Hirst J. Mitochondrial complex I. Annu Rev Biochem. 2013; 82:551–75. Epub 2013 Mar 18. doi:10.1146/annurev-biochem-070511-103700.
Hwang A. B., Jeong D. E., Lee S. J. Mitochondria and organismal longevity. Curr Genomics. 2012 Nov; 13(7):519–32. doi:10.2174/13892021280 3251427.
Lane, N. Power, sex, suicide: mitochondria and the meaning of life. New York: Oxford University Press; 2005.
Munro D., et al. Low hydrogen peroxide production in mitochondria of the long-lived Arctica islandica: underlying mechanisms for slow aging. Aging Cell. 2013 Aug; 12(4):584–92. Epub 2013 May 6. doi:10.1111/acel.12082. Sinatra S. T. The Sinatra solution: metabolic cardiology. Laguna Beach, CA: Basic Health Publications, Inc; 2011.
Wallace D. C. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science. 1992 May 1; 256(5057):628–32. doi:10.1126/ science.1533953.
Wallace D. C. A mitochondrial bioenergetic etiology of disease. J Clin Invest. 2013 Apr; 123(4): 1405–12. Epub 2013 Apr 1. doi:10.1172/JCI61398.
Aon M. A. Mitochondrial dysfunction, alternans, and arrhythmias. Front Physiol. 2013 Apr 19; 4:83.
Buja L. M. The pathobiology of acute coronary syndromes: clinical implications and central role of the mitochondria. Tex Heart Inst J. 2013; 40(3):221–8.
Gorenkova N., et al. Conformational change of mitochondrial complex I increases ROS sensitivity during ischaemia. Antioxid Redox Signal. 2013 Oct; 19(13):1459–68. Epub 2013 Feb 18. doi:10.1089/ars.2012.4698.
Li H., Horke S., Förstermann U. Oxidative stress in vascular disease and its pharmacological prevention. Trends Pharmacol Sci. 2013 Jun; 34(6):313–9. Epub 2013 Apr 19. doi:10.1016/j.tips.2013.03.007.
Lonnrot K., et al. Control of arterial tone after long-term coenzyme Q10 supplementation in senescent rats. Brit J Pharmacol. 1998 Aug; 124(7):1500–6. doi:10.1038/sj.bjp.0701970.
Karamanlidis G., et al. Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ Res. 2010 May 14; 106(9):1541–8. doi:10.1161/CIRCRESAHA.109.212753.
Knight-Lozano C.A., et al. Cigarette smoke exposure and hypercholesterolemia increase mitochondrial damage in cardiovascular tissues. Circulation. 2002 Feb 19;105(7):849–54. doi:10.1161/hc0702.103977.
Madamanchi N. R., Runge M. S. Mitochondrial dysfunction in atherosclerosis. Circ Res. 2007 Mar 2;100(4):460–73.
Mercer J. R. Mitochondrial bioenergetics and therapeutic intervention in cardiovascular disease. Pharmacol Ther. 2014 Jan;141(1):13–20. Epub. doi:10.1016/j.pharmthera.2013.07.011.
Montaigne D, et al. Mitochondrial dysfunction as an arrhythmogenic substrate: a translational proof-of-concept study in patients with metabolic syndrome in whom post-operative atrial fibrillation develops. J Am Coll Cardiol. 2013 Oct 15; 62(16):1466–73. Epub 2013 May 1. doi:10.1016/j. jacc.2013.03.061.
Morales C. R., et al. Oxidative stress and autophagy in cardiovascular homeostasis. Antioxid Redox Signal. 2014 Jan 20; 20(3):507–518. Epub 2013 May 5. doi:10.1089/ars.2013.5359.
Nazarewicz R. R., Dikalov S. I. Mitochondrial ROS in the pro-hypertensive immune response. Am J Physiol Regul Integr Comp Physiol. 2013 May 8; 305:R98–100. Epub. doi:10.1152 /ajpregu.00208.2013.
Oeseburg H., et al. Bradykinin protects against oxidative stress-induced endothelial cell senescence. Hypertension. 2009 Feb; 53(Part 2):417–22. doi:10.1161/HYPERTENSIONAHA.108.123729.
Schleicher M., et al. Prohibitin-1 maintains the angiogenic capacity of endothelial cells by regulating mitochondrial function and senescence. J Cell Biol. 2008 Jan 14; 180(1):101–12. doi:10.1083/jcb.200706072.
Schriewer J. M., et al. ROS-mediated PARP activity undermines mitochondrial function after permeability transition pore opening during myocardial ischemia-reperfusion. J Am Heart Assoc. 2013 Apr 18; 2(2):e000159. doi:10.1161/JAHA.113.000159.
Stride N., et al. Impaired mitochondrial function in chronically ischemic human heart. Am J Physiol Heart Circ Physiol. 2013 Mar 29. Epub. doi:10.1152/ajpheart.00991.2012.
Wallace D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005; 39:359–407. doi:10.1146 /annurev.genet.39.110304.095751. Yang Z., et al. Prenatal environmental tobacco smoke exposure promotes adult atherogenesis and mitochondrial damage in apoliprotein E-/– mice fed a chow diet. Circulation. 2004 Dec 14; 110(24):3715–20. doi:10.1161/01.CIR.0000149747.82157.01.
Yang Z., et al. The role of tobacco smoke induced mitochondrial damage in vascular dysfunction and atherosclerosis. Mutat Res. 2007 Aug 1; 621(1–2):61–74. doi:10.1016/j.mrfmmm.2007.02.010.
Chitaley K., Weber D. S., Webb R. C. RhoA/Rho-kinase, vascular changes and hypertension. Curr Hypertension Rep. 2001; 3:139–144. doi:10.1007/ s11906-001-0028-4
Feletou M., Vanhoutte P. M. Endothelium-dependent hyperpolarization of vascular smooth muscle cells. Acta Pharmacol Sin. 2000 Jan; 21(1):1–18. Fukata Y., Mutsuki A., Kaibuchi K. Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Physiol Sci. 2001 Jan; 22(1):32–9. doi:10.1016/S0165-6147(00)01596-0.
Jin L., et al. Inhibition of the tonic contraction in the treatment of erectile dysfunction. Exp Opin Ther Targets. 2003; 7(2):265–76. doi:10.1517/14728222.7.2.265.
Kao C. Y., Carsten M. E., editors. Cellular Aspects of Smooth Muscle Function. New York: Cambridge Univ. Press, 1997. Chapter 5, Mechanics of smooth muscle contraction; p. 169–208.
Kohlhaas M., Maack C. Calcium release microdomains and mitochondria. Cardiovasc Res. 2013 Feb 14; 98:259–68. Epub. doi:10.1093/cvr/cvt032. Lanza I. R., Sreekumaran Nair K. Regulation of skeletal muscle mitochondrial function: genes to proteins. Acta Physiol (Oxf). 2010 Aug; 199(4):529–47. doi:10.1111/j.1748–1716.2010.02124.x.
Li M., et al. High glucose concentrations induce oxidative damage to mitochondrial DNA in explanted vascular smooth muscle cells. Exp Biol Med. 2001 Jan 1;226(5):450–7. doi:10.1177 /153537020122600510.
Mehta S., Webb R. C., Dorrance A. M. The pathophysiology of ischemic stroke: a neuronal and vascular perspective. J Med Sci. 2002;22:53–62.
Mills T. M., et al. Inhibition of tonic contraction – a novel way to approach erectile dysfunction? J Androl. 2002 Sep 10; 23(5):S5–S9. doi:10.1002/j.1939–4640.2002.tb02294.x.
Mitchell B. M., Chitaley K. C., Webb R. C. Vascular smooth muscle contraction and relaxation. In: Izzo JL, Black HR, editors. Hypertension primer: the essentials of high blood pressure. Dallas, TX: Am. Heart Assoc.; 2003, p. 97–99.
Morgan K. G. The role of calcium in the control of vascular tone as assessed by the Ca2+ indicator aequorin. Cardiovasc Drugs Ther. 1990 Oct; 4(5):1355–62.
Ridley A. Rho: theme and variations. Curr Biol 1996; 6(10):1256–64. doi:10.1016/S0960-9822 (02)70711-2.
Sah V. P., et al. The role of Rho in G protein-coupled receptor signal transduction. Annu Rev Pharmacol Toxicol. 2000;40:459–89. doi:10.1146/ annurev.pharmtox.40.1.459.
Solaro R. J. Myosin light chain phosphatase: a Cinderella of cellular signaling. Circ Res. 2000 Aug 4; 87:173–5. doi:10.1161/01.RES.87.3.173.
Somlyo A. P., Somlyo A. V. From pharmacomechanical coupling to G-proteins and myosin phosphatase. Acta Physiol Scand. 1998 Dec; 164(4):437– 48. doi:10.1046/j.1365-201X.1998.00454.x.
Somlyo A. P., Somlyo A. V. Signal transduction by G-proteins, Rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol. 2000; 522(Pt 2):177–85. doi:10.1111/j.1469–7793.2000.t01-200177.x.
Somlyo A. P, et al. Pharmacomechanical coupling: the role of calcium, G-proteins, kinases and phosphatases. Rev Physiol Biochem Pharmacol. 1999; 134:201–34.
Uehata M., et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997; 389:990–4. doi:10.1038/40187.
Woodrum D. A., Brophy C. M. The paradox of smooth muscle physiology. Mol Cell Endocrinol. 2001; 177(1–2):135–43. doi:10.1016/S03037207(01)00407-5.
Allen K. L., et al. Changes of respiratory chain activity in mitochondrial and synaptosomal fractions isolated from the gerbil brain after graded ischaemia. J Neurochem. 1995 May; 64(5):2222–9. doi:10.1046/j.1471–4159.1995.64052222.x.
Ankarcrona M., et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 1995 Oct; 15(4):961–73. doi:10.1016 /0896-6273(95)90186-8.
Barbiroli B., et al. Coenzyme Q10 improves mitochondrial respiration in patients with mitochondrial cytopathies. An in vivo study on brain and skeletal muscle by phosphorous magnetic resonance spectroscopy. Cell Molec Biol. 1997; 43:741–9.
Beal M. F. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol. 1995 Sep; 38(3):357–66. doi:10.1002/ana.410380304. Beal M. F., et al. Coenzyme Q10 and nicotinamide block striatal lesions produced by the mitochondrial toxin malonate. Ann Neurol. 1994; 36(6):882–8. doi:10.1002/ana.410360613.
Beal M. F., et al. Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Res. 1998 Feb;783(1):109–14. doi:10.1016/S0006-8993(97)01192-X.
Bendahan D., et al. 31P NMR spectroscopy and ergometer exercise test as evidence for muscle oxidative performance improvement with coenzyme Q in mitochondrial myopathies. Neurology. 1992; 42(6):1203–8.
Berchtold N. C., et al. Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer’s disease. Neurobiol Aging. 2014 Sep; 35(9):1961–72. Epub 2014 Apr 2. doi:10.1016/j. neurobiolaging.2014.03.031.
Bolanos J. P., et al. Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J Neuro-chem.1997 Jun; 68(6):2227–40. doi:10.1046/j.1471–4159.1997.68062227.x. Bozner P., et al. The amyloid β protein induces oxidative damage of mitochondrial DNA. J Neuropathol Exp Neurol. 1997; 56:1356–62. doi:10.1097/00005072-199712000-00010.
Brookes P. S., et al. Peroxynitrite and brain mitochondria: evidence for increased proton leak. J Neurochem. 1998; 70(№ 5):2195–02.
Casley C. S, et al. Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J Neurochem. 2002 Jan; 80(1):91–100. doi:10.1046/j.0022–3042.2001.00681.x.
Cassarino D. S., et al. An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. Brain Res Brain Res Rev. 1999 Jan; 29(1):1–25. doi:10.1016 /S0165-0173(98)00046-0.
Chaturvedi R. K., Flint Beal M. Mitochondrial diseases of the brain. Free Radic Biol Med. 2013 Oct; 63:1–29. Epub Apr 5. doi:10.1016/j.freerad-biomed.2013.03.018.
de Moura M. B., dos Santos L. S, Van Houten B. Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environ Mol Mutagen. 2010 Jun; 51(5):391–405. doi:10.1002/em.20575.
Favit A., et al. Ubiquinone protects cultured neurons against spontaneous and excitotoxin-induced degeneration. J Cereb Blood Flow Metab.1992;12(№ 4):638–45.
