Книга: Трещина в мироздании
Назад: Глава 4 Управление войсками
Дальше: Глава 6 Исцелить больных

Часть II
Задача

Глава 5
CRISPR-зоопарк

Томаты, которые могут лежать в кладовке месяц за месяцем, постепенно созревая и не портясь. Растения, которые лучше выдерживают смену климата. Комары, неспособные переносить малярию. Сверхмускулистые собаки, подходящие на роль устрашающих напарников полицейских и солдат. Коровы, у которых больше не растут рога.
Эти организмы кажутся выдуманными, но на деле они уже существуют благодаря редактированию генома. И они – лишь начало. Пока я пишу это, мир вокруг нас радикально меняется с помощью CRISPR, готовы мы к этому или нет. За следующие несколько лет эта новая биотехнология даст нам более урожайные сельскохозяйственные растения, более здоровый скот и более питательную пищу. А в течение нескольких десятилетий мы, вполне возможно, получим свиней со специально спроектированным геномом, которые будут служить донорами органов для людей, – а при желании вырастим и шерстистых мамонтов, крылатых ящеров и единорогов. Нет, я не шучу.
Меня поражает мысль о том, что мы находимся на пороге новой эры в истории земной жизни – эры, в которой люди получат беспрецедентный контроль над наборами генов самых различных видов – наших соседей по планете. Пройдет не так много времени, и CRISPR позволит нам подчинять природу своей воле именно так, как люди мечтали об этом с доисторических времен. И если эта воля будет конструктивной, то результаты окажутся потрясающими, – однако они могут также быть непредсказуемыми и даже катастрофическими.
Влияние технологии редактирования генома растений и животных уже ощущается в научном сообществе. Например, исследователям удалось использовать CRISPR для создания животных-моделей для изучения болезней человека, причем этим моделям свойственна гораздо более высокая точность и гибкость, чем раньше, – ведь это модели не только на мышах, но и на других животных, на которых лучше всего видно протекание той или иной изучаемой болезни. К примеру, для аутизма это обезьяны, для болезни Паркинсона – свиньи, а для гриппа – хорьки. Один из самых интересных аспектов технологии CRISPR – это возможности, которые она предоставляет для изучения признаков, уникальных для определенных организмов: например, регенерации конечностей у аксолотлей, старения у медак (азиатских пресноводных рыбок из семейства карпозубых) или развития скелета у ракообразных.
Мои коллеги присылают мне удивительные описания и изображения своих экспериментов с CRISPR и их результатов: красивые узоры на крыльях бабочек, генетическую подоплеку которых удалось раскрыть, или заразные дрожжи, способность которых проникать в ткани человека исследователи смогли изучили на уровне отдельных генов. Такого рода эксперименты открывают новые факты о природном мире и о генетических сходствах, связывающих все организмы. Все это невероятно интересно для меня.
На другом конце спектра возможностей – идеи настолько необычные, что их изложение больше напоминает научно-фантастический рассказ, чем статью из серьезного научного журнала. К примеру, я была совершенно поражена, узнав, что сразу несколько исследовательских групп используют CRISPR, чтобы “гуманизировать” различные гены свиней, – в надежде на то, что таким образом будет решена проблема вечной нехватки жизненно важных донорских органов: это путь к освоению ксенотрансплантации – то есть пересадки человеку органов, выращенных в свиньях (или других животных).
Иллюстрация того, какого рода эстетические изменения можно уже сегодня вносить в животных, – деятельность компаний, использующих технологии редактирования генома для создания новых “дизайнерских” домашних питомцев, к примеру микропигов, размеры которых даже во взрослом возрасте не превышают размеров небольшой собаки. А некоторые лаборатории всерьез занимаются возрождением вымерших видов – пытаются в буквальном смысле слова воскресить исчезнувшие организмы посредством клонирования и генной инженерии. Моя подруга Бет Шапиро из Калифорнийского университета в Санта-Крузе мечтает использовать эту стратегию для воссоздания вымерших видов птиц, чтобы изучить их связи с современными видами. Предпринимаются и попытки постепенно переделать геном слона в геном мамонта, используя CRISPR.
Однако, по иронии судьбы, использование CRISPR может приводить и к обратному – “насильственному вымиранию” нежелательных видов животных и болезнетворных микроорганизмов. Да, в недалеком будущем CRISPR можно будет применять для уничтожения целых видов – о таких последствиях я не могла даже и подумать, когда лишь десять лет назад моя лаборатория приступила к исследованиям в области систем адаптивного иммунитета у бактерий.
У некоторых проектов, связанных с этой и другими областями природы, есть невероятный потенциал по улучшению здоровья и уровня жизни людей. Другие же кажутся лекгомысленными, эксцентричными или даже попросту опасными. И я все больше убеждаюсь в том, что по мере того, как популярность редактирования генома стремительно растет, нам совершенно необходимо лучше понимать риски, связанные с этой технологией.
CRISPR дает нам возможность радикально и необратимо менять биосферу, в которой мы обитаем, переписать молекулы жизни так, как мы захотим. Я полагаю, что сегодня нам очень не хватает широкого публичного обсуждения всех этих возможностей – как полезных, так и опасных. Это удивительный момент в истории медико-биологических наук, но мы не должны позволять себе витать в облаках. Важно помнить, что, хотя у CRISPR есть огромный и неоспоримый потенциал улучшения нашего мира, вмешательство в генетические основы нашей экосистемы может иметь также и непредвиденные последствия. На нас лежит ответственность за то, чтобы заранее просчитать все возможные варианты развития событий и организовать глобальный, публичный и инклюзивный диалог о том, как нам использовать редактирование генома наилучшим образом, пока не стало слишком поздно.

 

В 2004 году группа европейских ученых разгадала загадку, долгое время занимавшую умы агрономов, выращивающих ячмень. Исследователи выявили генные мутации, благодаря которым растение становилось устойчивым к вредоносному грибку, который вызывает настоящую мучнистую росу – болезнь, уже долгое время досаждавшую фермерам, которые выращивают элитные сорта ячменя по всей Европе. Мутантная линия ячменя, устойчивая перед грибком, вела свою историю от семян из зернохранилищ в Юго-Западной Эфиопии, добытых в ходе немецких экспедиций конца 1930-х годов. Именно на территории Эфиопии через некоторое время после одомашнивания ячменя (это было около 10 000 лет назад) случайно возникла мутантная версия гена под названием Mlo; этот сорт и был отобран крестьянами, которые, естественно, хотели культивировать как можно более урожайные растения, которые при этом были бы максимально здоровыми.
Это наглядный пример эволюции, на которую повлиял человек: спонтанная мутация, которая закрепилась благодаря искусственному, а не естественному отбору. Именно так и развивалось сельское хозяйство в течение тысячелетий. В 1901 году агроном-новатор Лютер Бербанк сказал в одном из своих выступлений, что виды не являются чем-то фиксированным и неизменным:
Они так же пластичны в наших руках, как глина в руках гончара или краски на холсте художника, и им можно придать более красивые формы и цвета, чем у любого художника или скульптора.
На самом деле история открытия защитной мутации у гена Mlo в ячмене начинается еще в 1942 году, когда растения одного из немецких сортов были облучены рентгеном. Именно тогда ученые обнаружили, что облучение семян радиацией (к примеру, рентгеновскими или гамма-лучами) или погружение их в жидкость, содержащую мутагенные вещества, приводит к возникновению случайных новых мутаций, используя которые, можно вывести растения с желаемыми свойствами.
У мутантных линий, полученных таким способом, имеются случайные изменения в сотнях или даже тысячах различных генов. Если среди этих спонтанных генетических изменений у разных линий возникают похожие мутации, такие же как в гене Mlo, то у растений, полученных из таких семян, может появиться одно и то же желаемое свойство – например, устойчивость к грибку у ячменя. Защитная мутация в гене Mlo у ячменя была идентифицирована в 2004 году, а еще десятилетие спустя нарушения в том же гене удалось связать с устойчивостью к мучнистой росе и у других растений. Это породило воодушевляющую гипотезу, что многие сельскохозяйственные культуры можно было сделать устойчивыми к болезни, изменив ген Mlo.
В этом и заключаются перспективы редактирования генома. В сравнении с обычными методами селекции – включая спонтанный мутагенез, мутагенез под действием рентгеновских лучей или химикатов, а также скрещивание различных видов растений (в процессе которого в геном поступают тысячи новых генов), – CRISPR и подобные технологии дают ученым беспрецедентные возможности контроля над геномом. Я обратила особое внимание на масштаб этих возможностей, когда в 2014 году ученые из Китайской академии наук использовали инструменты редактирования генома, в том числе CRISPR, для изменения шести копий гена Mlo в пшенице обыкновенной (Triticum aestivum) – одной из важнейших сельскохозяйственных культур на планете. Растения, у которых все шесть генов Mlo были мутантными, обладали устойчивостью к мучнистой росе, и это был фантастический результат; более того, исследователям не было нужды беспокоиться о вредоносных или нежелательных эффектах каких-либо других мутаций, поскольку были изменены только гены Mlo. Какое бы изменение ни было необходимо – нокаут гена, его коррекция, вставка или делеция, – ученые могут редактировать геном с беспрецедентной точностью вплоть до одной “буквы” и делать это практически с любым геном и любой последовательностью ДНК.
Борьба с настоящей мучнистой росой – лишь один пример того, каким образом CRISPR помогает решать проблемы сельского хозяйства. За несколько лет, прошедших с начала использования технологии, ее уже применили для редактирования генов риса (чтобы защитить растение от бактериальных заболеваний); для обеспечения кукурузы, сои и картофеля естественной невосприимчивостью к гербицидам; для создания грибов, которые гораздо медленнее буреют и портятся. Ученые использовали CRISPR для редактирования генома сладких апельсинов, а команда калифорнийских исследователей сейчас пытается спасти американскую индустрию цитрусовых от бактериальной болезни, именуемой по-китайски huanglongbing, что переводится как “болезнь желтого дракона”, которая уже поразила некоторые части Азии, а теперь угрожает садам Флориды, Техаса и Калифорнии. В Южной Корее Джин Су Ким и его коллеги надеются, что редактирование геномов бананов может помочь сохранить от исчезновения ценный сорт кавендиш, которому угрожает распространение чрезвычайно вредоносного почвенного гриба. Исследователи в других местах также экспериментируют с возможностью вставки в сельскохозяйственные культуры целой бактериальной системы CRISPR, запрограммированной на уничтожение вирусов, что может дать растениям совершенно новую противовирусную иммунную систему.

