietary supplementation with antioxidants. Ann NY Acad Sci. 1998 Nov 20; 854:352–60. doi:10.1111/j.1749–6632.1998.tb09915.

Nyengaard J. R., et al. Interactions between hyperglycemia and hypoxia: implications for diabetic retinopathy. Diabetes. 2004 Nov; 53(11):2931–8. doi:10.2337/diabetes.53.11.2931.

Scott B. C., et al. Lipoic and dihydrolipoic acids as antioxidants. A critical evaluation. Free Radic Res. 1994 Feb; 20(2):119–33. doi:10.3109/10715769409147509.

Tappel A., Fletcher B., Deamer D. Effect of antioxidants and nutrients on lipid peroxidation fluorescent products and aging parameters in the mouse. J Gerontol. 1973 Oct; 28(4):415–24. doi:10.1093/geronj/28.4.415. Thornalley P. J. Glycation in diabetic neuropathy: characteristics, consequences, causes, and therapeutic options. Int Rev Neurobiol. 2002; 50:37–7. doi:10.1016/S0074-7742(02)50072-6.

Williamson J. R., et al. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes. 1993 Jun; 42(6):801–13. doi:10.2337/diab.42.6.801. Ziegler D., et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a meta-analysis. Diabet Med. 2004 Feb; 21(2):114–21. doi:10.1111/j.1464–5491.2004.01109.

Zhou L., et al. α-Lipoic acid ameliorates mitochondrial impairment and reverses apoptosis in FABP3-overexpressing embryonic cancer cells. J Bioenerg Biomembr. 2013 Oct;45(5): 459–66. Epub 2013 Mar 28.

Креатин

Andrews R., et al. The effect of dietary creatine supplementation on skeletal muscle metabolism in congestive heart failure. Eur Heart J. 1998 Apr; 19(4):617–22.

Balestrino M., et al. Role of creatine and phosphocreatine in neuronal protection from anoxic and ischemic damage. Amino Acids. 2002; 23(1–3):221–9. doi:10.1007/s00726-001-0133-3.

Broqvist M., et al. Nutritional assessment and muscle energy metabolism in severe chronic congestive heart failure—effects of long-term dietary supplementation. Eur Heart J. 1994 Dec;15(12):1641–50. doi:10.1093/ oxfordjournals.eurheartj.a060447.

Ferrante R. J., et al. Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J Neurosci. 2000 Jun 15;20(12):4389–97. Field M. L. Creatine supplementation in congestive heart failure [letter]. Cardiovasc Res 1996 Jan; 31(1):174–6.

Gordon A., et al. Creatine supplementation in chronic heart failure increases skeletal muscle creatine phosphate and muscle performance. Cardiovasc Res. 1995 Sep; 30(3):413–8.

Klivenyi P., et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med. 1999 Mar; 5(3):347–50. doi:10.1038/6568.

Malcon C., Kaddurah-Daouk R., Beal M. F. Neuroprotective effects of creatine administration against NMDA and malonate toxicity. Brain Res. 2000 Mar 31; 860(1–2):195–8. doi:10.1016 /S0006-8993(00)02038-2.

Matthews R. T., et al. Neuroprotective effects of creatine and cyclocre-atine in animal models of Huntington’s disease. J Neurosci. 1998 Jan; 18(1):156–63.

Matthews R. T., et al. Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol. 1999 May; 157(1):142–9. doi:10.1006/exnr.1999.7049. Park J. H., et al. Use of P-31 magnetic resonance spectroscopy to detect metabolic abnormalities in muscles of patients with fibromyalgia. Arthritis Rheum. 1998 Mar; 41(3):406–13. doi:10.1002/1529-0131(199803)41:3<406::AID-ART5>3.0.CO;2-L.

Tarnopolsky M., Martin J. Creatine monohydrate increases strength in patients with neuromuscular disease. Neurology. 1999 Mar 10; 52(4):854–7.

Walter M. C., et al. Creatine monohydrate in muscular dystrophies: a double blind, placebo-controlled clinical study. Neurology. 2000 May 9; 54(9):1848–50.

Витамины группы В

Bernsen P. L., et al. Successful treatment of pure myopathy, associated with complex I deficiency, with riboflavin and carnitine. Arch Neurol. 1991 Mar; 48(3):334–8. doi:10.1001/archneur.1991.00530150106028.