Fiskum G., Murphy A. N., Beal M. F. Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J Cereb Blood
Flow Metab. 1999 Apr; 19(4):351–69. doi:10.1097/00004647-199904000-00001.
Kuroda S., Siesjo B. K. Reperfusion damage following focal ischemia: pathophysiology and therapeutic windows. Clin Neurosci. 1997; 4(4):199–212.
Leist M., Nicotera P. Apoptosis, excitotoxicity, and neuropathology. Exp Cell Res. 1998; 239(2): 183–201. doi:10.1006/excr.1997.4026.
Liu J., et al. Memory loss in old rats is associated with brain mitochondrial decay and RNA/ DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci U S A. 2002 Feb 19; 99(4):2356–61. doi:10.1073/pnas.261709299.
Love S. Oxidative stress in brain ischemia. Brain Pathol. 1999 Jan; 9(1):119– 31. doi:10.1111 /j.1750–3639.1999.tb00214.x.
Matsumoto S., et al. Blockade of the mitochondrial permeability transition pore diminishes infarct size in the rat after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1999; 19(№ 7):736–41.
Matthews R. T., et al. Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci U S A. 1998 Jul 21; 95 (15):8892–7.
Mazzio E., et al. Effect of antioxidants on L-glutamate and N-methyl-4-phenylpyridinium ion induced-neurotoxicity in PC12 cells. Neurotoxicology. 2001; 22:283–8.
Mecocci P., et al. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol. 1993 Oct; 34(4):609–16. doi:10.1002/ana.410340416.
Mordente A., et al. Free radical production by activated haem proteins: protective effect of coenzyme Q. Molec Aspects Med. 1994; 15(Suppl S109–S115).
Murphy A. N., Fiskum G., Beal F. Mitochondria in neurodegeneration: bioenergetic function in cell life and death. J Cereb Blood Flow Metab. 1999; 19(№ 3):231–45.
Musumeci O., et al. Familial cerebellar ataxia with muscle coenzyme Q10 deficiency. Neurology. 2001 Apr 10; 56(7):849–55.
Nam M. K., et al. Essential roles of mitochondrial depolarization in neuron loss through microglial activation and attraction toward neurons. Brain Res. 2013 Apr 10; 1505:75–85. Epub Feb 12. doi:10.1016/j. brainres.2013.02.005.
Novelli A., et al. Glutamate becomes neurotoxic via the N-methyl-Daspartate receptor when intracellular energy levels are reduced. Brain Res.1988 Jun 7; 451(1–2):205–12. doi:10.1016/0006-8993(88)90765-2. Ristow M., et al. Frataxin activates mitochondrial energy conversion and oxidative phosphorylation. Proc Natl Acad Sci U S A. 2000; 97(№ 22):12239–43. doi:10.1073 /pnas.220403797.
Schon E. A., Manfredi G. Neuronal degeneration and mitochondrial dysfunction. J Clin Invest. 2003 Feb; 111(3):303–12. doi:10.1172/JCI17741. Schulte E. C., et al. Mitochondrial membrane protein associated neurodegenration: A novel variant of neurodegeneration with brain iron accumulation. Mov Disord. 2013 Feb; 28(2):224–7. Epub 2012 Nov 19. doi:10.1002/mds.25256.
Schulz J. B., et al. Neuroprotective strategies for treatment of lesions produced by mitochondrial toxins: implications for neurodegenerative diseases. Neuroscience 71. 1996; 71(4):1043–48. doi:10.1016/0306-4522(95)00527-7.
Sobreira C, et al. Mitochondrial encephalomyopathy with coenzyme Q10 deficiency. Neurology. 1997 May; 48(5):1238–43.
Sun T., et al. Motile axonal mitochondria contribute to the variability of presynaptic strength. Cell Rep. 2013 Aug 15; 4(3):413–9. Epub 2013 Jul 23. doi:10.1016/j.celrep.2013.06.040.
Tatton W. G., Chalmers-Redman R. M. Mitochondria in neurodegenerative apoptosis: an opportunity for therapy? Ann Neurol. 1998; 44(3 Suppl 1):S. 134–S. 141. doi:10.1002/ana.410440720.
Tatton W. G, Olanow C. W. Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim Biophys Acta. 1999 Feb 9; 1410(2):195–213. doi:10.1016/S0005-2728(98)00167-4.
Turner C., Schapira A. H. Mitochondrial dysfunction in neurodegenerative disorders and ageing. Adv Exp Med Biol. 2001; 487:229–51.
Veitch K. et al. Global ischemia induces a biphasic response of the mitochondrial respiratory chain. Anoxic pre-perfusion protects against ischaemic damage. Biochem J. 1992 Feb 1; 281(Pt 3):709–15.
Volpe M., Cosentino F. Abnormalities of endothelial function in the pathogenesis of stroke: the importance of endothelin. J Cardiovasc Pharmacol. 2000; 35(4 Suppl 2):S. 45–S. 48.
Berger A. The Alzheimer’s antidote: Using a low-carb, high-fat diet to fight Alzheimer’s disease, memory loss, and cognitive decline. White River Junction, VT: Chelsea Green Publishing, 2017.
Blass J. P. The mitochondrial spiral. An adequate cause of dementia in the Alzheimer’s syndrome. Ann NY Acad Sci. 2000; 924:170–83. doi:10.1111/j.1749–6632.2000.tb05576.x.
Bonilla E., et al. Mitochondrial involvement in Alzheimer’s disease. Biochim Biophys Acta. 1999 Feb 9; 1410(2):171–82. doi:10.1016/S0005-2728(98)00165-0.
Brown A. M., et al. Correlation of the clinical severity of Alzheimer’s disease with an aberration in mitochondrial DNA (mtDNA). J Mol Neurosci. 2001 Feb; 16(1):41–8. doi:10.1385 /JMN:16:1:41.
Cavallucci V., Ferraina C., D’Amelio M. Key role of mitochondria in Alzheimer’s disease synaptic dysfunction. Curr Pharm Des. 2013; 19(36):6440–50. Epub 2013 Feb 13.
Chen J. X., Yan S. D. Amyloid-beta-induced mitochondrial dysfunction. J Alzheimers Dis. 2007 Sep; 12(2):177–84. doi:10.3233/JAD-2007-12208.
Duboff B., Feany M., Götz J. Why size matters – balancing mitochondrial dynamics in Alzheimer’s disease. Trends Neurosci. 2013 Jun; 36(6):325–35. Epub 2013 Apr 11. doi:10.1016 /j.tins.2013.03.002.
Gabuzda D., et al. Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative. J Biol Chem. 1994 May 6; 269(18):13623–8.
Harman D. A hypothesis on the pathogenesis of Alzheimer’s disease. Ann NY Acad Sci. 1996 Jun 15;786:152–68. doi:10.1111/j.1749–6632.1996. tb39059.x.
Hu H., et al. A mitocentric view of Alzheimer’s disease. Mol Neurobiol. 2016 Oct 1. Epub ahead of print. doi:10.1007/s12035-016-0117-7.
Lustbader J. W., et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science. 2004 Apr 16; 304(5669):448–52. doi:10.1126/science.1091230.
Mariani C., et al. Muscle biopsy in Alzheimer’s disease: morphological and biochemical findings. Clin Neuropathol. 1991 Jul; 10(4):171–6.
Mark R. J., et al. Amyloid b-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J Neurosci. 1997 Feb 1; 17(3): 1046–54.
Markesbery W. R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med. 1997; 23(1):134–47. doi:10.1016/S0891-5849(96)00629-6. Markesbery W. R. Oxidative alterations in Alzheimer’s disease. Brain Pathol. 1999 Jan; 9(1): 133–46. doi:10.1111/j.1750–3639.1999.tb00215.x. Muller W. E., et al. Mitochondrial dysfunction: common final pathway in brain aging and Alzheimer’s disease-therapeutic aspects. Mol Neurobiol. 2010 Jun; 41(2–3):159–71. doi:10.1007/s12035-010-8141-5.
Munch G., et al. Alzheimer’s disease – synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. J Neural Transm (Vienna). 1998; 105(4–5):439–61. doi:10.1007/s007020050069.
Nia S. S., et al. New pathogenic variations of mitochondrial DNA in Alzheimer disease! [letter]. J Res Med Sci. 2013 Mar; 18(3):269.
Nicotera P., Leist M., Manzo L. Neuronal cell death: a demise with different shapes. Trends Pharmacol Sci. 1999 Feb 1; 20(2):46–51. doi:10.1016/ S0165-6147(99)01304-8.
Ogawa M, et al. Altered energy metabolism in Alzheimer’s disease. J Neurol Sci. 1996 Jul; 139(1):78–82. doi:10.1016/0022-510X(96)00033-0.
Sery O., et al. Molecular mechanisms of neuropathological changes in Alzheimer’s disease: a review. Folia Neuropathol. 2013; 51(1):1–9. doi:10.5114/fn.2013.34190.
Smith M. A., et al. Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 1997 Apr 15; 17(8):2653–7.
Sochocka M., et al. Vascular oxidative stress and mitochondrial failure in the pathobiology of Alzheimer’s disease: new approach to therapy. CNS Neurol Disord Drug Targets. 2013 Sep; 12(6):870–81. Epub Feb 27. doi:1 0.2174/18715273113129990072.
Wang X., et al. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci. 2009 Jul 15; 29(28):9090–103. doi:10.1523/ JNEUROSCI.
Webster M. T., et al. The effects of perturbed energy metabolism on the processing of amyloid precursor protein in PC12 cells. J Neural Transm. 1998 Nov; 105(8–9):839–53. doi:10.1007 /s007020050098.
Ying W. Deleterious network: a testable pathogenetic concept of Alzheimer’s disease. Gerontology. 1997; 43:242–53. doi:10.1159/000213856.
Adeghate E., Donath T., Adem A. Alzheimer disease and diabetes mellitus: do they have anything in common? Curr Alzheimer Res. 2013 Jul; 10(6):609–17. Epub Apr 29. doi:10.2174 /15672050113109990009.
Cetinkalp S., Simsir I. Y., Ertek S. Insulin resistance in brain and possible therapeutic approaches. Curr Vasc Pharmacol. 2014; 12(4):553–64. Epub Apr 25. doi:10.2174/1570161112999140206 130426.
Geda Y. E. Abstract 3431. Paper presented at: American Academy of Neurology (AAN) 64th Annual Meeting; 2012 Apr 21–28; New Orleans, Louisiana. Mastrogiacomo F., Bergeron C., Kish E. J. Brain alpha-ketoglutarate dehydrogenase complex activity in Alzheimer’s disease. J Neurochem. 1993 Dec; 61(6):2007–14. doi:10.1111/j.1471–4159.1993.tb07436.x.
Abou-Sleiman P. M., Muqit M. M, Wood N. W. Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci. 2006 Mar; 7(3):207–19. doi:10.1038/nrn1868.
Beal M. F. Therapeutic approaches to mitochondrial dysfunction in Parkinson’s disease. Parkinsonism Relat Disord. 2009 Dec; 15 Suppl 3:S189–S194. doi:10.1016/S1353-8020(09) 70812-0.
Beal M. F., et al. Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Res. 1998 Feb; 783(1):109–14. doi:10.1016/S0006-8993(97)01192-X.
Bender A., et al. TOM40 mediates mitochondrial dysfunction induced by α-synuclein accumulation in Parkinson’s disease. PLoS One. 2013 Apr 23; 8(4):e62277.
Berndt N., Holzhutter H. G., Bulik S. Implications of enzyme deficiencies on the mitochondrial energy metabolism and ROS formation of neurons involved in rotenone-induced Parkinson’s disease: A model-based analysis. FEBS J. 2013 Sep 12; 280(20):5080–93. Epub 2013 Aug 13. doi:10.1111/ febs.12480.
Dolle C., et al. Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease. Nat Commun. 2016 Nov 22; 7:13548.
Ebadi M., et al. Ubiquinone (coenzyme q10) and mitochondria in oxidative stress of Parkinson’s disease. 2001. Biol Signals Recept 10:224–53. doi:10.1038/ncomms13548.
Freeman D., et al. Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis. PLoS One. 2013 Apr 25; 8(4):e62143.
Haas R. H., et al. Low platelet mitochondrial complex I and complex II/ III activity in early untreated Parkinson’s disease. Ann Neurol. 1995 Jun; 37(6):714–22. doi:10.1002/ana.410370604.
Henchcliffe C., Beal M. F. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol. 2008 Nov; 4(11):600–9. doi:10.1038/ncpneuro0924.