 

Методы внесения мутаций в ДНК растений

 

Меня особенно привлекают возможности, которые дает редактирование генома в области создания более здоровой пищи. Рассмотрим два выдающихся примера. Первый: соевые бобы дают около 50 миллионов тонн соевого масла ежегодно. К сожалению, в этом масле слишком много трансжиров, употребление которых ассоциируется с повышенным уровнем холестерина и заболеваниями сердечно-сосудистой системы. Не так давно специализирующиеся на продуктах питания ученые из миннесотской компании Calyxt использовали основанную на TALEN технологию редактирования генома для изменения двух генов сои, получив семена, в составе которых гораздо меньше нездоровых жирных кислот, а содержание различных жиров больше напоминает состав оливкового масла. Исследователям удалось сделать это, не вызвав каких-либо непредвиденных мутаций и не вставляя в геном чужеродную ДНК.
Второй пример связан с картофелем – это третья по важности пищевая культура в мире после пшеницы и риса. Длительное хранение в холоде (необходимое для увеличения срока годности картофеля) может привести к его ослащению – крахмал в условиях холода переходит в сахара, глюкозу и фруктозу. Любая термическая обработка, необходимая для приготовления картофеля фри и чипсов, превращает эти сахара в акриламид – нейротоксин и потенциальный канцероген. Кроме того, из-за ослащения чипсы буреют и становятся горькими, и в результате большое их количество идет в отходы; по этой причине предприятия по переработке картофеля выбрасывают до 15 % сырья. Используя редактирование генома, исследователи из компании Calyxt легко смогли решить эту проблему в картофеле сорта Ranger Russet: они инактивировали всего один ген, отвечающий за выработку глюкозы и фруктозы. Результат: уровень акриламида в чипсах, сделанных из улучшенной картошки, был ниже на 70 %, и они не бурели.
Специалисты пищевой промышленности в восторге от возможностей простого редактирования генома. Однако один очень важный вопрос пока еще остается без однозначного ответа: смогут ли производители и потребители принять продукты с прицельно измененным геномом, подобно тому как они уже приняли тысячи видов продуктов, геномы которых мутировали случайным образом под воздействием рентгеновского или гамма-излучения или химических мутагенов? Или эти новые продукты постигнет судьба ГМО – другого типа генетически измененных продуктов, которые, несмотря на свой огромный потенциал, были встречены в штыки, что связано, с моей точки зрения, с прямой дезинформацией общественности?

 

По мере того как технология CRISPR распространялась по миру, мне приходилось знакомиться с многими новыми для меня областями знаний, и одна из них – продовольственная политика. Зная, что растения и животные с отредактированными геномами неизбежно будут сравниваться с ГМО, я специально посвятила некоторое время изучению этого вопроса: а что, собственно, вообще имеют в виду правительства разных стран и инициативные общественные группы, когда говорят о “генетически модифицированных организмах”?
Министерство сельского хозяйства США определяет генетическую модификацию следующим образом:
Получение наследуемых улучшений организмов растений или животных для конкретных целей посредством генной инженерии либо других, более традиционных методов.
Это всеобъемлющее определение может включать в себя как новые технологии (такие как редактирование генома), так и более старые методы (например, искусственный отбор особей, уже имеющих нужные мутации). На самом деле при таком определении практически любую пищу, не считая диких грибов, ягод, рыбы и дичи, можно отнести к ГМО.
Однако более распространенное определение ГМО включает только те организмы, генетический материал которых был изменен с использованием технологии рекомбинантных ДНК и так называемого сплайсинга генов (когда в геном интегрируются последовательности чужеродной ДНК). Первая коммерческая ГМ-сельхозкультура, официально разрешенная в США для питания человека, – это способный долго храниться сорт помидоров Flavr Savr. Это было в 1994 году, и с тех пор было разработано и официально одобрено более 50 разновидностей ГМ-растений: сорта канолы, кукурузы, хлопка, папайи, риса, сои, кабачков и других культур. В 2015 году 92 % всей кукурузы, 94 % всего хлопка и 94 % сои, выращиваемых в США, были генетически модифицированы.
У модифицированных сельскохозяйственных культур есть важные экологические и экономические преимущества. Культивируя растения с повышенной способностью защищаться от вредителей, фермеры могут получать более высокие урожаи, сократив при этом применение сильнодействующей “химии” – пестицидов и гербицидов. Генная инженерия уже успела спасти от вирусных бедствий целые отрасли сельского хозяйства – такие, например, как выращивание гавайской папайи; скоро эта технология может оказаться решающей в защите других видов фруктов (в том числе бананов и слив), которым угрожают новые болезнетворные организмы.
Несмотря на эти преимущества и на тот факт, что сотни миллионов людей уже имеют опыт употребления в пищу ГМ-продуктов без каких-либо нежелательных последствий, эти продукты остаются мишенью бурной критики, пристального внимания общественности и резких протестов, по большей части не имеющих никаких оснований. Лозунги протестующих основаны на незначительном количестве исследований, в которых говорится о вредном влиянии ГМО на здоровье потребителей или на окружающую среду: к примеру, в некоторых таких работах утверждается, что из-за ГМ-картофеля крысы заболевают раком, а ГМ-кукуруза приводит к смерти бабочек-монархов. Однако большинство подобных сообщений были опровергнуты в ходе многочисленных последующих исследований и отвергнуты научным сообществом. Надо сказать, что ГМО-продукты подвергались едва ли не самым тщательным испытаниям из всех потребляемых человеком видов пищи, и было почти единогласно решено, что ГМ-пища столь же безопасна, как и та, что производится традиционным способом. Производство ГМО поддержали федеральные регулирующие органы США, Американская медицинская ассоциация, Национальная академия наук США, Королевское медицинское общество Великобритании, Европейская комиссия и Всемирная организация здравоохранения. Тем не менее около 60 % американцев все еще считают ГМО опасными.
Это расхождение в оценках ГМО между учеными и общественностью очень тревожит, если не сказать больше. С моей точки зрения, это во многом отражает взаимонепонимание между исследователями и широкой публикой. Даже за относительно короткое время моей работы над CRISPR я успела понять, как сложно иногда поддержать конструктивный, открытый диалог между двумя этими мирами – и как важен этот диалог для содействия научным открытиям.
Восприятие ГМО как чего-то неестественного и извращенного – отличный пример такого непонимания. Практически все, что мы едим, было в свое время изменено людьми, часто путем генерации случайных мутаций в ДНК семян, используемых для разведения растений с нужными признаками. Таким образом, различие между “натуральным” и “ненатуральным” весьма размыто. Красные грейпфруты были получены благодаря облучению нейтронами, арбузы без семян – при помощи вещества под названием колхицин; яблочные сады, в которых каждое дерево представляет собой точную генетическую копию своих соседей… Ни один из этих примеров современного сельского хозяйства нельзя назвать натуральным! И все же большинство из нас ест эти продукты и не жалуется.
CRISPR и сходные технологии редактирования генома еще больше запутают споры вокруг генетически модифицированных продуктов питания, еще больше размоют границу между ГМ- и не ГМ-продуктами. “Обычные” ГМО содержат чужеродные гены, случайным образом интегрированные в геном; благодаря этим генам вырабатываются новые белки, из-за которых у организма проявляется полезный признак, ранее ему несвойственный. Организмы с отредактированным геномом, напротив, несут крошечные изменения в уже существующих генах, которые дают организму полезный признак, регулируя уровни белков, которые в нем уже изначально были, без добавления какой бы то ни было чужеродной ДНК. В этом отношении организмы с отредактированным геномом мало чем отличаются от организмов, полученных в результате мутагенного воздействия химикатов или радиации. Более того, ученые опробовали методы, позволяющие избавиться от любых следов CRISPR в геноме растения после того, как редактирование генома будет выполнено. Например, молекулы CRISPR можно создать, очистить и собрать в функциональные комплексы в лаборатории (что мы и показали в своей статье 2012 года), а затем внедрить их в растительные клетки в составе быстродействующего препарата, так что они незамедлительно примутся за работу над геномом. В течение считанных часов Cas9 и направляющая РНК отредактируют необходимый ген – а затем разрушатся в результате естественных клеточных процессов переработки. Я надеюсь, что со временем такой вид “бесшовного” редактирования генома поможет растениям, модифицированным с помощью этого точного метода, завоевать благосклонность общественности.
Однако понемногу начинаются дебаты и вокруг организмов с отредактированным геномом. Одна из первых акций протестов против новой технологии прошла весной 2016 года. Исследователям CRISPR даже угрожали – причем это были те же активисты, что раньше сражались с ГМО.