Bernsen P. L., et al. Treatment of complex I deficiency with riboflavin. J Neurol Sci. 1993 Sep; 118(2):181–7. doi:10.1016/0022-510X(93)90108-B. Bettendorff L., et al. Low thiamine diphosphate levels in brains of patients with frontal lobe degeneration of the non-Alzheimer’s type. J Neurochem. 1997 Nov; 69(5):2005–10. doi:10.10 46/j.1471–4159.1997.69052005.

Bogan K. L., Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr. 2008; 28: 115–30. doi:10.1146/annurev. nutr.28.061807.155443.

Bottiglieri T. Folate, vitamin B12, and s-adenosylmethionine. Psychiatr Clin North Am. 2013 Mar;36(1):1–13. doi:10.1016/j.psc.2012.12.001.

Bugiani M., et al. Effects of riboflavin in children with complex II deficiency. Brain Dev. 2006 Oct; 28(9):576–81. doi:10.1016/j.braindev.2006.04.001. Cantó C., et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012 Jun 6;15(6):838–47. doi:10.1016/j.cmet.2012.04.022.

Czerniecki J., Czygier M. Cooperation of divalent ions and thiamin diphosphate in regulation of the function of pig heart pyruvate dehydrogenase complex. J Nutr Sci Vitaminol (Tokyo). 2001 Dec; 47(6):385–6.

Denu J. M. Vitamins and aging: pathways to NAD+ synthesis. Cell. 2007 May 4;129(3):453–4. doi:10.1016/j.cell.2007.04.023.

Garbin L., Plebani M., Terribile P. M. Effect of ACP (pyridoxine-2-oxo-glutarate) on CCl4 intoxication and in streptozotocin-induced ketosis in rat. Acta Vitaminol Enzymol. 1977;31(6):175–8.

Gerards M., et al. Riboflavin-responsive oxidative phosphorylation complex I deficiency caused by defective ACAD9: new function for an old gene. Brain. 2011 Jan; 134(Pt 1):210–9. doi:10.1093/brain/awq273.

Hartman T. J., et al. Association of the B-vitamins pyridoxal 5’-phosphate (B(6)), B(12), and folate with lung cancer risk in older men. Am J Epidemiol. 2001 Apr 1; 153(7):688–94. doi:10.1093/aje/153.7.688.

Iliev I. S., et al. Enzyme activity changes in chronic alcoholic intoxication and the simultaneous administration of pyridoxine. Vopr Pitan. 1982 Nov; (6):54–6.

Imai S. I., Guarente L. NAD(+) and sirtuins in aging and disease. Trends Cell Biol. 2014 Aug; 24(8):464–71. Epub 2014 Apr 28. doi:10.1016/j. tcb.2014.04.002.

Ke Z. J., et al. Reversal of thiamine deficiency-induced neurodegeneration. J Neuropathol Exp Neurol. 2003 Feb;62(2):195–207. doi:10.1093/ jnen/62.2.195.

Kelly G. The coenzyme forms of vitamin B12: toward an understanding of their therapeutic potential. Altern Med Rev. 1997 Sep; 2(6):459–71.

Kotegawa M., Sugiyama M., Haramaki N. Protective effects of riboflavin and its derivatives against ischemic reperfused damage of rat heart. Biochem Mol Biol Int. 1994 Oct; 34(4):685–91.

Maassen J. A. Mitochondrial diabetes, diabetes and the thiamine-responsive megaloblastic anaemia syndrome and MODY-2. Diseases with common pathophysiology? Panminerva Med. 2002 Dec; 44(4):295–300. Magni G., et al. Enzymology of mammalian NAD metabolism in health and disease. Front Biosci. 2008 May 1; 13:6135–54.

Marriage B., Clandinin M. T., Glerum D. M. Nutritional cofactor treatment in mitochondrial disorders. J Am Diet Assoc. 2003 Aug; 103(8):1029–38. doi:10.1053/jada.2003.50196.

McComsey G. A., Lederman M. M. High doses of riboflavin and thiamine may help in secondary prevention of hyperlactatemia. AIDS Read. 2002 May; 12(5):222–4.

Miner S. E., et al. Pyridoxine improves endothelial function in cardiac transplant recipients. J Heart Lung Transplant. 2001 Sep; 20(9):964–9. doi:10.1016/S1053-2498(01)00293-5.