Hosamani R., Muralidhara. Acute exposure of Drosophila melanogaster to paraquat causes oxidative stress and mitochondrial dysfunction. Arch Insect Biochem Physiol. 2013 May; 83(1):25–40. Epub 2013 Apr 5.
Isobe C., Abe T., Terayama Y. Levels of reduced and oxidized coenzyme Q-10 and 8-hydroxy-2’-deoxyguanosine in the cerebrospinal fluid of patients living with Parkinson’s disease demonstrate that mitochondrial oxidative damage and/or oxidative DNA damage contributes to the neurodegenerative process. Neurosci Lett. 2010 Jan 18; 469(1):159–63. Epub 2009 Nov 26. Lehmann S., Martins L. M. Insights into mitochondrial quality control pathways and Parkinson’s disease. J Mol Med (Berl). 2013 Jun; 91(6):665– 71. Epub May 4. doi:10.1007/s00109-013-1044-y.
Li D. W., et al. α-lipoic acid protects dopaminergic neurons against MPP+-induced apoptosis by attenuating reactive oxygen species formation. Int J Mol Med. 2013 Jul;32(1):108–14. Epub Apr 24. doi:10.3892/ ijmm.2013.1361.
Lin T. K., et al. Mitochondrial dysfunction and biogenesis in the pathogenesis of Parkinson’s disease. Chang Gung Med J. 2009 Nov–Dec; 32(6):589–99.
Lodi R., et al. Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich’s ataxia. Ann Neurol. 2001 May 1; 49(5):590–6. doi:10.1002 /ana.1001.
Mena M. A., et al. Neurotoxicity of levodopa on catecholamine-rich neurons. Mov Disord. 1992; 7(1):23–31. doi:10.1002/mds.870070105.
Mizuno Y., et al. Role of mitochondria in the etiology and pathogenesis of Parkinson’s disease. Biochima et Biophysica Acta. 1995 May 24; 1271(1):265–74. doi:10.1016/0925-4439 (95)00038-6.
Mizuno Y., et al. Mitochondrial dysfunction in Parkinson’s disease. Ann Neurol. 1998 Sep; 44 (3 Suppl 1):S. 99–S. 109.
Musumeci O., et al. Familial cerebellar ataxia with muscle coenzyme Q10 deficiency. Neurology. 2001 Apr 10; 56(7):849–55.
Nakamura K. α-Synuclein and mitochondria: partners in crime? Neurotherapeutics. 2013 Jul; 10(3):391–9. Epub Mar 20. doi:10.1007/s13311-013-0182-9.
Olanow C. W., et al. The effect of deprenyl and levodopa on the progression of Parkinson’s disease. Ann Neurol. Nov 1995; 38(5):771–7. doi:10.1002/ ana.410380512.
Perfeito R., Cunha-Oliveira T., Rego A. C. Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson’s disease – resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med. 2012 Nov 1; 53(9):1791–806. doi:10.1016/j.freerad-biomed.2012.08.569.
Przedborski S., Jackson-Lewis V., Fahn S. Antiparkinsonian therapies and brain mitochondrial complex I activity. Mov Disord. May 1995; 10(3):312–7. doi:10.1002/mds.870100314.
Schapira A. H., et al. Novel pharmacological targets for the treatment of Parkinson’s disease. Nat Rev Drug Discov. 2006 Oct; 5(10):845–54. doi:10.1038/nrd2087.
Shults C. W., et al. Carbidopa/levodopa and selegiline do not affect platelet mitochondrial function in early Parkinsonism. Neurol. 1995 Feb; 45(2):344–8. doi:10.1212/WNL.45.2.344.
Shults C. W., et al. Coenzyme Q10 levels correlate with the activities of complexes I and II/III in mitochondria from parkinsonian and nonpar-kinsonian subjects. Ann Neurol. 1997 Aug. 42(2):261–4. doi:10.1002/ ana.410420221.
Shults C. W., et al. Absorption, tolerability, and effects on mitochondrial activity of oral coenzyme Q10 in parkinsonian patients. Neurology. 1998 Mar; 50(3):793–5. doi:10.1212 /WNL.50.3.793.
Shults C. W., Haas R. H., Beal M. F. A possible role of coenzyme Q10 in the etiology and treatment of Parkinson’s disease. Biofactors. 1999; 9(2–4):267–72. doi:10.1002/biof.5520090223.
Smith T. S., Parker W. D., Bennell J. P. Jr. L-dopa increases nigral production of hydroxyl radicals in vivo: potential L-dopa toxicity? Neuroreportl. 1994 Apr 14; 5(8):1009–11. doi:10.1097/00001756-199404000-00039.
Subramaniam S. R., Chesselet M. F. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol. 2013 Jul–Aug;
106–107:17–32. Epub 2013 Apr 30. doi:10.1016/j.pneurobio.2013.04.004. Thomas B., Beal M. F. Mitochondrial therapies for Parkinson’s disease. Mov Disord. 2010; 25 Suppl 1:S155–S160. doi:10.1002/mds.22781.
Trempe J. F., Fon E. A. Structure and function of Parkin, PINK1, and DJ-1, the Three Musketeers of neuroprotection. Front Neurol. 2013 Apr 19; 4:38. doi:10.3389/fneur.2013.00038.
Wu R. M., et al. Apparent antioxidant effect of L-deprenyl on hydroxyl radical generation and nigral injury elicited by MPP+ in vivo. Eur J Pharmacol. 1993 Oct 26; 243(3):241–7. doi:10.1016/0014-2999(93)90181-G.
Hroudova J., et al. Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion. 2013 Nov; 13(6):795–800. Epub May 17. doi:10.1016/j.mito.2013.05.005.
Lopresti A. L., Hood S. D., Drummond P. D. A review of lifestyle factors that contribute to important pathways associated with major depression: diet, sleep and exercise. J Affect Disord. 2013 May 15; 148(1):12–27. Epub Feb 14. doi:10.1016/j.jad.2013.01.014.
Morava E., Kozicz T. The economy of stress (mal)adaptation. Neurosci Biobehav Rev. 2013 May; 37(4):668–80. Epub 2013 Feb 13. doi:10.1016/j. neubiorev.2013.02.005.
Seibenhener M. L., et al. Behavioral effects of SQSTM1/p62 overexpression in mice: support for a mitochondrial role in depression and anxiety. Behav Brain Res. 2013 Jul 1;248:94–103. Epub Apr 13. doi:10.1016/j. bbr.2013.04.006.
Tobe E. H. Mitochondrial dysfunction, oxidative stress, and major depressive disorder. Neuropsychiatr Dis Treat. 2013; 9:567–73. Epub 2013 Apr 26. doi:10.2147/NDT.S44282.
Attwell D., Gibb A. Neuroenergetics and the kinetic design of excitatory synapses. Nat Rev Neurosci. 2005 Nov;6(11):841–9. doi:10.1038/nrn1784. Barkley R. A. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull. 1997 Jan; 121(1):65–94. doi:10.1037/0033-2909.121.1.65.
Castellanos F. X., Tannock R. Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci. 2002 Aug; 3(8):617–628. doi:10.1038/nrn896.
Charlton R. A., et al. White matter damage on diffusion tensor imaging correlates with age-related cognitive decline. Neurology. 2006 Jan 24; 66(2):217–22. doi:10.1212/01. wnl.0000194256.15247.83.
Chovanova Z., et al. Effect of polyphenolic extract, pycnogenol, on the level of 8-oxoguanine in children suffering from attention deficit/hyperactivity disorder. Free Radic Res. 2006 Sep; 40(9):1003–10. doi:10.1080/10715760600824902.
Cotter D. R., Pariante C. M., Everall I. P. Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull. 2001 Jul 15; 55(5):585–95. doi:10.1016 /S0361-9230(01)00527-5.
Dienel G. A. Astrocytic energetics during excitatory neurotransmission: what are contributions of glutamate oxidation and glycolysis? Neurochem Int. 2013 Oct; 63(4):244–58. Epub 2013 Jul 6. doi:10.1016/j. neuint.2013.06.015.
Dvorakova M., et al. The effect of polyphenolic extract from pine bark, pycnogenol on the level of glutathione in children suffering from attention deficit hyperactivity disorder (ADHD). Redox Rep. 2006; 11(4):163–72. doi:10.1179/135100006X116664.
Dvorakova M., et al. Urinary catecholamines in children with attention deficit hyperactivity disorder (ADHD): modulation by a polyphenolic extract from pine bark (pycnogenol). Nutr Neurosci. 2007 Jun–Aug;10(3–4):151–7. doi:10.1080/09513590701565443.
Ernst M., et al. Intravenous dextroamphetamine and brain glucose metabolism. Neuropsychopharmacology. 1997 Dec, 17(6):391–401. doi:10.1016/ S0893-133X(97)00088-2.
Fagundes A. O., et al. Chronic administration of methylphenidate activates mitochondrial respiratory chain in brain of young rats. Int J Dev Neurosci. 2007 Feb; 25(1):47–51. Epub 2006 Dec 22. doi:10.1016/j. ijdevneu.2006.11.001.
Gladden L. B. Lactate metabolism: a new paradigm for the third millennium. J Physiol. 2004 Jul 1;558(1):5–30.
Hansson E., Ronnback L. Altered neuronal-glial signaling in glutamatergic transmission as a unifying mechanism in chronic pain and mental fatigue. Neurochem Res. 2004 May; 29(5):989–96.
Hirst W. D., et al. Cultured astrocytes express messenger RNA for multiple serotonin receptor subtypes, without functional coupling of 5-HT1 receptor subtypes to adenylyl cyclase. Brain Res Mol Brain Res. 1998 Oct 30; 61(1–2):90–9. doi:10.1016/S0169-328X(98)00206-X.
Jessen K. R. Glial cells. Int J Biochem Cell Biol. 2004 Oct;36(10):1861–7. doi:10.1016/j.biocel.2004.02.023.
Karayanidis F., et al. ERP differences in visual attention processing between attention-deficit hyperactivity disorder and control boys in the absence of performance differences. Psychophysiology. 2000 May; 37(3):319–33. doi:10.1111/1469-8986.3730319.
Kasischke K. A., et al. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science. 2004 Jul 2; 305(5608):99– 103. doi:10.1126/science.1096485.
Klorman R., et al. Methylphenidate speeds evaluation processes of attention deficit disorder adolescents during a continuous performance test. J Abnorm Child Psychol. 1991 Jun; 19(3):263–83.
Lepine R., Parrouillet P., Camos V. What makes working memory spans so predictive of high-level cognition? Psychon Bull Rev. 2005 Feb; 12(1):165–70. Magistretti P. J., Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci. 1999 Jul 29; 354(1387):1155–63. doi:10.1098/ rstb.1999.0471.
Miyazaki I., et al. Direct evidence for expression of dopamine receptors in astrocytes from basal ganglia. Brain Res. 2004 Dec 10; 1029(1):120–3. doi:10.1016/j.brainres.2004.09.014.
Moldrich R. X., et al. Astrocyte mGlu(2/3)-mediated cAMP potentiation is calcium sensitive: studies in murine neuronal and astrocyte cultures. Neuropharmacology. 2002 Aug;43(2):189–203. doi:10.1016/S0028-3908(02)00111-9.
Ostrow L. W., Sachs F. Mechanosensation and endothelin in astrocytes – hypothetical roles in CNS pathophysiology. Brain Res Brain Res Rev. 2005 Jun; 48(3):488–508. doi:10.1016/j.brainresrev.2004.09.005.
Pellerin L. How astrocytes feed hungry neurons. Mol Neurobiol. 2005 Aug; 32(1):59–72. doi:10.1385/MN:32:1:059.
Pellerin L., Magistretti P. J. Ampakine CX546 bolsters energetic response of astrocytes: a novel target for cognitive-enhancing drugs acting as alpha-amino-3-hydroxy5-methyl-4-isoxazolepropionic acid (AMPA) receptor modulators. J Neurochem. 2005 Feb; 92(3):668–77. doi:10.1111/j.1471–4159.2004.02905.x.
Perchet C., et al. Attention shifts and anticipatory mechanisms in hyperactive children: an ERP study using the Posner paradigm. Biol Psychiatry. 2001 Jul 1; 50(1):44–57. doi:10.1016 /S0006-3223(00)01119-7.