 

Трансгенные ГМО и организмы, подвергнутые бесшовному редактированию генома

 

Одна из самых сложных проблем, которую предстоит решить сельскохозяйственным компаниям, фермерам и (особенно) представителям власти, – это классификация продуктов питания с отредактированным геномом и разработка соответствующих законодательных норм. Большинство ученых предпочитают говорить о продуктах новых технологий разведения (new breeding techniques, NBT), в то время как активисты протеста полагают, что перед нами не что иное, как скрытые формы ГМО – и ученые просто пытаются продвинуть их на прилавки под другим именем. Во многом проблема связана с противопоставлением продукта и процесса: следует ли регулировать (и одобрять) лишь сам новый продукт питания – или также и процесс, в ходе которого он был получен? Вернемся к примеру с настоящей мучнистой росой: имеет ли значение тот факт, что устойчивая к болезни пшеница появилась именно с помощью продвинутой технологии редактирования генома? Ведь полученный сорт пшеницы ничем не отличается от того, который теоретически мог быть создан в ходе искусственного отбора – то есть в результате спонтанных или индуцированных мутаций…
На данный момент новые генетически модифицированные сельскохозяйственные культуры должны пройти сложную процедуру одобрения и разрешения – юридическую ответственность за это в США делят Управление по контролю за продуктами питания и лекарственными средствами, Агентство по охране окружающей среды и Министерство сельского хозяйства. Процесс одобрения занимает много времени, стоит немалых денег средств и включает комплекс требований, которые многим участникам процесса кажутся неправильными и обременительными. Многие недостаточно большие компании вообще не могут себе позволить работать с ГМО из-за непомерно высоких затрат на одобрение, и в результате рынок монополизирован крупными агропромышленными корпорациями. Я удивилась, узнав, что даже ученым из академических лабораторий не так-то просто изучать генетически модифицированные злаки непосредственно в поле из-за обременительных ограничений.
К счастью, ситуация понемногу меняется. Министерство сельского хозяйства США (USDA) начинает в частном порядке информировать компании, что для нового поколения продуктов питания с измененным геномом уже не потребуется одобрение министерства – хотя они по-прежнему должны будут проходить процедуру одобрения Управления по контролю за продуктами питания и лекарственными средствами (FDA). Невосприимчивая к гербицидам канола, созданная методом редактирования генома, была одобрена для использования в Канаде и поэтому не подпадает под компетенцию USDA. Так же обстоит дело с соей и картофелем, которые были разработаны учеными компании Calyxt с применением технологии TALEN: они (а также примерно 30 других генетически модифицированных растений) не нуждаются в одобрении министерства. И хотя технология CRISPR относительно недавно пришла в эту область, специалисты компании DuPont Pioneer прогнозируют, что растительные продукты, произведенные с использованием CRISPR, выйдут на рынок уже к концу текущего десятилетия.
Уже в 2015 году Управление по научно-технической политике Белого дома заявило, что пересмотрит юридические нормы, регулирующие ГМО, поскольку в этой области произошли принципиальные технологические изменения, а нормы не обновлялись с 1992 года. Правила представления ГМ-продуктов на рынке также сейчас меняются: например, в 2016-м был одобрен федеральный закон, требующий особой маркировки всех пищевых продуктов, содержащих ГМО.
Подобные изменения в нормативных актах важны, но если вместе с ними не изменится и отношение потребителей к генетически улучшенным продуктам, мы, общество в целом, не сможем полностью использовать потенциал CRISPR. Биотехнологии могут повысить уровень продовольственной безопасности, навсегда победить голод, приспособить сельское хозяйство к изменениям климата и предотвратить ухудшение экологической обстановки во всем мире. Однако такой прогресс невозможен, пока ученые, компании, правительства и общество не объединятся ради достижения этой цели. И каждый из нас может помочь этому, причем самым простым образом, – ведь все начинается со здравого смысла.

 