Naito E., et al. Thiamine-responsive pyruvate dehydrogenase deficiency in two patients caused by a point mutation (F205L and L216F) within the thiamine pyrophosphate binding region. Biochim Biophys Acta. 2002 Oct 9;1588(1):79–84. doi:10.1016/S0925-4439(02)00142-4.

Okada H., et al. Vitamin B6 supplementation can improve peripheral polyneuropathy in patients with chronic renal failure on high-flux haemo-dialysis and human recombinant erythropoietin. Nephrol Dial Transplant. 2000 Sep; 15(9):1410–3. doi:10.1093/ndt/15.9.1410.

Pomero F., et al. Benfotiamine is similar to thiamine in correcting endothelial cell defects induced by high glucose. Acta Diabetol. 2001; 38(3):135–8. Sasaki Y., Araki T., Milbrandt J. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. J Neurosci. 2006 Aug 16; 26(33):8484–91. doi:10.1523/JNEU-ROSCI.2320-06.2006.

Sato Y., et al. Mitochondrial myopathy and familial thiamine deficiency. Muscle Nerve. 2000 Jul; 23(7):1069–75. doi:10.1002/1097-4598(200007)23:7<1069::AID-MUS9>3.0.CO;2–0.

Sauve A. A. NAD+ and vitamin B3: from metabolism to therapies. J Pharmacol Exp Ther. 2008 Mar; 324(3):883–93. Epub 2007 Dec 28. doi:10.1124/ jpet.107.120758.

Scholte H. R., et al. Riboflavin-responsive complex I deficiency. Biochim Biophys Acta. 1995 May 24; 1271(1):75–83. doi:10.1016/0925-4439(95)00013-T.

Sheline C. T., et al. Cofactors of mitochondrial enzymes attenuate copper-induced death in vitro and in vivo. Ann Neurol. 2002 Aug; 52(2):195–204. doi:10.1002/ana.10276.

Subramanian V. S., et al. Mitochondrial uptake of thiamin pyrophosphate: physiological and cell biological aspects. PLoS One. 2013 Aug 30; 8(8):e73503. doi:10.1371/journal.pone.0073503.

Tahiliani A. G., Beinlich C. J. Pantothenic acid in health and disease. Vi-tam Horm. 1991 Feb; 46: 165–228. doi:10.1016/S0083-6729(08)60684-6. Tempel W., et al. Nicotinamide riboside kinase structures reveal new pathways to NAD+. PLoS Biol. 2007 Oct 2; 5(10):e263. doi:10.1371/journal. pbio.0050263

Togay-Isikay C., Yigit A., Mutluer N. Wernicke’s encephalopathy due to hyperemesis gravidarum: an under-recognised condition. Aust NZJ Obstet Gynaecol. 2001 Nov; 41(4): 453–6. doi:10.1111/j.1479-828X.2001.tb01330. Watanabe F. Vitamin B12 sources and bioavailability. Exp Biol Med (Maywood). 2007 Nov; 232(10):1266–74. doi:10.3181/0703-MR-67.

Yang T., Chan N. Y., Sauve A. A. Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells. J Med Chem. 2007 Dec 27;50(26):6458–61. Epub 2007 Dec 6. doi:10.1021/jm701001c.

Youssef J. A., Song W. O., Badr M. Z. Mitochondrial, but not peroxisomal, beta-oxidation of fatty acids is conserved in coenzyme A-deficient rat liver. Mol Cell Biochem. 1997 Oct; 175(1–2):37–42.

Железо

Atamna H. Heme, iron, and the mitochondrial decay of ageing. Aging Res Rev. 2004 Jul; 3(3):303–18. doi:10.1016/j.arr.2004.02.002

Atamna H., et al. Heme deficiency may be a factor in the mitochondrial and neuronal decay of aging. Proc Natl Acad Sci U S A. 2002 Nov 12; 99(23):14807–12. Epub 2002 Nov 4. doi:10.1073/pnas.192585799.

Stoltzfus R. J. Iron deficiency: global prevalence and consequences. Food Nutr Bull. 2003 Dec; 24(4 Suppl):S99–103. doi:10.1177/1564826503024 4S206.

Ресвератрол и птеростильбен

Alcaín F. J., Villalba J. M. Sirtuin activators. Expert Opin Ther Pat. 2009 Apr; 19(4):403–14. doi:10.1517/13543770902762893.