Potgieter S., Vervisch J., Lagae L. Event related potentials during attention tasks in VLBW children with and without attention deficit disorder. Clin Neurophysiol. 2003 Oct; 114(10): 1841–9. doi:10.1016/S1388-2457(03)00198-6.
Ronnback L., Hansson E. On the potential role of glutamate transport in mental fatigue. J Neuroinflammation. 2004 Nov; 1(22).
Ross B. M., et al. Increased levels of ethane, a non-invasive marker of n-3 fatty acid oxidation, in breath of children with attention deficit hyperactivity disorder. Nutr Neurosci. 2003 Oct; 6(5):277–81. doi:10.1080/1028 4150310001612203.
Sagvolden T., et al. A dynamic developmental theory of attention-deficit/ hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci. 2005 Jun;28(3):397–419. doi:10.1017/ S0140525X05000075.
Sanchez-Abarca L. I., Tabernero A., Medina J. M. Oligodendrocytes use lactate as a source of energy and as a precursor of lipids. Glia. 2001 Dec; 36(3):321–9. doi:10.1002/glia.1119.
Sergeant J. The cognitive-energetic model: an empirical approach to attention-deficit hyperactivity disorder. Neurosci Biobehav Rev. 2000 Jan; 24(1):7–12. doi:10.1016/S0149-7634(99)00060-3.
Sergeant J. A., et al. The top and the bottom of ADHD: a neuropsychological perspective. Neurosci Biobehav Rev. 2003 Nov; 27(7):583–92. doi:10.1016/j.neubiorev.2003.08.004.
Smithee J. A., et al. Methylphenidate does not modify the impact of response frequency or stimulus sequence on performance and event-related potentials of children with attention deficit hyperactivity disorder. J Ab-norm Child Psychol. 1998 Aug; 26(4):233–45.
Sonuga-Barke E. J. The dual pathway model of AD/HD: an elaboration of neuro-developmental characteristics. Neurosci Biobehav Rev. 2003 Nov; 27(7):593–604. doi:10.1016/j. neubiorev.2003.08.005.
Sunohara G. A., et al. Effect of methylphenidate on attention in children with attention deficit hyperactivity disorder (ADHD): ERP evidence. Neuropsychopharmacology. 1999;21:218–28. doi:10.1016/S0893-133X(99)00023-8.
Todd R. D., Botteron K. N. Is attention-deficit/hyperactivity disorder an energy deficiency syndrome? Biol Psychiatry. 2001 Aug 1; 50(3):151–8. doi:10.1016/S0006-3223(01)01173-8.
Volkow N. D., et al. Differences in regional brain metabolic responses between single and repeated doses of methylphenidate. Psychiatry Res. 1998 Jul 15; 83(1):29–36. doi:10.1016 /S0925-4927(98)00025-0.
West J., et al. Response inhibition, memory and attention in boys with attention-deficit/ hyperactivity disorder. Educational Psychology. 2002; 22:533–51.
Zametkin A., et al. Cerebral glucose metabolism in adults with hyperactivity of childhood onset. N Engl J Med. 1990 Nov 15; 323(20):1361–6. doi:10.1056/NEJM199011153232001.
Aaron L. A., Buchwald D. Chronic diffuse musculoskeletal pain, fibromyalgia and co-morbid unexplained clinical conditions. Best Pract Res Clin Rheumatol. 2003 Aug;17(4):563–74. doi:10.1016/S1521-6942(03)00033-0. Baraniuk J. N., et al. A chronic fatigue syndrome – related proteome in human cerebrospinal fluid. BMC Neurol. 2005 Dec; 5:22. doi:10.1186/1471-2377-5-22.
Barnes P. R., et al. Skeletal muscle bioenergetics in the chronic fatigue syndrome. J Neurol Neurosurg Psychiatry. 1993 Jun; 56(6):679–83. doi:10.1136/jnnp.56.6.679.
Bengtsson A., Henriksson K. G. The muscle in fibromyalgia – a review of Swedish studies. J Rheumatol Suppl. 1989 Nov; 19:144–9.
Brenu E. W., et al. Immunological abnormalities as potential biomarkers in chronic fatigue syndrome/myalgic encephalomyelitis. J Transl Med. 2011 May 28; 9:81. doi:10.1186/1479-5876-9-81.
Brown M. M., Jason L. A. Functioning in individuals with chronic fatigue syndrome: increased impairment with co-occurring multiple chemical sensitivity and fibromyalgia. Dyn Med. 2007 Jul 30;6:9. doi:10.1186/1476-5918-6-9.
Buchwald D., Garrity D. Comparison of patients with chronic fatigue syndrome, fibromyalgia, and multiple chemical sensitivities. Arch Intern Med. 1994 Sep 26; 154(18):2049–53. doi:10.1001/archinte.1994.00420180053007. Castro-Marrero J., et al. Could mitochondrial dysfunction be a differentiating marker between chronic fatigue syndrome and fibromyalgia? Antioxid Redox Signal. 2013 Nov 20;19(15):1855–60. Epub Apr 22. doi:10.1089/ ars.2013.5346.
Cordero M. D., et al. Coenzyme Q(10): a novel therapeutic approach for fibromyalgia? case series with 5 patients. Mitochondrion. 2011 Jul; 11(4):623–5. doi:10.1016/j.mito.2011.03.122.
Cordero M. D., et al. Coenzyme Q10 in salivary cells correlate with blood cells in fibromyalgia: improvement in clinical and biochemical parameter after oral treatment. Clin Biochem. 2012 Apr; 45(6):509–11. doi:10.1016/j. clinbiochem.2012.02.001.
Cordero M. D., et al. Can coenzyme Q10 improve clinical and molecular parameter in fibromyalgia? Antioxid Redox Signal. 2013 Oct 20; 19(12):1356–61. Epub 2013 Mar 4. doi:10.1089/ars.2013.5260.
Cordero M. D., et al. Is inflammation a mitochondrial dysfunction-dependent event in fibromyalgia? Antioxid Redox Signal. 2013 Mar 1;18(7):800–7. doi:10.1089/ars.2012.4892.
Devanur L. D., Kerr J. R. Chronic fatigue syndrome. J Clin Virol. 2006 Nov; 37(3):139–50. doi:10.1016/j.jcv.2006.08.013.
Exley C., et al. A role for the body burden of aluminium in vaccine-associated macrophagic myofasciitis and chronic fatigue syndrome. Med Hypotheses. 2009 Feb; 72(2):135–9. doi:10.1016/j.mehy.2008.09.040.
Jammes Y., et al. Chronic fatigue syndrome: assessment of increased oxidative stress and altered muscle excitability in response to incremental exercise. J Intern Med. 2005 Mar; 257(3): 299–310. doi:10.1111/j.1365–2796.2005.01452.x.
Kennedy G., et al. Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free Radic Biol Med. 2005 Sep 1; 39(5):584–9. doi:10.1016/j.freeradbiomed.2005.04.020. Lanea R. J., et al. Heterogeneity in chronic fatigue syndrome: evidence from magnetic resonance spectroscopy of muscle. Neuromuscul Disord. 1998 May; 8(3–4):204–9. doi:10.1016/S0960 -8966(98)00021-2.
Maes M. Inflammatory and oxidative and nitrosative stress pathways underpinning chronic fatigue, somatization and psychosomatic symptoms. Curr Opin Psychiatry. 2009 Jan; 22(1):75–83
Manuel-y-Keenoy B., et al. Antioxidant status and lipoprotein peroxidation in chronic fatigue syndrome. Life Sci. 2001 Mar 16; 68(17):2037–49. doi:10.1016/S0024-3205(01)01001-3.
Meeus M., et al. The role of mitochondrial dysfunctions due to oxidative and nitrosative stress in the chronic pain or chronic fatigue syndromes and fibromyalgia patients: peripheral and central mechanisms as therapeutic targets? Expert Opin Ther Targets. 2013 Sep; 17(9): 1081–9. Epub Jul 9. doi:10.1517/14728222.2013.818657.
Miyamae T., et al. Increased oxidative stress and coenzyme Q10 deficiency in juvenile fibromyalgia: amelioration of hypercholesterolemia and fatigue by ubiquinol-10 supplementation. Redox Rep. 2013; 18(1):12–9. doi:10.1 179/1351000212Y.0000000036.
Myhill S. CFS – The central cause: mitochondrial failure [Internet]. Doctor Myhill.co.uk. [Cited 2017 June 29]. Available from: http://drmyhill. co.uk/wiki/CFS_-_The_Central_Cause: _Mitochondrial_Failure.
Myhill S., Booth N. E., McLaren-Howard J. Chronic fatigue syndrome and mitochondrial dysfunction. Int J Clin Exp Med. 2009; 2(1):1–16.
Nancy A. L., Shoenfeld Y. Chronic fatigue syndrome with autoantibodies – the result of an augmented adjuvant effect of hepatitis-B vaccine and silicone implant. Autoimmun Rev. 2008 Oct; 8(1):52–5. doi:10.1016/j. autrev.2008.07.026.
Ortega-Hernandez O. D., Shoenfeld Y. Infection, vaccination, and autoantibodies in chronic fatigue syndrome, cause or coincidence?
Ann NY Acad Sci. 2009 Sep; 1173:600–9. doi:10.1111/j.1749–6632.2009.04799.x.
Ozgocmen S., et al. Current concepts in the pathophysiology of fibromyalgia: the potential role of oxidative stress and nitric oxide. Rheumatol Int. 2006 May; 26(7):585–97. doi:10.1007 /s00296-005-0078-z.
Villanova M., et al. Mitochondrial myopathy mimicking fibromyalgia syndrome. Muscle Nerve. 1999 Feb; 22(2):289–91. doi:10.1002/(SICI)1097-4598(199902)22:2<289::AID-MUS26>3.0.CO;2-O.
Zhang C., et al. Unusual pattern of mitochondrial DNA deletions in skeletal muscle of an adult human with chronic fatigue syndrome. Hum Mol Genet. 1995;4:751–4. doi:10.1093/hmg /4.4.751.
Alikhani Z., et al. Advanced glycation end products enhance expression of pro-apoptotic genes and stimulate fibroblast apoptosis through cytoplasmic and mitochondrial pathways. J Biol Chem. 2005 Apr 1; 280(13):12087–95. doi:10.1074/jbc.M406313200.
Allister E. M., et al. UCP2 regulates the glucagon response to fasting and starvation. Diabetes. 2013 May; 62(5):1623–33. Epub 2013 Feb 22. doi:10.2337/db12-0981.
Bach D., et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem. 2003 May 9; 278(19):17190–7. doi:10.1074/jbc. M212754200.
Barbosa M. R., et al. Hydrogen peroxide production regulates the mitochondrial function in insulin resistant muscle cells: effect of catalase overexpression. Biochim Biophys Acta. 2013 Oct; 1832(10):1591–604. Epub 2013 May 2. doi:10.1016/j.bbadis.2013.04.029.
Befroy D. E., et al. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes. 2007 May; 56(5):1376–81. Epub 2007 Feb 7. doi:10.2337/db06-0783.
Feng B., Ruiz M. A., Chakrabarti S. Oxidative-stress-induced epigenetic changes in chronic diabetic complications. Can J Physiol Pharmacol. 2013 Mar; 91(3):213–20. doi:10.1139/cjpp-2012-0251.
Fiorentino T. V., et al. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des. 2013;19(32):5695–703. Epub 2013 Feb 20. doi:10.2174/138161281 1319320005.
Frohnert B. I., Bernlohr D. A. Protein carbonylation, mitochondrial dysfunction, and insulin resistance. Adv Nutr. 2013 Mar 1; 4(2):157–63. doi:10.3945/an.112.003319.
Goodpaster B. H. Mitochondrial deficiency is associated with insulin resistance. Diabetes. 2013 Apr; 62(4):1032–5. doi:10.2337/db12-1612.
Graier W. F., Malli R., Kostner G. M. Mitochondrial protein phosphorylation: instigator or target of lipotoxicity? Trends Endocrinol Metab. 2009 May; 20(4):186–93. doi:10.1016/j.tem.2009.01.004.
Hamilton J. A., Kamp F. How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids? Diabetes. 1999 Dec;48(12):2255–69. doi:10.2337/diabetes.48.12.2255.
Hesselink M. K., Schrauwen-Hinderling V, Schrauwen P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol. 2016 Nov; 12(11):633–45. Epub 2016 Jul 22. doi:10.1038/ nrendo.2016.104.