Сельскохозяйственные и пищевые предприятия заинтересованы в CRISPR не только из-за перспектив улучшения растений; геномы сельскохозяйственных животных в ближайшем будущем также начнут постоянно редактировать. И если вспомнить, насколько недоброжелательно были встречены ГМ-растения, то можно ожидать, что генетически модифицированных животных тоже, скорее всего, ждет законодательная волокита и они будут встречены с еще бóльшим сопротивлением. И в этой сфере мы можем многого добиться – но, возможно, еще больше потерять.
Первое ГМ-животное, разрешенное в США для употребления в пищу человеком, – это быстрорастущий ГМО-сорт лосося под названием AquAdvantage; этот продукт удалось вывести на рынок лишь после двадцатилетней борьбы производителя с чиновниками FDA; на эту борьбу разработчик породы потратил свыше восьмидесяти миллионов долларов. Геном ГМ-лосося содержит дополнительную копию гена, отвечающего за выработку гормона роста, поэтому рыба достигает товарного веса вдвое быстрее, чем обычный лосось с рыбной фермы, но при этом не отличается от него по пищевой ценности; модификация не вредит ни здоровью самой рыбы, ни здоровью человека, который ее ест. Разработчики AquAdvantage считают, что разведение подобных сортов станет благом для окружающей среды, поскольку снизит истощение природных запасов этого вида, а углеродный след от выращивания такого лосося примерно в 25 раз меньше, чем от выращивания обычного. Кроме того, это уменьшит долю импорта (сегодня 95 % всего лосося, продающегося в США, – импортного происхождения). И все же, как и в случае с ГМО-растениями, негативная реакция на появление генетически модифицированного лосося была очень сильной; этот продукт называли “франкенрыбой” и утверждали, что он подвергает опасности здоровье потребителей и природные рыбные сообщества. 75 % респондентов опроса, проведенного в 2013 году газетой New York Times, заявили, что не стали бы есть ГМ-рыбу; скептицизм потребителей привел к тому, что более 60 продуктовых сетей по всей стране – включая таких гигантов, как Whole Foods, Safeway, Target и Trader Joe’s, – пообещали, что не будут продавать этот сорт лосося.
Впрочем, лосось AquAdvantage – не первое ГМ-животное, созданное учеными в качестве пищи для человека. В начале 2000-х годов команда японских генетиков вывела свиней, в геном которых был добавлен ген шпината, изменивший у животных процесс метаболизма жирных кислот; состав жиров в организме трансгенных свиней был более здоровым, однако проект подвергся жесткой критике, и этих животных так никогда и не выращивали за пределами лаборатории. Приблизительно в это же время командой канадских ученых была создана Enviropig, “экологически чистая” трансгенная свинья с геном E. coli, позволяющим этому животному лучше перерабатывать фосфорсодержащее вещество фитиновую кислоту. В помете обычных свиней много фосфора, который проникает в ручьи и реки, вызывая цветение воды, смерть водных обитателей и выработку парниковых газов; помет свиней породы Enviropig содержал на 75 % меньше фосфора, что пошло бы очень на пользу и планете, и людям, живущим и работающим рядом со свинофермами. Несмотря на это и на данные, подтверждающие пищевую безопасность породы, потребители были возмущены, в результате чего спонсоры проекта отказались от его дальнейшей поддержки. Последних свиней новой породы усыпили в 2012-м.
Учитывая все это, перспективы других генетически модифицированных животных не кажутся оптимистичными. Однако, повторюсь, все зависит от того, что именно законодатели и общественность будут понимать под термином генетически модифицированные. В геном лосося AquAdvantage был добавлен ген гормона роста от чавычи, а также небольшой фрагмент ДНК от американской бельдюги (последний обеспечивал постоянную активность гена гормона роста). Но что, если ученым удастся модифицировать геном лосося таким образом, что выработка гормона роста повысится без привлечения какой-либо чужеродной ДНК? Будут ли потребители и законодатели и в этом случае считать такого лосося генетически модифицированным?
Этот вопрос, без сомнений, станет актуальным уже в ближайшем будущем, учитывая быстрый темп исследований и разработок в области сельскохозяйственных животных с отредактированным геномом. Первые такие животные уже были созданы в лаборатории, и их встреча с законодателями – всего лишь вопрос времени. Как и лосось AquAdvantage, некоторые из этих новых животных получат генетические модификации, ускоряющие их рост. Однако, в отличие от лосося, они, возможно, будут не только расти быстрее, но и достигать бóльших размеров.
Используя новые возможности прицельного редактирования генома, открывшиеся благодаря CRISPR и подобным технологиям, ученые создали коров, свиней, овец и коз с отредактированными геномами, которые обладают большей физической силой и имеют бóльшую мышечную массу, чем обычно; они выглядят как настоящие животные-бодибилдеры (этот признак называется гипертрофией мышц). Причем эта искусственная мутация – вовсе не эксцентричная причуда ученых: она вдохновлена самой природой, как и выработка у ячменя устойчивости к мучнистой росе.
Животноводам давно известно явление гипертрофии мышц, поскольку оно часто наблюдается у двух популярных пород крупного рогатого скота: бельгийской голубой и пьемонтской. У бычков этих пород в среднем на 20 % больше мышц, более высокое соотношение массы мяса к массе костей, меньше жира, но зато больше мяса именно в тех частях туши, которые особенно востребованы на рынке. Понятно, что эти породы чрезвычайно привлекательны для производителей говядины. В 1997 году три лаборатории определили, что за столь развитые мышцы отвечает один ген – миостатин. Он выступает в роли природного тормоза, сдерживающего образование мышечной ткани. У двух пород рогатого скота, которые изучали в тех лабораториях, были различные виды мутаций (у бельгийской голубой породы отсутствовали одиннадцать “букв” ДНК, а у пьемонтских мутация затрагивала лишь одну “букву”), однако в обоих случаях белковый продукт миостатина был дефектным. В некотором смысле природа повторила лабораторные генетические эксперименты, проводившиеся на мышах: нокаут миостатина тоже приводил к появлению мускулистых существ, которые весили в два-три раза больше среднего, причем прибавка в весе получалась именно за счет увеличения мышечной, а не жировой массы.
Крупный рогатый скот – не единственные животные, у которых наблюдается естественная гипертрофия мышц. У популярной голландской породы овец тексель, которая высоко ценится за нежирное мясо и очень мускулистое телосложение, тоже есть мутация в гене миостатина. Отлично развитая мускулатура характерна и для уиппетов: эти небольшие собаки, происходящие от борзых, часто участвуют в собачьих бегах, поскольку они не только бегают быстрее любых других собак того же веса, но и быстрее всех набирают скорость. Для уиппетов разновидности “булли” характерна особенно широкая грудная клетка и массивная мускулатура ног и шеи; это вызвано отсутствием двух “букв” ДНК в гене миостатина. У остальных уиппетов есть нормальный ген миостатина, а у некоторых (гетерозиготных) имеется одновременно и нормальная, и мутантная копии двух родительских хромосом. Исследование Национальных институтов здравоохранения показало, что на самом деле наиболее быстрые среди уиппетов – гетерозиготы, так как у них есть “дополнительная” мускулатура, но не чрезмерная: нечто вроде генетической “золотой середины”.
У людей тоже бывает нечто подобное гипертрофии мышц. В 2004 году группа берлинских врачей опубликовала интересное исследование, в котором описывался чрезвычайно мускулистый от рождения мальчик с сильно набухшими мышцами бедер и предплечий. Ребенок и к четырехлетнему возрасту продолжал наращивать аномально выраженную мускулатуру и мог выполнять невероятные силовые трюки, например удерживать параллельно земле руки c трехкилограммовой гантелей в каждой. Учитывая, насколько его состояние напоминало гипертрофию мышц у коров и мышей и то, что в семье мальчика было необычно много очень сильных физически людей, ученые предположили, что его телосложение могло объясняться генетическими факторами. В ходе молекулярно-биологического исследования было обнаружено, что обе копии гена миостатина у ребенка содержат нокаутные мутации, а его мать, в прошлом профессиональная спортсменка, оказалась гетерозиготой с одной мутантной копией гена. Хотя подобная мышечная гипертрофиия у человека – чрезвычайно редкое явление, был зафиксирован по крайней мере еще один случай – в одной семье из Мичигана.

 

Животные со спонтанной и вызванной CRISPR гипертрофией мышц

 