Alosi J. A., et al. Pterostilbene inhibits breast cancer in vitro through mitochondrial depolarization and induction of caspase-dependent apoptosis. J Surg Res. 2010 Jun 15; 161(2):195–201. Epub 2009 Aug 18. doi:10.1016/j. jss.2009.07.027.

Bagchi D., et al. Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract. Mutat Res. 2003 Feb–Mar; 523–524:87–97. doi:10.1016/ S0027-5107(02)00324-X.

Baur J. A., et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006 Nov 16; 444(7177):337–42. doi:10.1038/ nature05354.

Chiou Y. S., et al. Pterostilbene is more potent than resveratrol in preventing azoxymethane (AOM)-induced colon tumorigenesis via activation of the NF-E2-related factor 2 (Nrf2) mediated antioxidant signaling pathway. J Agric Food Chem. 2011 Mar 23; 59(6):2725–33. Epub 2011 Feb 28. doi:10.1021/jf2000103.

Joseph J. A., et al. Cellular and behavioral effects of stilbene resveratrol analogues: implications for reducing the deleterious effects of aging. J Agric Food Chem. 2008; 56(22):10544–51. doi:10.1021/jf802279h.

Lagouge M., et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006 Dec 15; 127(6):1109–22. doi:10.1016/j.cell.2006.11.013.

Li Y. G., et al. Resveratrol protects cardiomyocytes from oxidative stress through SIRT1 and mitochondrial biogenesis signaling pathways. Biochem Biophys Res Commun. 2013 Aug 23;438(2):270–6. Epub 2013 Jul 24. doi:10.1016/j.bbrc.2013.07.042.

Lin V. C., et al. Activation of AMPK by pterostilbene suppresses lipogenesis and cell-cycle progression in p53 positive and negative human prostate cancer cells. J Agric Food Chem. 2012 Jun 27; 60(25):6399–407. Epub 2012 Jun 19. doi:10.1021/jf301499e.

Macicková T., et al. Effect of stilbene derivative on superoxide generation and enzyme release from human neutrophils in vitro. Interdiscip Toxicol. 2012 Jun; 5(2):71–5. doi:10.2478 /v10102-012-0012-7.

Meng X. L., et al. Effects of resveratrol and its derivatives on lipopolysaccharide-induced microglial activation and their structure-activity relationships. Chem Biol Interact. 2008 Jul 10; 174(1):51–9. doi:10.1016/j. cbi.2008.04.015.

Moon D., et al. Pterostilbene induces mitochondrially derived apoptosis in breast cancer cells in vitro. J Surg Res. 2013 Apr; 180(2):208–15. Epub 2012 Apr 29. doi:10.1016/j.jss.2012.04.027.

Nutakul W., et al. Inhibitory effects of resveratrol and pterostilbene on human colon cancer cells: a side-by-side comparison. J Agric Food Chem. 2011 Oct 26; 59(20):10964–70. doi:10.1021 /jf202846b.

Pan M. H., et al. Pterostilbene induces apoptosis and cell cycle arrest in human gastric carcinoma cells. J Agric Food Chem. 2007 Sep 19; 55(19):7777–85. Epub 2007 Aug 16. doi:10.1021/jf071520h.

Pan Z., et al. Identification of molecular pathways affected by pterostilbene, a natural dimethylether analog of resveratrol. BMC Med Genomics. 2008 Mar 20; 1:7. doi:10.1186 /1755-8794-1-7.

Pari L., Satheesh M. A. Effect of pterostilbene on hepatic key enzymes of glucose metabolism in streptozotocin- and nicotinamide-induced diabetic rats. Life Sci. 2006; 79(7):641–5. doi:10.1016/j.lfs.2006.02.036.

Park E. S., et al. Pterostilbene, a natural dimethylated analog of resveratrol, inhibits rat aortic vascular smooth muscle cell proliferation by blocking Akt-dependent pathway. Vascul Pharmacol. 2010 Jul–Aug; 53(1–2):61–7. doi:10.1016/j.vph.2010.04.001.

Pearson K. J., et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending lifespan. Cell Metab. 2008 Aug; 8(2):157–68. doi:10.1016/j.cmet.2008.06.011.

Polley K. R., et al. Influence of exercise training with resveratrol supplementation on skeletal muscle mitochondrial capacity. Appl Physiol Nutr Metab. 2016; 41(1):26–32. doi:10.1139 /apnm-2015-0370.