Hipkiss A. R. Aging, proteotoxicity, mitochondria, glycation, NAD and carnosine: possible inter-relationships and resolution of the oxygen paradox. Front Aging Neurosci. 2010 Mar 18;2:10. doi:10.3389/fnagi.2010.00010. Hipkiss A. R. Mitochondrial dysfunction, proteotoxicity, and aging: causes or effects, and the possible impact of NAD+-controlled protein glycation. Adv Clin Chem. 2010;50:123–50.
Ho J. K., Duclos R. I. Jr, Hamilton J. A. Interactions of acyl carnitines with model membranes: a (13) C-NMR study. J Lipid Res. 2002 Sep; 43(9):1429–39. doi:10.1194/jlr.M200137-JLR200.
Kelley D. E., Mandarino L. J. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes. 2000 May; 49(5):677–83. doi:10.2337/diabetes.49.5.677.
Kelley D. E., Simoneau J. A. Impaired free fatty acid utilization by skeletal muscle in noninsulin-dependent diabetes mellitus. J Clin Invest. 1994 Dec; 94(6):2349–56. doi:10.1172/JCI117600.
Kil I. S., et al. Glycation-induced inactivation of NADP(+)-dependent isocitrate dehydrogenase: implications for diabetes and aging. Free Radic Biol Med. 2004 Dec 1; 37(11):1765–78.
Li J. M., Shah A. M. Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol. 2004 Nov; 287(5):R1014–R1030. doi:10.1152/ajp-regu.00124.2004.
Lin J., et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002 Aug 15; 418(6899):797–801. doi:10.1038/nature00904.
Lindroos M. M., et al. m.3243A>G mutation in mitochondrial DNA leads to decreased insulin sensitivity in skeletal muscle and to progressive {betacell dysfunction. Diabetes. 2009 Mar; 58(3):543–9. doi:10.2337/db08-0981. Linnane A. W., Kovalenko S., Gingold E. B. The universality of bioenergetic disease. Age-associated cellular bioenergetic degradation and amelioration therapy. Ann NY Acad Sci. 1998 Nov 20;854:202–13. doi:10.1111/j.1749–6632.1998.tb09903.x.
Maasen J. A. Mitochondria, body fat and type 2 diabetes: what is the connection? Minerva Med. 2008 Jun; 99(3):241–51.
Maassen J. A., et al. Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes. 2004 Feb; 53 Suppl 1:S103–S109, doi:0.2337/diabetes.53.2007.S103.
Maassen J. A., et al. Mitochondrial diabetes and its lessons for common type 2 diabetes. Biochem Soc Trans. 2006; 34:819–23.
Morino K., et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest. 2005 Dec 1; 115(12):3587–93. doi:10.1172/JCI25151. Patti M. E., et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A. 2003 Jul 8; 100(14):8466–71. Epub 2003 Jun 27. doi:10.1073/pnas.1032913100.
Petersen K. F., et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003 May 16; 300(5622):1140–2. doi:10.1126/science.1082889.
Ritov V. B., et al. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes. 2005 Jan; 54(1):8–14. doi:10.2337/diabe-tes.54.1.8.
Rocha M., et al. Mitochondrial dysfunction and oxidative stress in insulin resistance. Curr Pharm Des. 2013; 19(32):5730–41. Epub Feb 20 2013.
Rocha M., et al. Perspectives and potential applications of mitochondria-targeted antioxidants in cardiometabolic diseases and type 2 diabetes. Med Res Rev. 2014 Jan; 34(1):160–89. Epub 2013 May 3. doi:10.1002/med.21285. Rovira-Llopis S., et al. Mitochondrial dynamics in type 2 diabetes: pathophysiological implications. Redox Biology. 2017 Apr; 11:637–45. doi:10.1016/j.redox.2017.01.013.
Ryu M. J. et al. Crif1 deficiency reduces adipose OXPHOS capacity and triggers inflammation and insulin resistance in mice. PLoS Genet. 2013 Mar; 9(3):e1003356. Epub 2013 Mar 14. doi:10.1371/journal.pgen.1003356. Schrauwen P., et al. Uncoupling protein 3 content is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes. 2001 Dec 1; 50(12):2870– 3. doi:10.2337/diabetes.50.12.2870.
Schrauwen P., Hesselink M. K. Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes. 2004 Jun; 53(6):1412–7. doi:10.2337/diabetes.53.6.1412.
Short K. R., et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci U S A. 2005 Apr 12; 102(15):5618–23. doi:10.1073/pnas.0501559102.
Suwa M., et al. Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J Appl Physiol (1985). 2006 Dec; 101(6):1685–92. doi:10.1152/ japplphysiol.00255.2006.
Takahashi Y., et al. Hepatic failure and enhanced oxidative stress in mitochondrial diabetes. Endocr J. 2008 Jul; 55(3):509–14. doi:10.1507/ endocrj.K07E-091.
UK Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998 Sep 12; 352(9131):837–53. doi:10.1016/S0140-6736(98)07019-6.
Vanhorebeek I., et al. Tissue-specific glucose toxicity induces mitochondrial damage in a burn injury model of critical illness. Crit Care Med. 2009 Apr; 37(4):1355–64. doi:10.1097/CCM.0b013e31819cec17.
Vidal-Puig A. J., et al. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem. 2000 May 26; 275(21):16258–66. doi:10.1074/ jbc.M910179199.
Wang X. et al. Protective effect of oleanolic acid against beta cell dysfunction and mitochondrial apoptosis: crucial role of ERK-NRF2 signaling pathway. J Biol Regul Homeost Agents. 2013 Jan–Mar; 27(1):55–67.
Weksler-Zangen S., et al. Dietary copper supplementation restores α-cell function of Cohen diabetic rats: a link between mitochondrial function and glucose stimulated insulin secretion. Am J Physiol Endocrinol Metab. 2013 May 15; 304(10):E1023–E1034. Epub 2013 Mar 19. doi:10.1152/ ajpendo.00036.2013.
Winder W. W., Hardie D. G. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol. 1999 Jul; 277(1 Pt 1):E1–E10.
Yan W., et al. Impaired mitochondrial biogenesis due to dysfunctional adiponectin AMPKPGC-1α signaling contributing to increased vulnerability in diabetic heart. Basic Res Cardiol. 2013 May;108(3):329. Epub 2013 Mar 5. doi:10.1007/s00395-013-0329-1.
Ye J. Mechanisms of insulin resistance in obesity. Front Med. 2013 Mar; 7(1):14–24. Epub 2013 Mar 9. doi:10.1007/s11684-013-0262-6.
Abdoli N., et al. Mechanisms of the statins’ cytotoxicity in freshly isolated rat hepatocytes. J Biochem Mol Toxicol. 2013 Jun; 27(6):287–94. Epub 2013 Apr 23. doi:10.1002/jbt.21485.
Anedda A., Rial E., González-Barroso M. M. Metformin induces oxidative stress in white adipocytes and raises uncoupling protein 2 levels. J Endocrinol. 2008 Oct; 199(1):33–40. Epub 2008 Aug 7. doi:10.1677/ JOE-08-0278.
Balijepalli S., Boyd M. R., Ravindranath V. Inhibition of mitochondrial complex I by haloperidol: the role of thiol oxidation. Neuropharmacology. 1999 Apr; 38(4):567–77. doi:10.1016/S0028-3908(98)00215-9.
Balijepalli S., et al. Protein thiol oxidation by haloperidol results in inhibition of mitochondrial complex I in brain regions: comparison with atypical antipsychotics. Neurochem Int. 2001, 38, 425–35. doi:10.1016/ S0197-0186(00)00108-X.
Beavis A. D. On the inhibition of the mitochondrial inner membrane anion uniporter by cationic amphiphiles and other drugs. J Biol Chem. 1989 Jan 25; 264:1508–15.
Belenky P., Camacho D., Collins J. J. Fungicidal drugs induce a common oxidative-damage cellular death pathway. Cell Rep. 2013 Feb 21; 3(2):350– 8. Epub 2013 Feb 14. doi:10.1016 /j.celrep.2012.12.021.
Berson A., et al. Steatohepatitis-inducing drugs cause mitochondrial dysfunction and lipid peroxidation in rat hepatocytes. Gastroenterology. 1998 Apr; 114(4):764–74. doi:10.1016 /S0016-5085(98)70590-6.
Brinkman K., et al. Mitochondrial toxicity induced by nucleoside-analogue reverse transcriptase inhibitors is a key factor in the pathogenesis of antiretroviral-therapy-related lipodystrophy. Lancet. 1999 Sep 25; 354(9184):1112–5. doi:10.1016/S0140-6736(99)06102-4.
Brinkman K., Kakuda T. N. Mitochondrial toxicity of nucleoside analogue reverse transcriptase inhibitors: a looming obstacle for long-term antiretroviral therapy? Curr Opin Infect Dis. 2000 Feb; 13(1):5–11.
Brown S. J., Desmond P. V. Hepatotoxicity of antimicrobial agents. Sem Liver Dis. 2002; 22(2): 157–67. doi:10.1055/s-2002-30103.
Carvalho F. S., et al. Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Med Res Rev. 2014 Jan; 34(1):106–35. Epub 2013 Mar 11. doi:10.1002 /med.21280.
Chan K., et al. Drug induced mitochondrial toxicity. Expert Opin Drug Metab Toxicol. 2005 Dec; 1(4):655–69. doi:10.1517/17425255.1.4.655.
Chen Y., et al. Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer’s amyloid peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci U S A. 2009 Mar 10; 106(10):3907–12. doi:10.1073/pnas.0807991106.
Chitturi S. M. D, George J. P. D. Hepatotoxicity of commonly used drugs: nonsteroidal antiinflam matory drugs, antihypertensives, antidiabetic agents, anticonvulsants, lipid lowering agents, psychotropic drugs. Semin Liver Dis. 2002; 22(2):169–83. doi:10.1055/s-2002-30102.
Chrysant S. G. New onset diabetes mellitus induced by statins: current evidence. Postgrad Med. 2017 May; 129(4):430–5. Epub 2017 Feb 24. do i:10.1080/00325481.2017.1292107.
Cullen J. M. Mechanistic classification of liver injury. Toxicol Pathol. 2005; 33(1):6–8. doi:10.1080 /01926230590522428.
Dong H., et al. Involvement of human cytochrome P450 2D6 in the bioactivation of acetaminophen. Drug Metab. Dispos. 2000 Dec; 28(12):1397–400. Dykens J. A., Will Y. The significance of mitochondrial toxicity testing in drug development. Drug Discov Today. 2007 Sep; 12(17–18):777–85. doi:10.1016/j.drudis.2007.07.013.
Ezoulin M. J., et al. Differential effect of PMS777, a new type of acetylcholinesterase inhibitor, and galanthamine on oxidative injury induced in human neuroblastoma SK-N-SH cells. Neurosci Lett. 2005 Dec 2; 389(2):61–5. doi:10.1016/j.neulet.2005.07.026.
Fromenty B., Pessayre D. Impaired mitochondrial function in microvesicular steatosis effects of drugs, ethanol, hormones and cytokines. J Hepatol. 1997; 26 Suppl 2:43–53. doi:10.1016 /S0168-8278(97)80496-5.
Gambelli S., et al. Mitochondrial alterations in muscle biopsies of patients on statin therapy. J. Submicrosc Cytol Pathol. 2004; 36(1):85–9.
Gvozdjakova A., et al. Coenzyme Q10 supplementation reduces corticosteroids dosage in patients with bronchial asthma. Biofactors. 2005; 25(1–4):235–40. doi:10.1002/biof.5520250129.
Han D., et al. Regulation of drug-induced liver injury by signal transduction pathways: critical role of mitochondria. Trends Pharmacol Sci. 2013 Apr; 34(4):243–53. Epub 2013 Feb 27. doi:10.1016/j.tips.2013.01.009.
Jaeschke H., Bajt M. L. Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci. 2006 Jan; 89(1):31–41. doi:10.1093/toxsci/kfi336.
Kalghatgi S., et al. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci Transl Med. 2013 Jul 3; 5(192):192ra85. doi:10.1126 /scitranslmed.3006055.
Lambert P., et al. Chronic lithium treatment decreases neuronal activity in the nucleus accumbens and cingulate cortex of the rat. Neuropsychopharmacology. 1999; 21:229–37. doi:10.1016/S0893-133X(98)00117-1.
Lee W. M. Acetaminophen and the US acute liver failure study group: lowering the risks of hepatic failure. Hepatology. 2004 Jul; 40(1):6–9. doi:10.1002/hep.20293.