Сегодня исследователи изучают вопрос, не может ли искусственная гипертрофия мыщц с помощью намеренного внесения мутаций (то есть стимуляция роста мышечной массы путем “выключения” гена миостатина) оказаться эффективным методом терапии при заболеваниях, истощающих мышечную ткань, – например, мышечной дистрофии. Некоторые авторы уже начали фантазировать на тему того, каким образом с помощью редактирования гена миостатина можно было бы сделать обычного человека сверхчеловечески сильным физически, – однако (об этом мы поговорим в следующих главах) я считаю, у подобного – не вызванного необходимостью – редактирования человеческого генома могут быть очень тяжелые последствия.
В случае домашних животных (но не людей) есть причины использовать редактирование генома для создания новых разновидностей организмов с полезными признаками. К примеру, небольшие улучшения генома животных могут привести к существенному увеличению производства пищи для человека. Ученые уже задействовали технологии редактирования генома для получения новых пород коров, овец, свиней, коз и кроликов с гипертрофией мышц. Несложно представить, как это повлияет на питание людей, если эти породы станут доступны для фермеров. Увеличение объема постного мяса и небольшое содержание туловищного жира – это уже давно главнейшие задачи селекции в животноводстве. Известен пример, когда свиньи с отредактированным геномом содержали на 10 % больше постного мяса, чем их “неотредактированные” собратья; кроме того, у ГМ-свиней было гораздо меньше туловищного жира, а мясо было нежнее. При этом питательная ценность мяса, а также процесс роста этих животных, их здоровье и необходимое количество корма остались прежними. Поскольку в исправленном свином геноме нет следов трансгенов, разработчики породы надеются, что к этим животным будут применяться те же нормативы, что, например, и к бельгийским голубым коровам, у которых мышечная гипертрофия развилась в результате спонтанных мутаций.
Так как благодаря CRISPR можно легко редактировать сразу несколько генов, то одновременно в организм можно ввести множество новых признаков. Например, китайские ученые, работая с козами, выбрали для изменения ген миостатина, а также ген ростового фактора, контролирующего длину волос. У людей спонтанные мутации в этом гене приводят к появлению очень длинных ресниц, а среди животных наблюдалась связь между такими мутациями и длиной волосяного покрова у кошек, собак и даже ослов. Ученые провели редактирование генома у кашемировых коз из провинции Шаньси, которых разводят и ради хорошего мяса, и ради их шерсти (из нее производится высококачественный кашемир). Исследователи сделали инъекции 862 эмбрионам и внедрили 416 из них в матки коз-реципиенток; у 10 из 93 родившихся козлят были мутации в обоих генах. Эти улучшенные козы теперь могут дать начало новым породам, которые будут давать и больше мяса, и больше кашемира.
Другие ученые используют инструменты редактирования генома для влияния на размножение: кур меняют таким образом, чтобы рождались только самки (на яичных фермах цыплят-самцов обычно отбраковывают в течение дня после вылупления); искусственно разводимую рыбу делают стерильной (так что она неспособна изменять генофонд диких популяций); а мясной скот “настраивают” таким образом, чтобы рождались только рентабельные самцы (телки наращивают мышечную массу из корма гораздо менее эффективно, чем бычки). Геномы крупного рогатого скота также меняют ради иммунитета против паразита, вызывающего сонную болезнь, а геномы свиней модифицируют так, чтобы на их откорм уходило меньше пищи. В Австралии группа исследователей предпринимает попытки изменить куриный ген, кодирующий один из наиболее распространенных белков-аллергенов в куриных яйцах; и сходным образом хотят попробовать избавиться от аллергенов в коровьем молоке.
Редактировать геном животных можно и для того, чтобы они стали более здоровыми и устойчивыми к болезням. Это убедительно показали недавние опыты на свиньях: одну из самых распространенных болезней свиней вызывает вирус PRRSV (ВРРСС, вирус репродуктивно-респираторного синдрома свиней). Впервые его обнаружили в США в конце 1980-х годов, а затем он быстро распространился по Северной Америке, Европе и Азии. Вирус стоит американским производителям свинины более 500 миллионов долларов в год и снижает объемы производства на 15 %, при этом инфицированные животные тоже тяжело страдают от ряда симптомов: анорексии, лихорадки и сильных проблем с дыханием; у них повышается частота выкидышей и число мертворожденных поросят. Вакцины от этой болезни пока не существует, и все, что остается, – добавлять животным в корм большие дозы антибиотиков, чтобы предотвратить вторичные бактериальные инфекции.
Ученые из Университета штата Миссури предположили, что вирус “взламывает” клетки свиней благодаря одному конкретному гену – CD163, и попытались создать устойчивых к вирусу животных, “выключив” проблемный ген (это похоже на смену замков в доме, когда вы знаете, что потенциальный взломщик уже украл ключи). Использовав CRISPR для создания свиней с нокаутированным проблемным геном, миссурийские исследователи затем отправили животных в Университет штата Канзас (вместе с неизмененными поросятами в качестве контрольной группы), чтобы проверить их восприимчивость к вирусу. В Канзасе животных подвергли воздействию примерно сотни тысяч вирусных частиц, при этом свиньи постоянно находились под наблюдением. Животные с отредактированными геномами оставались совершенно здоровыми, в их организмах не было ни следа вируса.
Эта стратегия – избавление свиней от вирусов путем нокаутирования генов, которые использует этот вирус, – оказалась настолько эффективной, что ее уже осваивают другие исследователи, пытающиеся облегчить страдания животных и уменьшить количество брака в других отраслях мясной промышленности. К примеру, группа британских ученых одержала аналогичную победу над другим вирусом. Вызываемое им заболевание, африканская чума свиней (она же африканская лихорадка), поражает как диких, так и домашних свиней; как и ВРРСС, этот вирус очень заразен, и против него также нет вакцины. При этом вирус африканской лихорадки даже более смертоносен, и некоторые его разновидности вызывают почти стопроцентную гибель инфицированных (обычно это происходит из-за интенсивных кровоизлияний в первую же неделю после заражения). К сожалению, заболевание приводит к массовой гибели животных и по другим причинам: когда вирус распространился по Восточной Европе, фермерам пришлось забивать свиней, в некоторых случаях целые стада, в отчаянной попытке остановить распространение болезни.
Заметив, что на африканские виды свиней, в том числе и на бородавочников, вирус не действует, британские ученые сумели выделить ген, который, по-видимому, объясняет удивительную устойчивость этих животных. Варианты этого гена у бородавочников и у домашних свиней различаются лишь несколькими “буквами”, поэтому ученые просто отредактировали геном домашних свиней таким образом, чтобы он был таким же, как у бородавочников, но не меняли при этом никакие другие части генома. Время покажет, обладают ли отредактированные таким образом свиньи тем же иммунитетом, что и бородавочники (и, что, наверное, не менее важно, – сможет ли общественность принять новых генетически модифицированных животных). Исследователи, по крайней мере, уверены, что потребители не будут возражать против небольшого улучшения, которое сделает животных более здоровыми, – особенно если такое улучшение уже существует в природе.

 

Другие животные с отредактированным геномом, которые могут появиться в ближайшем будущем

 

Еще один пример редактирования генома крупного рогатого скота – достижение миннесотской компании Recombinetics, которой удалось генетически модифицировать коров таким образом, чтобы у них не росли рога. Цель этой работы – обойтись без жестокой (но весьма распространенной на европейских и американских молочных фермах) процедуры обезроживания (удаления рогов). Работа с рогатыми животными в замкнутом пространстве может быть опасна и для фермеров, и для самих коров. Обычно рога удаляют у еще молодых животных, выжигая роговые бугорки раскаленным железом, при этом повреждая соседние ткани и причиняя телятам значительную боль и стресс. Только в США более тринадцати миллионов телят ежегодно подвергаются этой процедуре.
Впрочем, далеко не у всех коров есть рога. Коровы многих мясных пород – включая популярную абердин-ангусскую – от природы безрогие. В 2012 году группа немецких исследователей точно установила генетическую причину комолости: это сложная мутация, включающая делецию 10 “букв” ДНК и вставку 212 “букв” на хромосоме 1. На основе этой информации ученые из Recombinetics использовали технику редактирования генома, чтобы воспроизвести это изменение в геноме быков первоклассной молочной породы, создав животных, хорошая наследственность которых, сформированная веками искусственного отбора на наиболее эффективное производство молока, в остальном не поменялась. Первые такие животные, два безрогих теленка Спотиджи и Бури, никогда не подвергнутся ужасной процедуре обезроживания.
Рано или поздно регулирующие государственные органы и потребители, определяющиеся со своим отношением к ГМ-животным, должны будут решить, что важнее – цель или средства, продукт или процесс, в результате которого он создается? Безрогих коров и быков можно вывести и путем традиционной селекции, но на это потребуются долгие годы. Редактирование генома попросту позволяет добиться тех же результатов гораздо быстрее. Если CRISPR и другие подобные технологии помогут нам обойтись без жестоких практик вроде обезроживания, снизить использование антибиотиков и защитить животных от смертельных инфекций, почему нам не использовать их?