Priego S., et al. Natural polyphenols facilitate elimination of HT-29 colorectal cancer xenografts by chemoradiotherapy: a Bcl-2- and superoxide dismutase 2-dependent mechanism. Mol Cancer Ther. 2008 Oct; 7(10):3330–42. doi:10.1158/1535-7163.MCT-08-0363.

Remsberg C. M., et al. Pharmacometrics of pterostilbene: preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother Res. 2008 Feb; 22(2):169–79. doi:10.1002/ ptr.2277.

Rimando A. M., et al. Pterostilbene, a new agonist for the peroxisome proliferator-activated receptor r-Isoform, lowers plasma lipoproteins and cholesterol in hypercholesterolemic hamsters. J Agric Food Chem. 2005; 53:3403–7. doi:10.1021/jf0580364.

Siva B., et al. Effect of polyphenoics extracts of grape seeds (GSE) on blood pressure (BP) in patients with the metabolic syndrome (MetS). FASEB J. 2006; 20:A305.

Wang J., et al. Grape-derived polyphenolics prevent Abeta oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease. J Neurosci. 2008 Jun 18; 28(25):6388–92. doi:10.1523/JNEURO-SCI.0364-08.2008.

Williams C. M., et al. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic Biol Med. 2008 Aug 1; 45(3):295–305. doi:10.1016/j.freerad biomed.2008.04.008.

Youdim K. A., et al. Short-term dietary supplementation of blueberry polyphenolics: beneficial effects on aging brain performance and peripheral tissue function. Nutr Neurosci. 2000 Jul 13;3:383–97. doi:10.1080/10284 15X.2000.11747338.

Кетогенная диета и ограничение калорий

Anderson R. M., et al. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J Biol Chem. 2002 May 24;277(21):18881–90. doi:10.1074 /jbc.M111773200.

Araki T., Sasaki Y., Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science. 2004 Aug 13; 305(5686):1010–3. doi:10.1126/science.1098014.

Campbell M. K., Farrell, S. O. Biochemistry. 5th edition. Pacific Grove, Thomson Brooks/Cole; 2006. 579 p.

Carrière A., et al. Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes. 2014 Oct; 63(10):3253–65. Epub 2014 May 1. doi:10.2337/db13-1885. Castello L, et al. Calorie restriction protects against age-related rat aorta sclerosis. FASEB J. 2005 Nov; 19(13):1863–5. Epub 2005 Sep 8. doi:10.1096/ fj.04-2864fje. Cohen HY, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004 Jul 16; 305(5682):390–2. doi:10.1126/science.1099196. Colman RJ, et al. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun. 2014 Apr 1; 5:3557. doi:10.1038/ncomms4557.

Estrada N. M., Isokawa M. Metabolic demand stimulates CREB signaling in the limbic cortex: implication for the induction of hippocampal synaptic plasticity by intrinsic stimulus for survival. Front Syst Neurosci. 2009 Jun 9; 3:5. doi:10.3389/neuro.06.005.2009.

Guarente L., Picard F. Calorie restriction – the SIR2 connection. Cell. 2005 Feb 25; 120(4): 473–82. doi:10.1016/j.cell.2005.01.029.

Hasselbalch S. G., et al. Brain metabolism during short-term starvation in humans. J Cereb Blood Flow Metab. 1994 Jan; 14(1):125–31. doi:10.1038/ jcbfm.1994.17.

Ivanova D. G., Yankova T. M. The free radical theory of aging in search of a strategy for increasing life span. Folia Med (Plovdiv). 2013 Jan–Mar; 55(1):33–41. doi:10.2478/folmed-2013-0003.

Jarrett S. G., et al. The ketogenic diet increases mitochondrial glutathione levels. J Neurochem. 2008 Aug; 106(3):1044–51. doi:10.1111/j.1471–4159.2008.05460.x. Epub 2008 May 5.

Jung K. J., et al. The redox-sensitive DNA binding sites responsible for age-related downregulation of SMP30 by ERK pathway and reversal by calorie restriction. Antioxid Redox Signal. 2006 Mar–Apr;8(3–4):671–80. doi:10.1089/ars.2006.8.671.

Kashiwaya Y., et al. D-b-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc Natl Acad Sci USA. 2000 May 9; 97(10):5440–4. doi:10.1073/pnas.97.10.5440.