Levy H. B., Kohlhaas H. K. Considerations for supplementing with coenzyme Q10 during statin therapy. Ann Pharmacother. 2006 Feb; 40(2):290– 4. doi:10.1345/aph.1G409.
Mansouri A., et al. Tacrine inhibits topoisomerases and DNA synthesis to cause mitochondrial DNA depletion and apoptosis in mouse liver. Hepatology. 2003 Sep; 38(3):715–25. doi:10.1053/jhep.2003.50353.
Masubuchi Y., Suda C., Horie T. Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. J Hepatol. 2005 Jan; 42(1):110–6. doi:10.1016 /j.jhep.2004.09.015.
Maurer I., Moller H. J. Inhibition of complex I by neuroleptics in normal human brain cortex parallels the extrapyramidal toxicity of neuroleptics. Mol Cell Biochem. 1997 Sep; 174(1–2):255–9.
Mikus C. R., et al. Simvastatin impairs exercise training adaptations. J Am Coll Cardiol. 2013 Aug 20; 62(8):709–14. Epub 2013 Apr 10. doi:10.1016/j. jacc.2013.02.074.
Modica-Napolitano J. S., et al. Differential effects of typical and atypical neuroleptics on mitochondrial function in vitro. Arch Pharm Res. 2003 Nov; 26(11):951–9.
Mohamed T. M., Ghaffar H. M., El Husseiny R. M. Effects of tramadol, clonazepam, and their combination on brain mitochondrial complexes. Toxicol Ind Health. 2015 Dec; 31(12): 1325–33. Epub 2013 Jul 10. doi:10.1177/0748233713491814.
Musavi S., Kakkar P. Diazepam induced early oxidative changes at the subcellular level in rat brain. Mol Cell Biochem. 1998 Jan; 178(1–2):41–6.
Neustadt J., Pieczenik S. R. Medication-induced mitochondrial damage and disease. Mol Nutr Food Res. 2008 Jul; 52(7):780–8. doi:10.1002/ mnfr.200700075.
Olsen E. A., Brambrink A. M. Anesthetic neurotoxicity in the newborn and infant. Curr Opin Anaesthesiol. 2013 Oct; 26(5):535–42. Epub 2013 Aug 29. doi:10.1097/01.aco.0000433061.59939.b7.
Reid A. B., et al. Mechanisms of acetaminophen-induced hepatotoxicity: role of oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes. J Pharmacol Exp Ther. 2005 Feb; 312(2):509–16. doi:10.1124/jpet.104.075945.
Roberton A. M., Ferguson L. R., Cooper G. J. Biochemical evidence that high concentrations of the antidepressant amoxapine may cause inhibition of mitochondrial electron transport. Toxicol Appl Pharmacol. 1988 Mar 30; 93(1):118–26. doi:10.1016/0041-008X(88)90031-2.
Shah N. L., Gordon F. D. N-acetylcysteine for acetaminophen overdose: when enough is enough. Hepatology. 2007 Sep; 46(3):939–41.
Sirvent P., et al. Simvastatin induces impairment in skeletal muscle while heart is protected. Biochem Biophys Res Commun. 2005 Dec 23; 338(3):1426–34. doi:10.1016/j.bbrc.2005.10.108.
Sirvent P., et al. Simvastatin triggers mitochondria-induced Ca2+ signaling alteration in skeletal muscle. Biochem Biophys Res Commun. 2005 Apr 15;329(3):1067–75. doi:10.1016/j.bbrc.2005.02.070.
Souza M. E., et al. Effect of fluoxetine on rat liver mitochondria. Biochem Pharmacol. 1994 Aug 3; 48(3):535–41. doi:10.1016/0006-2952(94)90283-6.
Vaughan R. A., et al. Ubiquinol rescues simvastatin-suppression of mitochondrial content, function and metabolism: implications for statin-induced rhabdomyolysis. Eur J Pharmacol. 2013 Jul 5; 711(1–3):1–9. Epub 2013 Apr 24. doi:10.1016/j.ejphar.2013.04.009.
Velho J. A., et al. Statins induce calcium-dependent mitochondrial permeability transition. Toxicology. 2006 Feb; 219(1–3):124–32.
Wang M. Y., Sadun A. A. Drug-related mitochondrial optic neuropathies. J Neuroophthalmol. 2013 Jun;33(2):172–8. doi:10.1097/ WNO.0b013e3182901969.
Westwood F. R., et al. Statin-induced muscle necrosis in the rat: distribution, development, and fibre selectivity. Toxicol Pathol. 2005; 33(2):246–57. doi:10.1080/01926230590908213.
Xia Z., et al. Changes in the generation of reactive oxygen species and in mitochondrial membrane potential during apoptosis induced by the antidepressants imipramine, clomipramine, and citalopram and the effects on these changes by Bcl-2 and BclX(L). Biochem Pharmacol. 1999 May 15; 57(10):1199–208.
Xue S. Y., et al. Nucleoside reverse transcriptase inhibitors induce a mitophagy-associated endothelial cytotoxicity that is reversed by coenzyme Q10 cotreatment. Toxicol Sci. 2013 Aug;134(2):323–34. Epub 2013 May 2. doi:10.1093/toxsci/kft105.
Yousif W. Microscopic studies on the effect of alprazolam (Xanax) on the liver of mice. Pak J Biol Sci. 2002; 5(11):1220–5. doi:10.3923/ pjbs.2002.1220.1225.
Zhao C., Shichi H. Prevention of acetaminophen-induced cataract by a combination of diallyl disulfide and N-acetylcysteine. J Ocul Pharmacol Ther. 1998 Aug; 14(4):345–55. doi:10.1089 /jop.1998.14.345.
Bainbridge, L. Understanding and coping with mitochondrial disease. Hamilton, ON: Hamilton Health Sciences; 2010.
Bertini E., D’Amico A. Mitochondrial encephalomyopathies and related syndromes [review]. Endocr Dev. 2009; 14:38–52.
Debray F. G., Lambert M., Mitchell G. A. Disorders of mitochondrial function. Curr Opin Pediatr. 2008 Aug; 20(4):471–82. doi:10.1097/ MOP.0b013e328306ebb6.
DiMauro S., Schon E. A. Mitochondrial respiratory-chain diseases. N Engl J Med. 2003 Jun; 348(26):2656–68. doi:10.1056/NEJMra022567.
DiMauro S., et al. Diseases of oxidative phosphorylation due to mtDNA mutations. Semin Neurol. 2001 Sep; 21(3):251–60. doi:10.1055/s-2001-17942. Finsterer J. Leigh and Leigh-like syndrome in children and adults. Pediatr Neurol. 2008 Oct; 39(4):223–35. doi:10.1016/j.pediatrneurol.2008.07.013.
Folkers K., Simonsen R. Two successful double-blind trials with coenzyme Q10 (vitamin Q10) on muscular dystrophies and neurogenic atrophies. Biochim Biophys Acta. 1995 May 24; 1271(1):281–6.
Goldstein A. C., Bhatia P., Vento J. M. Mitochondrial disease in childhood: nuclear encoded. Neuro-therapeutics. 2013 Apr; 10(2):212–26. Epub Mar 21 2013. doi:10.1007/s13311-013-0185-6.
Kisler J. E., Whittaker R. G., McFarland R. Mitochondrial diseases in childhood: a clinical approach to investigation and management. Dev Med Child Neurol. 2010 May; 52(5):422–33. doi:10.1111/j.1469–8749.2009.03605.x.
Koenig M. K. Presentation and diagnosis of mitochondrial disorders in children. Pediatr Neurol. 2008 May; 38(5):305–13. doi:10.1016/j.pediatr-neurol.2007.12.001.
Li H., et al. Comparative bioenergetic study of neuronal and muscle mitochondria during aging. Free Radic Biol Med. 2013 Oct; 63:30–40. Epub Apr 30 2013. doi:10.1016/j.freeradbiomed.2013.04.030.
Lodi R., et al. Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich’s ataxia. Ann Neurol. 2001 May 1; 49(5):590–6. doi:10.1002/ana.1001.
McFarland R., Taylor R. W, Turnbull D. M. A neurological perspective on mitochondrial disease. Lancet Neurol. 2010 Aug; 9(8):829–840. doi:10.1016/S1474-4422(10)70116-2.
Siciliano G., et al. Functional diagnostics in mitochondrial diseases. Biosci Rep. 2007 Jun; 27(1–3):53–67. doi:10.1007/s10540-007-9037-0.
Sproule D. M., Kaufmann P. Mitochondrial encephalopathy, lactic acidosis, and strokelike episodes: basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome. Ann NY Acad Sci. 2008 Oct; 1142:133–58. doi:10.1196/annals.1444.011.
Tarnopolsky M. A, Raha S. Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options. Med Sci Sports Exerc. 2005 Dec; 37(12):2086–93.
Taylor R. W., Turnbull D. M. Mitochondrial DNA mutations in human disease. Nat Rev Genet. 2005 May; 6(5):389–402. doi:10.1038/nrg1606.
Thorburn D. R. Mitochondrial disorders: prevalence, myths and advances. J Inherit Metab Dis. 2004; 27(3):349–62. doi:10.1023/ B: BOLI.0000031098.41409.55.
Tuppen H. A., et al. Mitochondrial DNA mutations and human disease. Biochim Biophys Acta. 2010 Feb; 1797(2):113–28. doi:10.1016/j.bba-bio.2009.09.005.
Uitto J., Bernstein E. F. Molecular mechanisms of cutaneous aging: connective tissue alterations in the dermis. J Investig Dermatol Symp Proc. 1998 Aug; 3(1):41–4.
Waller J. M., Maibach H. I. Age and skin structure and function, a quantitative approach (II): protein, glycosaminoglycan, water, and lipid content and structure. Skin Res Technol. 2006 Aug; 12(3):145–54. doi:10.1111/j.0909752X.2006.00146.x.
Bai U., et al. Mitochondrial DNA deletions associated with aging and possibly presbycusis: a human archival temporal bone study. Am J Otol. 1997 Jul;18(4):449–53.
Chen F. Q., et al. Mitochondrial peroxiredoxin 3 regulates sensory cell survival in the cochlea. PLoS One. 2013 Apr 23; 8(4):e61999. doi:10.1371/ journal.pone.0061999.
Dahl H. H., et al. Etiology and audiological outcomes at 3 years for 364 children in Australia. PLoS One. 2013;8(3):e59624. Epub 2013 Mar 28. doi:10.1371/journal.pone.0059624.
Ding Y., et al. The role of mitochondrial DNA mutations in hearing loss. Biochem Genet. 2013 Aug;51(7–8):588–602. Epub Apr 21 2013. doi:10.1007/s10528-013-9589-6.
Granville D. J., Gottlieb R. A. Mitochondria: Regulators of cell death and survival. Scientific World Journal. 2002 Jun 11; 2:1569–78. doi:10.1100/ tsw.2002.809.
Han C., Someya S. Maintaining good hearing: calorie restriction, Sirt3, and glutathione. Exp Gerontol. 2013 Oct 1; 48(10):1091–5. Epub 2013 Feb 20. doi:10.1016/j.exger.2013.02.014. Johnsson LG, Hawkins JE Jr. Vascular changes in the human inner ear associated with aging. Ann Otol Rhinol Laryngol. 1972 Jun; 81(3):364–76. doi:10.1177/000348947208100307.
Komlosi K., et al. Non-syndromic hearing impairment in a Hungarian family with the m.7510T>C mutation of mitochondrial tRNA(Ser(UCN)) and review of published cases. JIMD Rep. 2013; 9:105–11. Epub 2012 Nov 2. doi:10.1007/8904_2012_187.
Lin F. R., et al. Hearing loss and cognitive decline in older adults. JAMA Intern Med. 2013; 173(4):293–9. doi:10.1001/jamainternmed.2013.1868. Luo L. F., Hou C. C., Yang W. X. Nuclear factors: roles related to mitochondrial deafness. Gene. 2013 May 15;520(2):79–89. Epub 2013 Mar 17. doi:10.1016/j.gene.2013.03.041.
Miller J. M., Marks N. J., Goodwin P. C. Laser Doppler measurements of cochlear blood flow. Hearing Res. 1983 Sep;11(3):385–94.
Seidman M. D. Effects of dietary restriction and antioxidants on presbycusis. Laryngoscope. 2000 May;110(5 pt 1):727–38. doi:10.1097/00005537-200005000-00003.