 

Животноводы и работники пищевой промышленности – не единственные, кто занят редактированием генома животных. Этим занимаются и специалисты в области биологии и медицины, чья цель – улучшить жизнь людей, используя методы, протестированные на ГМ-животных (а в некоторых случаях и открытые в ходе изучения этих последних).
Эксперименты на животных жизненно необходимы для изучения заболеваний человека, проводят ли их для подтверждения генетических причин конкретных недугов, для тестирования потенциальных лекарств или оценки эффективности медицинского вмешательства, будь то хирургические методы или клеточная терапия. Необходимая отправная точка здесь – хорошая генетическая модель, то есть животное, по своим физическим и генетическим параметрам и состоянию максимально близкое к тому, что наблюдается у данной группы пациентов. CRISPR предлагает тут эффективный и простой подход.
С начала XX века главным модельным организмом для биологических и медицинских исследований служит домовая мышь (Mus musculus), у которой 99 % генов совпадают с человеческими. Вдобавок к тому, что мыши – наши близкие генетические родственники, у них есть и другие очевидные преимущества. У мышей и людей похожа физиология различных систем – иммунной, нервной, сердечно-сосудистой, опорно-двигательной и других. Мышей можно разводить в неволе, содержать их несложно и недорого, поскольку это небольшие, мирные и плодовитые животные. “Ускоренное” течение их жизни – один год жизни мыши приблизительно равен тридцати человеческим – означает, что весь их жизненный цикл можно пронаблюдать в лаборатории всего за несколько лет. И, что, возможно, наиболее важно, с помощью различных методов – из них CRISPR самый современный и самый мощный – над мышами можно проводить генетические манипуляции для моделирования множества болезней и состояний человека. Ежегодно по всему миру разводят и поставляют исследователям миллионы мышей, и существует свыше тридцати тысяч уникальных линий этих грызунов, используемых для изучения самых различных заболеваний – от рака и болезней сердца до слепоты и остеопороза.
Однако у использования мышей в качестве модельных организмов есть и некоторые ограничения, поскольку в случае многих человеческих недугов – к примеру, муковисцидоза, болезней Паркинсона и Альцгеймера, хореи Гентингтона – эти животные не проявляют основных симптомов или реагируют на потенциальные методы лечения нетипично. В результате появляется разрыв в последовательности “от исследования до пациента” (bench-to-bedside) – то есть в процессе, в ходе которого результаты научной работы в лаборатории становятся основой для новых способов лечения в клинике.
CRISPR сможет заполнить этот пробел, сделав моделирование заболеваний на других животных практически таким же доступным, как на мышах. Прогресс уже сегодня можно увидеть на примере нечеловекообразных приматов. Трансгенные обезьяны впервые были созданы в начале 2000-х, когда исследователи использовали вирусы для введения чужеродных генов в геномы животных, однако обезьян с отредактированным геномом не было до появления CRISPR. Лишь в начале 2014 года команда китайских ученых создала яванских макак с отредактированным геномом, введя CRISPR в эмбрионы на стадии одной клетки – подобный метод был опробован на мышах годом ранее. В этом исследовании ученые запрограммировали CRISPR таким образом, чтобы его мишенями были одновременно два гена: один – связанный с синдромом тяжелого комбинированного иммунодефицита (ТКИД) у человека, а другой – связанный с ожирением (оба они очевидным образом влияют на наше здоровье). Позже другие ученые создали яванских макак с измененным геном, мутации в котором наблюдаются примерно при 50 % разновидностей рака у человека, а также макак-резусов с мутациями, вызывающими миодистрофию Дюшенна. Редактирование генома также используется для работы с генами, связанными с болезнями нервной системы, при этом у обезьян в качестве модельных организмов есть уникальное преимущество: лишь на них можно изучать поведенческие и когнитивные отклонения, встречающиеся у людей.
В некотором смысле я чувствую себя неуютно, думая о подобном использовании обезьян, однако я также осознаю, насколько важно разрабатывать методы устранения симптомов и лечения человеческих болезней для облегчения наших страданий. Обезьяны с отредактированным геномом могут служить надежной заменой для пациентов-людей, позволяя ученым искать способы излечения, не подвергая риску человеческие жизни.
Свиньи благодаря CRISPR также стали популярными животными для моделирования болезней человека. Анатомия свиней близка к человеческой, эти животные быстро растут, и у них большой размер помета. Я считаю, что при условии выработки хороших методических указаний использование сельскохозяйственных животных для биомедицинских исследований более приемлемо, чем использование животных-компаньонов (“домашних питомцев”), таких как приматы. На самом деле свиней с отредактированным геномом уже использовали в качестве модельных организмов для изучения дефектов пигментации, различных вариантов тугоухости, болезни Паркинсона и иммунологических нарушений, и этот список продолжает расти.
Некоторые ученые рассматривают свиней также в качестве потенциального источника лекарств. В скором времени мы, возможно, будем использовать свиней в качестве биореакторов для выработки ценных препаратов, например терапевтических белков человека, которые слишком сложны для синтеза с нуля и могут вырабатываться только в живых клетках. Ученые уже думали над тем, какие еще трансгенные животные могут производить такие биофармацевтические препараты. Первый такой препарат, одобренный FDA, – антикоагулянт под названием антитромбин, и его получают из молока генетически модифицированных коз. Другой разрешенный агентством препарат выделяется из молока трансгенных кроликов, а в 2015 году FDA дало зеленый свет белковому лекарству, добываемому очисткой белков из яиц трансгенных кур.
Получение подобных препаратов из трансгенных животных, а не из культур клеток обладает рядом преимуществ: большее количество продукта, более простое масштабирование производства и меньшие затраты. CRISPR гарантирует дальнейшее совершенствование производства фармпрепаратов, прежде всего обеспечивая ученым гораздо лучший контроль над созданием трансгенных животных. К примеру, опыты на свиньях показали, что CRISPR позволяет безошибочно заменить гены свиньи человеческими, что позволяет эффективнее выделять терапевтические белки, кодируемые этими генами. Если принять во внимание, что многие из самых продаваемых в мире фармпрепаратов основаны на белках, то огромный потенциал использования редактирования генома в этой области медицины становится очевидным.
Некоторые ученые надеются, что свиньи могут предоставить медицине даже больше: обильный возобновляемый источник целых органов для ксенотрансплантации. Это не новая идея; ученые уже долгое время рассматривают свиней в качестве кандидатов на роль такого источника по тем же причинам, по которым их используют для моделирования болезней, – их легко разводить, они быстро размножаются, а их органы по размеру чрезвычайно близки к человеческим. Однако эту мечту вряд ли удастся осуществить в ближайшее время. В нашем теле работает целый массив защитных иммунных механизмов, и поэтому отторжение донорских органов – серьезнейшая проблема и для врачей, и для пациентов, даже когда речь идет о трансплантации от человека к человеку. Пока что известны буквально считанные случаи ксенотрансплантации, когда пересаженный орган удалось удержать в организме реципиента хоть сколько-нибудь долго.
При этом мир еще никогда так остро не нуждался в новых способах трансплантации, как сейчас. В одних лишь США свыше 124 000 пациентов в настоящее время стоят в очереди на эту процедуру, при этом в год проводится лишь около 28 000 пересадок. По некоторым оценкам, к этой очереди каждые десять минут добавляется еще один человек и в среднем двадцать два человека в день умирают в ожидании своих трансплантатов – либо их состояние ухудшается настолько, что они уже не смогут перенести трансплантацию. Главная причина этой катастрофической ситуации – недостаток донорских органов.
Новые технологии, в том числе и CRISPR, дают возможность создавать свиней с органами, подходящими для пересадки человеку. Предыдущие достижения в этой сфере в основном были связаны с переносом генов человека в геном свиньи, так чтобы ее органы не подвергались слишком жесткому отторжению, которое угрожает любому ксенотрансплантату. Теперь редактирование генома используется, чтобы выключить те свиные гены, которые могут спровоцировать у человека иммунный ответ, и исключить риск заражения человека встроенными в геном свиней вирусами. Наконец, благодаря технологиям клонирования стало возможно органично совмещать различные генетические изменения в одном животном. Глава одной известной компании, деятельность которой связана с этой областью, обозначил свою главную цель так: “обеспечить неограниченный запас органов, подходящих для пересадки” – то есть таких, которые могут быть произведены на заказ.

 

Ксенотрансплантация с использованием гуманизированных свиней

 

Этот проект пока находится на самой ранней стадии, однако использование гуманизированных ГМ-свиней уже помогло добиться ряда выдающихся достижений: пересаженная бабуину свиная почка проработала свыше полугода, а свиное сердце в теле бабуина удачно прижилось на два с половиной года. На будущие исследования в этой сфере выделено десятки миллионов долларов, и компания под названием Revivicor уже объявила, что намерена выращивать тысячу свиней в год в лабораториях с оборудованными по последнему слову техники операционными и вертолетными площадками, так что свежие органы можно будет быстро поставлять, когда бы они ни понадобились. Начало клинических испытаний ксенотрансплантации кажется лишь вопросом времени – стоит лишь технологии CRISPR открыть новый путь для пациентов, остро нуждающихся в новых органах и новых препаратах.