Kodde I. F., et al. Metabolic and genetic regulation of cardiac energy substrate preference. Comp Biochem Physiol A Mol Integr Physiol. 2007 Jan; 146(1):26–39. Epub 2006 Oct 3. doi:10.1016/j.cbpa.2006.09.014.

Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev. 1999 Nov–Dec;15(6):412–26. doi:10.1002 /(SICI)1520-7560(199911/12)15:6<412::AID-DMRR72>3.0.CO;2–8.

Lim E. L., et al. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia. 2011 Oct;54(10):2506–14. Epub 2011 Jun 9. doi:10.1007/ s00125-011-2204-7.

Lin S. J, et al. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev. 2004 Jan 1; 18(1):12–6. doi:10.1101/gad.1164804. Mattson M. P., Chan S. L., Duan W. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev. 2002 Jul; 82(3):637–72. doi:10.1152/physrev.00004.2002.

McInnes N., et al. Piloting a remission strategy in type 2 diabetes: results of a randomized controlled trial. J Clin Endocrinol Metab. 2017 May 1; 102(5):1596–1605. Epub 2017 Mar 15. doi:10.1210/jc.2016–3373.

Mercken E. M., et al. Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile. Aging Cell. 2013 Aug; 12(4):645–51. Epub 2013 Apr 20. doi:10.1111/acel.12088.

Picard F., et al. Sirt 1 promotes fat mobilization in white adipocytes by repressing PPARgamma. Nature. 2004 Jun 17; 429(6993):771–6. doi:10.1038/ nature02583.

Prins M. L. Cerebral metabolic adaptation and ketone metabolism after brain injury. J Cereb Blood Flow Metab. 2008 Jan; 28(1):1–16. Epub 2007 Aug 8. doi:10.1038/sj.jcbfm.9600543.

Revollo J. R., Grimm A. A., Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem. 2004 Dec 3; 279(49):50754–63. doi:10.1074/ jbc.M408388200.

Rose G., et al. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol. 2003 Oct; 38(10):1065–70. doi:10.1016/S0531-5565(03)00209-2.

Sato K., et al. Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J. 1995 May; 9(8):651–8.

Scheibye-Knudsen M, et al. A high-fat diet and NAD(+) activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metab. 2014 Nov 4; 20(5):840–55. Epub 2014 Nov 4. doi:10.1016/j.cmet.2014.10.005.

Sharman M. J., et al. A ketogenic diet favorably affects serum biomarkers for cardiovascular disease in normal-weight young men. J Nutr. 2002 Jul; 132(7):1879–85.

Sort R., et al. Ketogenic diet in 3 cases of childhood refractory status epilepticus. Eur J Paediatr Neurol. 2013 Nov; 17(6):531–6. Epub 2013 Jun 7. doi:10.1016/j.ejpn.2013.05.001.

Spindler S. R. Caloric restriction: from soup to nuts. Aging Res Rev. 2010 Jul; 9(3):324–53. doi:10.1016/j.arr.2009.10.003.

VanItallie T. B., Nufert T. H. Ketones: metabolism’s ugly duckling. Nutr Rev. 2003 Oct; 61(10): 327–41. doi:10.1301/nr.2003.oct.327–341.

Veech R. L., et al. Ketone bodies, potential therapeutic uses. IUBMB Life. 2001 Apr;51(4): 241–7. doi:10.1080/152165401753311780.

Wang S. P., et al. Metabolism as a tool for understanding human brain evolution: lipid energy metabolism as an example. J Hum Evol. 2014 Dec; 77:41–9. Epub 2014 Dec 6. doi:10.1016 /j.jhevol.2014.06.013.

Wegman M. P., et al. Practicality of intermittent fasting in humans and its effect on oxidative stress and genes related to aging and metabolism. Rejuvenation Res. 2015 Apr; 18(2):162–72. doi:10.1089/rej.2014.1624.

Wood J. G., et al. Sirtuin activators mimic caloric restriction and delay aging in metazoans. Nature. 2004 Aug 5; 430(7000):686–9. doi:10.1038/ nature02789.

Массаж и гидротерапия

Boon M. R., et al. Brown adipose tissue: the body’s own weapon against obesity? Ned Tijdschr Geneeskd. 2013; 157(20):A5502.

Crane J. D., et al. Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage. Sci Transl Med. 2012 Feb 1;4(119):119ra13. doi:10.1126/scitranslmed.3002882.