Seidman M. D., et al. Age related differences in cochlear microcirculation and auditory brain stem responses. Arch Otolaryngol Head Neck Surg. 1996 Nov; 122(11):1221–6. doi:10.1001 /archotol.1996.01890230067013. Seidman M. D., et al. Mitochondrial DNA deletions associated with aging and presbycusis. Arch Otolaryngol Head Neck Surg. 1997 Oct; 123(10):1039–45.
Seidman M. D., et al. Biologic activity of mitochondrial metabolites on aging and age-related hearing loss. Am J Otol. 2000 Mar; 21(2):161–7.
Seidman M. D., Moneysmith M. Save your hearing now. New York: Warner Books; 2006.
Semsei I., Rao G., Richardson A. Changes in the expression of superoxide dismutase and catalase as a function of age and dietary restriction. Biochem Biophys Res Commun. 1989 Oct 31; 164(2):620–5. doi:10.1016/0006-291X(89)91505-2.
Wallace D. C. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science. 1992 May 1; 256(5057):628–32. doi:10.1126/ science.1533953.
Yamasoba T., et al. Current concepts in age-related hearing loss: epidemiology and mechanistic pathways. Hear Res. 2013 Sep;303:30–8. Epub 2013 Feb 16. doi:10.1016/j.heares.2013.01.021.
Yelverton J. C., et al. The clinical and audiologic features of hearing loss due to mitochondrial mutations. Otolaryngol Head Neck Surg. 2013 Jun; 148(6):1017–22. Epub 2013 Mar 22. doi:10.1177/0194599813482705.
Balin A. K., Pratt L. A. Physiological consequences of human skin aging. Cutis. 1989 May; 43(5):431–6.
Blatt T., et al. Stimulation of skin’s energy metabolism provides multiple benefits for mature human skin. Biofactors. 2005; 25(1–4):179–85. doi:10.1002/biof.5520250121.
Greco M., et al. Marked aging-related decline in efifciency of oxidative phosphorylation in human skin fibroblasts. FASEB J. 2003 Sep;17(12):1706–8. doi:10.1096/fj.02-1009fje.
Kagan J., Srivastava S. Mitochondria as a target for early detection and diagnosis of cancer. Crit Rev Clin Lab Sci. 2008; 42(5–6):453–72. doi:10.1080/10408360500295477.
Kleszczynski K., Fischer T. W. Melatonin and human skin aging. Dermatoendocrinol. 2012 Jul 1; 4(3):245–52. doi:10.4161/derm.22344.
Kurban R. S., Bhawan J. Histologic changes in skin associated with aging. J Dermatol Surg Oncol. 1990 Oct; 16(10):908–14.
Navarro A., Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol. 2007 Feb; 292(2):C670–C686. Epub 2006 Oct 4. doi:10.1152 /ajpcell.00213.2006.
Passi S., et al. Lipophilic antioxidants in human sebum and aging. Free Radic Res. 2002 Apr; 36(4):471–7.
Passi S., et al. The combined use of oral and topical lipophilic antioxidants increases their levels both in sebum and stratum corneum. Biofactors. 2003; 18(1–4):289–97. doi:10.1002 /biof.5520180233.
Rusciani L., et al. Low plasma coenzyme Q10 levels as an independent prognostic factor for melanoma progression. J Am Acad Dermatol. 2006 Feb; 54(2):234–41. doi:10.1016 /j.jaad.2005.08.031.
Treiber N., et al. The role of manganese superoxide dismutase in skin aging. Dermatoendocrinol. 2012 Jul 1; 4(3):232–5. doi:10.4161/derm.21819. Uitto J., Bernstein E. F. Molecular mechanisms of cutaneous aging: connective tissue alterations in the dermis. J Investig Dermatol Symp Proc. 1998 Aug;3(1):41–4.
Waller J. M., Maibach H. I. Age and skin structure and function, a quantitative approach (II): protein, glycosaminoglycan, water, and lipid content and structure. Skin Res Technol. 2006 Aug; 12(3):145–54. doi:10.1111/j.0909-
752X.2006.00146.x.
Al Rawi S., et al. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science. 2011 Nov 25; 334(6059):1144–7. Epub 2011 Oct 27. doi:10.1126/science.1211878.
Baylis F. The ethics of creating children with three genetic parents. Reprod Biomed Online. 2013 Jun; 26(6):531–4. Epub 2013 Mar 26. doi:10.1016/j. rbmo.2013.03.006.
Chappel S. The role of mitochondria from mature oocyte to viable blastocyst. Obstet Gynecol Int. 2013:1–10. Epub 2013 May 16. doi:10.1155/2013/183024.
Colagar A. H., et al. T4216C mutation in NADH dehydrogenase I gene is associated with recurrent pregnancy loss. Mitochondrial DNA. 2013 Oct; 24(5):610–2. Epub 2013 Mar 6. doi:10.3109/19401736.2013.772150. Cotterill M., et al. The activity and copy number of mitochondrial DNA in ovine oocytes throughout oogenesis in vivo and during oocyte maturation in vitro. Mol Hum Reprod. 2013 Jul; 19(7):444–50. Epub 2013 Mar 5. doi:10.1093/molehr/gat013.
Eichenlaub-Ritter U. Oocyte aging and its cellular basis. Int J Dev Biol. 2012; 56(10–12):841–52. doi:10.1387/ijdb.120141ue.
Grindler N. M., Moley K. H. Maternal obesity, infertility and mitochondrial dysfunction: potential mechanisms emerging from mouse model systems. Mol Hum Reprod. 2013 Aug; 19(8): 486–94. Epub 2013 Apr 23. doi:10.1093/molehr/gat026.
Kang E., et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature. 2016 Dec 8;540(7632):270–5. doi:10.1038/nature20592.
Latorre-Pellicer A., et al. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature. 2016 Jul 28; 535(7613):561–5. Epub 2016 Jul 6. doi:10.1038/nature 18618.
Pang W., et al. Low expression of Mfn2 is associated with mitochondrial damage and apoptosis in the placental villi of early unexplained miscarriage. Placenta. 2013 Jul; 34(7):613–8. Epub 2013 Apr 17. doi:10.1016/j. placenta.2013.03.013.
Sato M., Sato K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science. 2011 Nov 25; 334(6059):1141–4. doi:10.1126/science.1210333.
Tillett T. Potential mechanism for PM10 effects on birth outcomes: in utero exposure linked to mitochondrial DNA damage. Environ Health Perspect. 2012 Sep; 120(9):A363. doi:10.1289 /ehp.120-a363b.
Zuccotti M., Redi C. A., Garagna S. Study an egg today to make an embryo tomorrow. Int J Dev Biol. 2012; 56(10–12):761–4. doi:10.1387/ ijdb.130027mz.
Banerjee D., et al. Mitochondrial genome analysis of primary open angle glaucoma patients. PLoS One. 2013 Aug 5; 8(8):e70760. doi:10.1371/ journal.pone.0070760.
Blasiak J., et al. Mitochondrial and nuclear DNA damage and repair in age-related macular degeneration. Int J Mol Sci. 2013 Feb;14(2):2996–3010. Epub 2013 Jan 31. doi:10.3390 /ijms14022996.
Chen S. D., Wang L., Zhang X. L. Neuroprotection in glaucoma: present and future. Chin Med J (Engl). 2013 Apr; 126(8):1567–77. doi:10.3760/ cma.j.issn.0366–6999.20123565.
Ghiso J. A., et al. Alzheimer’s disease and glaucoma: mechanistic similarities and differences. J Glaucoma. 2013 Jun–Jul; 22 Suppl 5:S36–S38. doi:10.1097/IJG.0b013e3182934af6.
Izzotti A., et al. Mitochondrial damage in the trabecular meshwork of patients with glaucoma. Arch Ophthalmol. 2010 Jun; 128(6):724–30. doi:10.1001/archophthalmol.2010.87.
Lee V., et al. Vitamin D rejuvenates aging eyes by reducing inflammation, clearing amyloid beta and improving visual function. Neurobiol Aging. 2012 Oct; 33(10):2382–9. Epub 2012 Jan 2. doi:10.1016/j.neurobiolag-ing.2011.
Wang M. Y., Sadun A. A. Drug-related mitochondrial optic neuropathies. J Neuroophthalmol. 2013 Jun;33(2):172–8. doi:10.1097/ WNO.0b013e3182901969.
Conboy I. M., Rando T. A. Aging, stem cells and tissue regeneration: lessons from muscle. Cell Cycle. 2005 Mar; 4(3):407–10. doi:10.4161/cc.4.3.1518. Flynn J. M., Melov S. SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radic Biol Med. 2013 Sep; 62:4–12. Epub May 29 2013. doi:10.1016/j.freeradbiomed.2013.05.027.
Garcia M. L., Fernandez A., Solas M. T. Mitochondria, motor neurons and aging. J Neurol Sci. 2013 Jul 15. Epub 2013 Apr 26. doi:10.1016/j. jns.2013.03.019.
Hosoe K., et al. Study on safety and bioavailability of ubiquinol (Kaneka QH) after single and 4-week multiple oral administration to healthy volunteers. Regul Toxicol Pharmacol. 2007 Feb; 47(1):19–28. doi:10.1016/j. yrtph.2006.07.001.
Katajisto P., et al. Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science. 2015 Apr 17; 348(6232):340–3. Epub 2015 Apr 2. doi:10.1126/sci-ence.1260384.
Sahin E., DePinho R. A. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature. 2010 Mar 25;464(7288):520–8. doi:0.1038/nature08982.
Adams J. S., Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998 Aug 28; 281(5318):1322–6.
Brown J. M. Tumor microenvironment and the response to anticancer therapy. Cancer Biol Ther. 2002 Sep–Oct; 1(5):453–8. doi:10.4161/ cbt.1.5.157.
Bui T., Thompson C. B. Cancer’s sweet tooth. Cancer Cell. 2006 Jun; 9(6):419–20. doi:10.1016 /j.ccr.2006.05.012.
Carracedo A., Cantley L. C., Pandolfi P. P. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer. 2013 Apr; 13(4):227–32. Epub 2013 Feb 28. doi:10.1038/nrc3483.
Christofferson, T. Tripping over the truth: how the metabolic theory of cancer is overturning one of medicine’s most entrenched paradigms. White River Junction, VT: Chelsea Green Publishing; 2017.
Dalla Via L., et al. Mitochondrial permeability transition as target of anticancer drugs. Curr Pharm Des. 2014; 20(2):223–44. Epub 2013 May 16. Davila A. F., Zamorano P. Mitochondria and the evolutionary roots of cancer. Phys Biol. 2013 Apr; 10(2):026008. Epub 2013 Mar 22. doi:10.1088/1478-3975/10/2/026008.
DeBerardinis R. J., et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A. 2007 Dec 4; 104(49):19345–50. doi:10.1073/pnas.0709747104.
DeBerardinis R. J., et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008 Jan; 7(1):11–20. doi:10.1016/j.cmet.2007.10.002.
Fantin V. R., St-Pierre J., Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006 Jun; 9(6):425–34. doi:10.1016/j.ccr.2006.04.023. Gottfried E., et al. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood. 2006 Mar 1; 107(5):2013–21. doi:10.1182/blood-2005-05-1795.
Gottlieb E., Tomlinson I. P. Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer. 2005 Nov; 5(11):857–66. doi:10.1038/nrc1737.
He X., et al. Suppression of mitochondrial complex I influences cell metastatic properties. PLoS One. 2013 Apr 22; 8(4):e61677. doi:10.1371/ journal.pone.0061677.
Hoang B. X., et al. Restoration of cellular energetic balance with L-carnitine in the neurobioenergetic approach for cancer prevention and treatment. Med Hypotheses. 2007; 69(2): 262–72. doi:10.1016/j.mehy.2006.11.049. Hung W. Y., et al. Somatic mutations in mitochondrial genome and their potential roles in the progression of human gastric cancer. Biochim Biophys Acta. 2010 Mar; 1800(3):264–70. doi:10.1016/j.bba-gen.2009.06.006.
Ishikawa K., et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 2008 May 2; 320(5876):661–4. doi:10.1126/science.1156906.
Kiebish M. A., et al. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer. J Lipid Res. 2008 Dec; 49(12):2545–66. doi:10.1194/jlr.M800319-JLR200.
Kroemer G., Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008 Jun; 13(6):472–82. doi:10.1016/j.ccr.2008.05.005.