 

Я выросла в окружении яркой флоры и фауны Гавайских островов и поэтому восхищена тем, как разнообразно используется CRISPR для генетической модификации животных, – однако хочу признаться, что испытываю также некоторое беспокойство. Я надеюсь, что домашние животные с отредактированным геномом сделают сельское хозяйство не только более прибыльным, но и более гуманным и экологичным. Модельные животные с отредактированным геномом, такие как мыши и обезьяны, помогут нам продвинуться в понимании человеческих болезней, а свиньи с отредактированным геномом послужат в будущем в качестве доноров органов, и я бы, конечно, хотела, чтобы подобные инициативы воплощались в жизнь с должным уважением к благополучию животных.
Однако, учитывая возможности CRISPR в редактировании генома, кажутся неизбежными и такие попытки использования этой технологии, в которых не будет медицинского смысла или цели сделать сельскохозяйственное разведение животных более устойчивым, продуктивным или гуманным. Вспомним, к примеру, новейшую породу миниатюрных свиней – так называемых микропигов, созданных методом редактирования генома в Пекинском институте геномики (BGI). На биотехнологическом саммите, где их впервые показали, эти очаровательные свинки привели аудиторию в полный восторг. Взрослые микропиги весят около тридцати фунтов, что сравнимо с весом собаки среднего размера, в то время как обычные свиньи могут достигать веса в двести фунтов. BGI изначально вывел микропигов в исследовательских целях, так как большой размер обычных свиней осложнял работу с ними в лабораториях. Выделив и инактивировав ген, связанный с гормоном роста, ученые смогли остановить рост этих животных, которые во всех остальных отношениях развиваются нормально. И хотя микропиги остаются полезными лабораторными животными – к примеру, в Китае на них не так давно применили CRISPR для создания модели человеческой болезни Паркинсона, – институт также начал продавать их в качестве домашних питомцев по цене около полутора тысяч долларов за одного микропига. Возможно, благодаря редактированию генома у потребителей однажды даже появится возможность заказывать микропигов с теми или иными признаками (цвет шкурки или узор на ней) на свой вкус.
Некоторые специалисты в области биоэтики, например Жантин Люншоф (Jeantine Lunshof) из Гарвардской медицинской школы, обеспокоены генетическими манипуляциями “с единственной целью – удовлетворить причудливые эстетические предпочтения людей”. Однако я не уверена, что это однозначно плохо. В конце концов, на собачьей площадке можно встретить и крошечную чихуахуа, и огромного дога – а ведь это представители одного и того же вида. Ведь что такое селекция, если не способ управлять генами? Она просто менее предсказуема и протекает медленнее, чем CRISPR.
Есть даже доводы в пользу того, что технология CRISPR лучше для животных, чем обычная селекция. Здоровье микропигов не хуже, чем у их сородичей обычного размера, – и уж точно лучше, чем у некоторых пород собак. Для лабрадоров обычны примерно 30 наследственных заболеваний, 60 % золотистых ретриверов умирают от рака, бигли часто подвержены эпилепсии, а кавалер-кинг-чарльз-спаниели страдают от судорожных припадков и постоянных болей из-за деформированного черепа. И несмотря на столь острые медицинские проблемы у наших лучших друзей в мире животных, мы продолжаем руководствоваться собственными вкусами, меняя генотип и фенотип собак.
Как бы то ни было, генетически модифицированные кошки и собаки, созданные с помощью биотехнологий, совсем скоро станут реальностью. В конце 2015 года ученые из Гуанчжоу (Китай) доложили о первом применении CRISPR на биглях: технологию использовали для увеличения мышечной массы путем отключения того самого гена миостатина, который отвечает за гипертрофию мышц у некоторых гончих и бельгийских голубых коров. Двух щенков, у которых возникла нужная мутация, назвали Геркулес и Тяньгоу (небесная собака в древнекитайской мифологии). Хотя один из ученых, проводивших этот эксперимент, и заявил, что сверхмускулистые бигли не будут разводиться в качестве домашних животных, а нужны лишь для медико-биологических исследований, он все же отметил потенциальные преимущества собак с гипертрофированной мускулатурой для нужд полиции и военных. В заключение своей статьи китайские ученые замечают, что CRISPR “также может способствовать созданию новых пород собак с признаками, выгодными для других целей”.
Технологии редактирования генома настолько просты в использовании, что, конечно же, недолго придется ждать момента, когда потенциальные потребители смогут на заказ получать любые улучшения любой породы собак. Куда еще заведет нас воображение? Если мы с помощью генетических манипуляций избавили коров от рогов, то почему бы нам с помощью тех же технологий не создать, например, рогатых лошадей? И если уж мы заговорили о добавлении частей тела, зачем останавливаться на рогах? Исследователи из Калифорнийского университета в Беркли использовали CRISPR, чтобы внести ряд причудливых изменений в тела ракообразных: жабры появились там, где их быть не должно, клешни стали ногами, челюсти – антеннами, а плавательные конечности – ходильными. Ученые и журналисты уже фантазируют на темы того, как CRISPR можно будет использовать для создания настоящих мифических созданий – например, получения крылатых драконов из комодских варанов. В одном известном научном журнале, посвященном биоэтике, уточняется, что, хотя базовые законы физики не позволят таким существам выдыхать огонь, однако
создание очень крупной рептилии, напоминающей дракона из европейских или азиатских легенд, с крыльями, которыми она сможет махать – пусть даже и не летать с их помощью, – вполне может стать чьей-то внеплановой целью.
Пока одни ученые размышляют над созданием с помощью CRISPR мутантных существ, которых никогда прежде не существовало, другие исследователи хотят применить эту технологию для воссоздания реальных животных, населявших Землю в прошлом, но сегодня уже не существующих: эту область исследований назвали возрождением вымерших видов. Сама идея возникла за несколько десятилетий до изобретения CRISPR, и редактирование генома – лишь один из способов, с помощью которых ее можно попробовать воплотить. В тех случаях, когда признаки какого-то вымершего вида присутствуют в его ныне живущих видах-потомках, с помощью селекции можно вывести животное, похожее на вымерший предковый вид. Эту стратегию пытаются применить в Европе, чтобы воссоздать тура (дикого быка, вымершего в начале XVII века), а также на Галапагосских островах – для возрождения вида слоновых черепах с острова Пинта, последняя представительница которых умерла в 2012 году.
В тех случаях, когда ткани вымерших животных хорошо сохранились, есть еще один подход – клонирование. К примеру, дикий пиренейский козел вымер в 1999 году, однако благодаря криогенной консервации фрагментов кожи, взятых у последней живой особи, испанским ученым удалось вживить генетический материал животного в яйцеклетку домашней козы (такую же процедуру использовали при клонировании овечки Долли в 1996 году). В результате родился козленок – и это было первое в истории рождение вымершего животного (хотя, к сожалению, новорожденный козленок умер уже через несколько минут после появления на свет). Подход, основанный на клонировании, используют российские и южнокорейские ученые в надежде возродить шерстистых мамонтов, используя ткани этих животных, найденные на северо-востоке России.
Но CRISPR делает возможным еще один способ воскрешения исчезнувших видов – похожий на вымышленный процесс возрождения динозавров, описанный в книге Майкла Крайтона “Парк Юрского периода” (и в ее последующей голливудской экранизации). В этой захватывающей научно-фантастической истории ученые ввели в ДНК лягушки гены вымерших динозавров, обнаруженные в ископаемых комарах, сохранившихся в янтаре. К сожалению (или к счастью, в зависимости от того, как вы относитесь к динозаврам), химические связи в ДНК не настолько прочные, чтобы остаться нетронутыми в течение 65 миллионов лет.
Тем не менее идея Крайтона не так уж далека от реальности. Подобную тактику в отношении шерстистых мамонтов разрабатывает команда гарвардских ученых под руководством Джорджа Чёрча. В их распоряжении есть полностью секвенированный в высоком качестве геном мамонта, полученный от ДНК двух особей, живших где-то от 60 до 20 тысяч лет назад; этот геном позволил ученым самым полным и точным образом проанализировать различия в ДНК мамонта и его ближайшего родственника – современного слона. Учитывая суровую среду, в которой обитали мамонты, неудивительно, что 1668 генов, по которым различаются геномы слона и мамонта, кодируют белки, связанные с восприятием температуры, развитием кожи и волосяного покрова и выработкой жировой ткани. В 2015 году, работая с клетками слона, группа Чёрча использовала CRISPR для переделки слоновьих вариантов четырнадцати из этих генов в мамонтовые, а при последовательном редактировании генома теоретически можно проделать это и с оставшимися.
Полное превращение генома слона в геном шерстистого мамонта означало бы изменение свыше полутора миллионов “букв” различий ДНК между ними, и нет никаких гарантий того, что из отредактированных клеток слона в результате получится жизнеспособный эмбрион. Но даже если это и удастся сделать, то будет ли получившееся животное – рожденное слонихой, вне изначальной среды обитания мамонтов и общества других представителей этого вида – настоящим шерстистым мамонтом? Или это будет просто слон с новыми признаками, возникшими под действием генов мамонта?
С того самого момента, как я впервые услышала о подобных экспериментах, я пытаюсь решить для себя: они в самом деле привлекательны? Или отвратительны? Или нечто среднее? Для меня – как и для многих ученых, специалистов в разных областях, – ответ пока неясен. Одно кажется бесспорным: некоторые варианты использования CRISPR на животных кажутся более благородными, чем другие; но каждый раз, когда я предпринимала попытку определиться с отношением к какому-то конкретному эксперименту, я безнадежно вязла в массе аргументов и контраргументов.
В самом деле, в чем смысл возрождения шерстистого мамонта или любого другого вымершего вида? Одной из причин вполне может быть изумление: чувство благоговения перед возможностями, которые дают нам природа и наука – наука на высочайшем возможном уровне. Кто-то из нас идет в зоопарк, а кто-то отправляется на сафари, чтобы посмотреть на льва или жирафа вблизи; представьте себе, какой это будет захватывающий, эмоционально насыщенный опыт – вдруг оказаться лицом к лицу с настоящим мамонтом! Есть и другие веские причины редактировать геном слона таким образом, чтобы он был больше похож на геном мамонта: это возможность сохранения находящегося под угрозой вымирания индийского слона и снижение выбросов соединений углерода в атмосферу в тундре.
Однако возрождение видов – этически неоднозначная идея. Если мы сами довели вид до вымирания и сейчас имеем возможность вернуть его к жизни, должны ли мы это делать? Одна из организаций, направляющих движение по возрождению видов, Long Now Foundation, считает, что должны; ее миссия заключается именно в том, чтобы “повысить биологическое разнообразие путем генетического спасения видов, находящихся под угрозой, и вымерших видов” с использованием средств генной инженерии и природоохранной науки. Long Now Foundation занимается и возрождением видов, и предотвращением их вымирания. В список кандидатов на возрождение включены странствующие голуби, уничтоженные в результате чрезмерной охоты в XIX столетии; бескрылые гагарки, численность которых резко упала в XVI веке, потому что люди охотились на гагарок ради пуха; и заботливые лягушки, которых примерно в 1980 году погубил патогенный гриб, занесенный в места их обитания человеком.
Однако совершенно не факт, что современный мир примет возрожденные виды с распростертыми объятиями или что их воскрешение не влечет никаких рисков – для них самих или для нас. Так же как представители ныне живущих видов, когда их интродуцируют в чуждую для них среду, могут вызвать экологическую катастрофу в своих новых местообитаниях, так и возрожденные виды могут сильно повредить экосистемы, в которые их выпустят. И поскольку мы никогда ранее не воскрешали вымершие виды, невозможно сказать заранее, насколько велики будут потрясения, вызванные их повторным появлением, и к чему эти потрясения могут привести.
Есть и другие весомые аргументы против использования CRISPR для возрождения вымерших видов – и это примерно те же возражения, что и в вопросе создания дизайнерских домашних животных: мы должны учитывать моральные нормы и благополучие животных. Процедурам клонирования обычно сопутствуют страдания животных – различные уродства и преждевременные смерти. Сколько таких страданий мы сочтем приемлемыми ради проведения научных исследований, которые почти наверняка никак не повлияют на здоровье человека, не улучшат его? Может быть, не стоит отвлекаться на возрождение вымерших видов и на создание дизайнерских собак, а вместо этого сосредоточиться на защите существующих видов и домашних животных, с которыми жестоко обращаются, а то и вовсе бросают на произвол судьбы? И вообще, если у нас есть возможность не изменять природу еще сильнее, чем мы уже сделали, – так, может, использовать эту возможность?
CRISPR вынуждает нас ставить подобные вопросы – сложные и, вероятно, в каких-то случаях неразрешимые. Многие из них сводятся к базовым принципам взаимоотношений человека и природы. Люди меняли генетику растений и животных задолго до появления генной инженерии. Должны ли мы сегодня отказаться от влияния на окружающую среду с помощью этого нового инструмента, если в прошлом мы не проявляли подобной сдержанности? По сравнению с тем, что мы уже сделали с планетой – умышленно или нечаянно, – кажется ли редактирование генов с помощью CRISPR менее естественным? Более вредоносным? Так просто на эти вопросы не ответить.