Lee P., et al. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes. 2014 Nov; 63(11):3686–98. Epub 2014 Jun 22. doi:10.2337/db14-0513.

Lo K. A, Sun L. Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes. Biosci Rep. 2013 Sep 6; 33(5):e00065. Epub Jul 30.

van der Lans A. A, et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest. 2013 Aug;123(8):3395–403. Epub 2013 Jul 15. doi:10.1172 /JCI68993.

Физическая активность и специальные упражнения

Alf D., Schmidt M. E., Siebrecht S. C. Ubiquinol supplementation enhances peak power production in trained athletes: a double-blind, placebo controlled study. J Int Soc Sports Nutr. 2013 Apr 29;10(1):24. Epub. doi:10.1186/1550-2783-10-24.

Alzheimer’s Association International Conference (AAIC); 2012 Jul 14–19; Vancouver, BC. Alzheimers Dement. Abstract F1-03-01.

Alzheimer’s Association International Conference (AAIC); 2012 Jul 14–19; Vancouver, BC. Alzheimers Dement. Abstracts FI-03-02.

Alzheimer’s Association International Conference (AAIC); 2012 Jul 14–19; Vancouver, BC. Alzheimers Dement. Abstracts P1-109.

Alzheimer’s Association International Conference (AAIC); 2012 Jul 14–19; Vancouver, BC. Alzheimers Dement. Abstracts P1-121.

Barrès R., et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012 Mar 7; 15(3):405–11. doi:10.1016/j. cmet.2012.01.001.

Bergeron R., et al. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab. 2001 Dec; 281(6):E1340–E1346.

Brown W. J., Pavey T., Bauman A. E. Comparing population attributable risks for heart disease across the adult lifespan in women. Br J Sports Med. 2015 Jul 29. Epub 2014 May 8. doi:10.1136/bjsports-2015-095213. Campbell P., et al. Associations of recreational physical activity and leisure time spent sitting with colorectal cancer survival. J Clin Oncol. 2013 Mar 1; 31(7):876–85. doi:10.1200/JCO.2012.45.9735.

Clanton T. L. Hypoxia-induced reactive oxygen species formation in skeletal muscle. J Appl Physiol (1985). 2007 Jun; 102(6):2379–88. doi:10.1152/ japplphysiol.01298.2006.

Díaz-Castro J., et al. Coenzyme Q(10) supplementation ameliorates inflammatory signaling and oxidative stress associated with strenuous exercise. Eur J Nutr. 2012 Oct; 51(7):791–9. Epub 2011 Oct 12. doi:10.1007/ s00394-011-0257-5.

Erickson K. I., et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA. 2011 Feb 15; 108(7):3017–22. Epub 2011 Jan 31. doi:10.1073/pnas.1015950108.

Gioscia-Ryan R. A., et al. Voluntary aerobic exercise increases arterial resilience and mitochondrial health with aging in mice. Aging (Albany NY). 2016 Nov 22; 8(11):2897–2914. doi:10.18632/aging.101099.

Gram M., Dahl R., Dela F. Physical inactivity and muscle oxidative capacity in humans. Eur J Sport Sci. 2014; 14(4):376–83. Epub 2013 Aug 1. doi: 10.1080/17461391.2013.823466.

Greggio C., et al. Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle. Cell Metab. 2017 Feb 7; 25(2):301–11. Epub 2016 Dec 1. doi:10.1016/j.cmet.2016.11.004.

Hood D. A. Contractile activity-induced mitochondrial biogenesis in skeletal muscle [invited review]. J Appl Physiol (1985). 2001 Mar; 90(3):1137– 57.

Johnson M. L., et al. Chronically endurance-trained individuals preserve skeletal muscle mitochondrial gene expression with age but differences within age groups remain. Physiol Rep. 2014 Dec; 2(12):e12239. Epub 2014 Dec 18. doi:10.14814/phy2.12239.

Kang C., et al. Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: role of PGC-1α. Exp Gerontol. 2013 Nov; 48(11):1343–50. Epub 2013 Aug 29. doi:10.1016/j.exger.2013.08.004. Koltai E., et al. Age-associated declines in mitochondrial biogenesis and protein quality control factors are minimized by exercise training. Am J Physiol Regul Integr Comp Physiol. 2012 Jul 15; 303(2):R127–R134. Epub 2012 May 9. doi:10.1152/ajpregu.00337.2011.