Kulawiec M., Owens K. M., Singh K. K. Cancer cell mitochondria confer apoptosis resistance and promote metastasis. Cancer Biol Ther. 2009 Jul; 8(14):1378–85.
Ladiges W., et al. A mitochondrial view of aging, reactive oxygen species and metastatic cancer. Aging Cell. 2010 Aug; 9(4):462–5. doi:10.1111/ j.1474–9726.2010.00579.x.
Lee H. C., Chang C. M., Chi C. W. Somatic mutations of mitochondrial DNA in aging and cancer progression. Ageing Res Rev. 2010 Nov; 9 Suppl 1:S47–S58. doi:10.1016/j.arr.2010.08.009.
Li X., et al. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol. 2013 Feb 25; 6(1):19. Epub. doi:10.1186/1756-8722-6-19.
Lin C. C., et al. Loss of the respiratory enzyme citrate synthase directly links the Warburg effect to tumor malignancy. Sci Rep. 2012; 2:785. Epub 2012 Nov 8. doi:10.1038/srep00785.
Ma Y., et al. Mitochondrial dysfunction in human breast cancer cells and their transmitochondrial cybrids. Biochim Biophys Acta. 2010 Jan; 1797(1):29–37. doi:10.1016 /j.bbabio.2009.07.008.
Modica-Napolitano J. S., Kulawiec M., Singh K. K. Mitochondria and human cancer. Curr Mol Med. 2007 Feb; 7(1):121–31. doi:10.2174/156652 407779940495.
Nicolson G. L., Conklin K. A. Reversing mitochondrial dysfunction, fatigue and the adverse effects of chemotherapy of metastatic disease by molecular replacement therapy. Clin Exp Metastasis. 2008; 25(2):161–9. doi:10.1007/s10585-007-9129-z.
Ordys B. B., et al. The role of mitochondria in glioma pathophysiology. Mol Neurobiol. 2010 Aug; 42(1):64–75. doi:10.1007/s12035-010-8133-5. Parr R., et al. Mitochondria and cancer. Biomed Res Int. 2013; 2013:763703:1–2. Epub 2013 Jan 30. doi:10.1155/2013/763703.
Peck B, Ferber E. C., Schulze A. Antagonism between FOXO and MYC regulates cellular powerhouse. Front Oncol. 2013 Apr 25; 3:96. doi:10.3389/ fonc.2013.00096.
Pelicano H., et al. Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol. 2006 Dec 18; 175 (6):913–23. doi:10.1083/jcb.200512100.
Pratheeshkumar P., Thejass P., Kutan G. Diallyl disulfide induces caspase-dependent apoptosis via mitochondria-mediated intrinsic pathway in B16F-10 melanoma cells by up-regulating p53, caspase-3 and downregulating pro-inflammatory cytokines and nuclear factor-kB mediated Bcl-2 activation. J Environ Pathol Toxicol Oncol. 2010; 29(2):113–25. doi:10.1080 /01635581.2012.721156.
Ralph S. J., et al. The causes of cancer revisited: “mitochondrial malignancy” and ROSinduced oncogenic transformation – why mitochondria are targets for cancer therapy. Mol Aspects Med. 2010 Apr; 31(2):145–70. doi:10.1016/j.mam.2010.02.008.
Ramos-Montoya A., et al. Pentose phosphate cycle oxidative and nonoxidative balance: a new vulnerable target for overcoming drug resistance in cancer. Int J Cancer. 2006 Dec 15; 119(12):2733–41. doi:10.1002/ ijc.22227.
Ray S., Biswas S., Ray M. Similar nature of inhibition of mitochondrial respiration of heart tissue and malignant cells by methylglyoxal. A vital clue to understand the biochemical basis of malignancy. Mol Cell Biochem. 1997 Jun; 171(1–2):95–103.
Shidara Y., et al. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res. 2005 Mar 1; 65(5): 1655–63. doi:10.1158/0008-5472.CAN-04-2012.
Singh K. K. Mitochondrial dysfunction is a common phenotype in aging and cancer. Ann NY Acad Sci. 2004 Jun;1019: 260–4. doi:10.1196/an-nals.1297.043.
Sotgia F., Martinez-Outschoorn U. E., Lisanti M. P. Cancer metabolism: new validated targets for drug discovery. Oncotarget. 2013 Aug; 4(8):1309– 16. Epub 2013 Jul 22. doi:10.18632 /oncotarget.1182.
Walenta S., Mueller-Klieser W. F. Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol. 2004 Jul; 14(3):267–74. doi:10.1016/j. semradonc.2004.04.004.
Walenta S., et al. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 2000 Feb 15;60(4):916–21.
Wallace D. C. Mitochondria and cancer: Warburg addressed. Cold Spring Harb Symp Quant Biol. 2005;70:363–74. doi:10.1101/sqb.2005.70.035.
Warburg O. On the origin of cancer cells. Science. 1956 Feb 24; 123(3191):309–14. doi:10.1126 /science.123.3191.309.
Wenzel U., Daniel H. Early and late apoptosis events in human transformed and nontransformed colonocytes are independent on intracellular acidification. Cell Physiol Biochem. 2004; 14 (1–2):65–76. doi:10.1159/000076928.
Wenzel U., Nickel A., Daniel H. Increased carnitine-dependent fatty acid uptake into mitochondria of human colon cancer cells induces apoptosis. J Nutr. 2005 Jun; 135(6):1510–4.
Wigfield S. M., et al. PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer. Br J Cancer. 2008 Jun 17; 98(12):1975–84. doi:10.1038/sj.bjc.6604356.
Adachi K., et al. A deletion of mitochondrial DNA in murine doxorubicin-induced cardiotoxicity. Biochem Biophys Res Comm. 1993 Sep 15; 195(2):945–51. doi:10.1006/bbrc.1993.2135.
Adachi K., et al. Suppression of the hydrazine-induced formation of megamitochondria in the rat liver by coenzyme Q10. Toxicol Pathol. 1995 Nov 1; 23(6):667–76.
Arbustini E., et al. Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. Am J Pathol. 1998 Nov; 153(5):1501–10. doi:10.1016/S0002-9440 (10)65738-0.
Cellular nutrition for vitality and longevity. Life Extension [internet]. 2000 April [cited 2017 Aug]; 24–28. Available from: http://www.lifeextension. com/magazine/2000/4/cover2/page-01.
DiMauro S., et al. Mitochondria in neuromuscular disorders. Biochim Biophys Acta. 1998 Aug 10; 1366(1–2):199–210. doi:10.1016/S0005-2728(98)00113-3.
Esposito L. A., et al. Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci U S A. 1999 Apr 27; 96(9):4820–5.
Fontaine E., Ichas F., Bernardi P. A ubiquinone-binding site regulates the mitochondrial permeability transition pore. J Biol Chem. 1998; 273:25734–40. Fontaine E., et al. Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation by electron flow through the respiratory chain complex i. J Biol Chem. 1998 May 15; 273(20):12662–8.
Geromel V., et al. The consequences of a mild respiratory chain deficiency on substrate competitive oxidation in human mitochondria. Biochem Biophys Res Comm. 1997 Aug; 236:643–6.
Karbowski M., et al. Free radical-induced megamitochondria formation and apoptosis. Free Radic Biol Med. 1999 Feb; 26(3–4):396–409. doi:10.1016/S0891-5849(98)00209-3.
Kopsidas G., et al. An age-associated correlation between cellular bioenergy decline and mtDNA rearrangements in human skeletal muscle. Mutat Res. 1998 Oct 12; 421(1):27–36.doi:10.1016/S0027-5107(98)00150-X.
Kovalenko S. A., et al. Tissue-specific distribution of multiple mitochondrial DNA rearrangements during human aging. Ann NY Acad Sci. 1998 Nov 20;854:171–81.
Ku H. H., Brunk U. T., Sohal R. S. Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic Biol Med. 1993 Dec; 15(6):621–7.
Lass A., Agarwal S., Sohal R. S. Mitochondrial ubiquinone homologues, superoxide radical generation, and longevity in different mammalian species. J Biol Chem. 1997 Aug 1; 272:19199–204. doi:10.1074/jbc.272.31.19199. Lass A., Sohal R. S. Comparisons of coenzyme Q bound to mitochondrial membrane proteins among different mammalian species. Free Radic Biol Med. 1999; 27(1–2):220–6.
Linnane A. W., et al. Mitochondrial DNA mutations as an important contributor to aging and degenerative diseases. Lancet. 1989 Mar 25;1(8639):642–5. doi:10.1016/S0140-6736(89)92145-4.
Linnane A. W., et al. The universality of bioenergetic disease and amelioration with redox therapy. Biochim Biophys Acta. 1995 May 24; 1271(1):191– 4. doi:10.1016/0925-4439(95)00027-2.
Linnane A. W., Kovalenko S., Gingold E. B. The universality of bioenergetic disease. Age-associated cellular bioenergetic degradation and amelioration therapy. Ann NY Acad Sci. 1998 Nov 20; 854:202–13. doi:10.1111/j.1749–6632.1998.tb09903.x.
Martinucci S., et al. Ca2+-reversible inhibition of the mitochondrial megachannel by ubiquinone analogues. FEBS Lett. 2000 Sep;480:89–94. doi:10.1016/S0014-5793(00)01911-6.
Michikawa Y., et al. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science. 1999 Oct 22; 286(5440):774–9. doi:10.1126 /science.286.5440.774.
Ozawa T. Genetic and functional changes in mitochondria associated with aging. Physiol Rev. 1997 Apr; 77(2):425–64.
Richter C., et al. Control of apoptosis by the cellular ATP level. 1996 Jan 8; FEBS Lett 378(2): 107–10. doi:10.1016/0014-5793(95)01431-4.
Rosenfeldt F. L., et al. Coenzyme Q10 in vitro normalizes impaired post-ischemic contractile recovery of aged human myocardium. Fifth China International Congress on TCVS; 2000 September; Beijing, China.
Rosenfeldt F. L., et al. Response of the human myocardium to hypoxia and ischemia declines with age: correlations with increased mitochondrial DNA deletions. Ann NY Acad Sci. 1998 Nov; 854:489–90. doi:10.1111/j.1749–6632.1998.tb09938.x.
Rowland M. A., et al. Coenzyme Q10 treatment improves the tolerance of the senescent myocardium to pacing stress in the rat. Cardiovasc Res. 1998 Oct; 40(1):165–73.
Sohal R. S., Sohal B. H., Orr W. C. Mitochondrial superoxide and hydrogen peroxide generation, protein oxidative damage, and longevity in different species of flies. Free Radic Biol Med. 1995 Oct; 19(4):499–504. doi:10.1016/0891-5849(95)00037-X.
Susin S. A., et al. Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta. 1998 Aug 10; 1366(1–2):151–65. doi:10.1016/ S0005-2728(98)00110-8.
Turker M. S. Somatic cell mutations: can they provide a link between aging and cancer? Mech Aging Dev. 2000 Aug 15; 117(1–3):1–19. doi:10.1016/ S0047-6374(00)00133-0.
Wallace D. C. Mitochondrial diseases in man and mouse. Science. 1999 Mar 5; 283(5407): 1482–8. doi:10.1126/science.283.5407.1482.
Wallace D. C., et al. Mitochondrial DNA mutations in human degenerative diseases and aging. Biochim Biophys Acta. 1995 May 24; 1271(1):141–51. doi:10.1016/0925-4439(95)00021-U.
Walter L., et al. Three classes of ubiquinone analogs regulate the mitochondrial permeability transition pore through a common site. J Biol Chem. 2000 July 10; 275:29521–7. doi:10.1074 /jbc.M004128200.
Wei Y. H. Oxidative stress and mitochondrial DNA mutations in human aging. Proc Soc Exp Biol Med. 1998 Jan; 217(1):53–63.
Wei Y. H., Kao S. H., Lee H. C. Simultaneous increase of mitochondrial DNA deletions and lipid peroxidation in human aging. Ann NY Acad Sci. 1996 Jun 15; 786:24–43. doi:10.1111/j.1749–6632.1996.tb39049.x.
Wolvetang E. J., et al. Mitochondrial respiratory chain inhibitors induce apoptosis. 1994 Feb 14; 339(1–2):40–4. doi:10.1016/0014-5793(94)80380-3.
Zhang C., et al. Varied prevalence of age-associated mitochondrial DNA deletions in different species and tissues: a comparison between human and rat. Biochem Biophys Res Comm. 1997 Jan; 230(3):630–5. doi:10.1006/ bbrc.1996.6020.