Konopka A. R., et al. Markers of human skeletal muscle mitochondrial biogenesis and quality control: effects of age and aerobic exercise training. J Gerontol A Biol Sci Med Sci. 2014 Apr; 69(4):371–8. Epub 2013 Jul 20. doi:10.1093/gerona/glt107.

Konopka A. R., et al. Defects in mitochondrial efifciency and H2O2 emissions in obese women are restored to a lean phenotype with aerobic exercise training. Diabetes. 2015 Jun; 64(6):2104–15. doi:10.2337/db14-1701. Lawson E. C., et al. Aerobic exercise protects retinal function and structure from light-induced retinal degeneration. J Neurosci. 2014 Feb 12; 34(7):2406–12. doi:10.1523/JNEUROSCI.2062-13.2014.

Liu C. C., et al. Lycopene supplementation attenuated xanthine oxidase and myeloperoxidase activities in skeletal muscle tissues of rats after exhaustive exercise. Br J Nutr. 2005; 94: 595–601. doi:10.1079/BJN20051541. Marcelino T. B., et al. Evidences that maternal swimming exercise improves antioxidant defenses and induces mitochondrial biogenesis in brain of young Wistar rats. Neuroscience. 2013 Aug 29; 246:28–39. Epub 2013 Apr 29. doi:10.1016/j.neuroscience.2013.04.043.

Melov S., et al. Resistance exercise reverses aging in human skeletal muscle. PLoS One. 2007 May 23; 2(5):e465. doi:10.1371/journal.pone.0000465.

Menshikova E. V., et al. Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci. 2006 Jun; 61(6):534–40.

Nikolaidis M. G., Jamurtas A. Z. Blood as a reactive species generator and redox status regulator during exercise. Arch Biochem Biophys. 2009 Oct 15; 490(2):77–84. doi:10.1016/j.abb.2009.08.015.

Powers S. K., Jackson M. J. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008 Oct; 88(4):1243–76. doi:10.1152/physrev.00031.2007.

Reichhold S., et al. Endurance exercise and DNA stability: is there a link to duration and intensity? Mutat Res. 2009 Jul–Aug; 682(1):28–38. doi:10.1016/j.mrrev.2009.02.002.

Richardson R. S., et al. Myoglobin O2 desaturation during exercise: evidence of limited O2 transport. J Clin Invest. 1995 Oct; 96(4):1916–26. doi:10.1172/JCI118237.

Safdar A., et al. Exercise increases mitochondrial PGC-1alpha content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. J Biol Chem. 2011 Mar 25;286(12):10605–17. Epub 2011 Jan 18. doi:10.1074/jbc.M110.211466.

Schnohr P, et al. Longevity in male and female joggers: the Copenhagen city heart study. Am J Epidemiol. 2013 Apr 1; 177(7):683–9. Epub 2013 Feb 28. doi:10.1093/aje/kws301.

Siddiqui N. I., Nessa A., Hossain M. A. Regular physical exercise: way to healthy life. Mymensingh Med J. 2010 Jan; 19(1):154–8.

Steiner J. L., et al. Exercise training increases mitochondrial biogenesis in the brain. J Appl Physiol (1985). 2011 Oct; 111(4):1066–71. Epub 2011 Aug 4. doi:10.1152/japplphysiol.00343.2011.

Suzuki K., et al. Circulating cytokines and hormones with immunosuppressive but neutrophil-priming potentials rise after endurance exercise in humans. Eur J Appl Physiol. 2000 Jan;81: 281–7.

Toledo F. G., et al. Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Diabetes. 2007 Aug; 56(8):2142–7. Epub 2007 May 29. doi:10.2337/ db07-0141.

Urso M. L., Clarkson P. M. Oxidative stress, exercise, and antioxidant supplementation. Toxicology. 2003; 189(1–2):41–54. doi:10.1016/S0300-483X(03)00151-3.

Yuki A., et al. Relationship between physical activity and brain atrophy progression. Med Sci Sports Exerc. 2012 Dec; 44(12):2362–8. doi:10.1249/ MSS.0b013e3182667d1d.

Zong H., et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. ProcNatlAcad-Sci USA. 2002 Dec 10; 99(25): 15983–7. Epub 2002 Nov 20. doi:10.1073/ pnas.252625599.

Назад: Глава 2
Дальше: Примечания