 

Существует по меньшей мере один способ редактировать генофонды других видов, который, вероятно, более опасен, чем любые другие изменения планеты, когда-либо проведенные людьми. Я имею в виду революционную технологию, известную как генный драйв (gene drive), названную так потому, что она дает биоинженерам способ вводить (to drive) новые гены – а также варианты признаков, ими кодируемые, – в популяции свободноживущих организмов с беспрецедентной скоростью в ходе процесса, похожего на неостановимую цепную реакцию.
С генным драйвом, как и с другими разработками в стремительно развивающейся области редактирования генома, наука продвигается так быстро, что уследить за ее успехами сложно. Всего через год после того, как в одной теоретической статье было указано на возможность проведения генного драйва с помощью CRISPR, эта технология показала свою эффективность сначала на дрозофилах, а затем на комарах. Генный драйв эксплуатирует силу особого типа наследования, использующего один из регуляторов передачи генетической информации от поколения к поколению.
При “стандартном” половом размножении видов, у которых в клетках по две копии каждой хромосомы, потомок наследует только одну копию хромосомы от каждого родителя, и это означает, что вероятность наследования конкретного варианта гена составляет пятьдесят процентов. Однако существуют последовательности ДНК, называемые эгоистичными генами, способные повышать свою встречаемость в геноме с каждым поколением, даже если они не дают потомку никакого адаптивного преимущества. В 2003 году эволюционный биолог Остин Берт предложил метод использования эгоистичных генов для более эффективного распространения новых признаков и гарантии того, что потомки стопроцентно унаследуют конкретный фрагмент ДНК. Однако идея Берта требовала технологии, которой в то время еще не существовало: легко программируемые ферменты, разрезающие ДНК и обеспечивающие простое редактирование генома.
И тут на сцену выходит CRISPR. Летом 2014-го сотрудники лаборатории Джорджа Чёрча в Гарварде под руководством Кевина Эсвельта предложили метод конструирования и запуска генных драйвов с помощью высокоэффективного редактирования генома. Вкратце, идея метода основана на подходе генного нокина (gene knock-in), при котором ученые используют CRISPR для разрезания ДНК в четко заданном месте и заделывают образовавшуюся брешь вставкой новой последовательности. Впрочем, есть одно существенное отличие от генного драйва: часть новой добавленной ДНК содержит генетическую информацию, кодирующую сам CRISPR. Словно в популярном научно-фантастическом сюжете о машине, которая сама себя собирает, генный драйв CRISPR может самостоятельно копироваться в новые хромосомы, обеспечивая для себя экспоненциальный рост численности в популяции. Эсвельт предположил, что, добавляя к CRISPR различные генетические грузы, такие как гены резистентности к болезнетворным организмам, ученые могут запрограммировать CRISPR на то, чтобы копировать не только самого себя, но и любые нужные последовательности ДНК.
Судя по всему, генные драйвы действительно могут быть настолько эффективными, как это предполагает теория. В начале 2015-го Итан Бир (Ethan Bier) и его аспирант Валентино Ганц в Калифорнийском университете в Сан-Диего сообщили о первой успешной демонстрации генного драйва с участием CRISPR у обыкновенной дрозофилы. Этот генный драйв использовали для введения дефектного гена окраски в геном насекомого. Вот что получилось: 97 процентов “отредактированных” мух были нового, желтого цвета вместо обычного желто-коричневого. Не прошло и полугода, как тот же коллектив получил вдобавок к этим результатам экспериментальной проверки концепции на плодовых мушках обнадеживающие данные тестов на комарах. Однако вместо того чтобы просто поменять цвет этих насекомых, новый генный драйв распространил в них ген, дающий устойчивость к малярийному плазмодию Plasmodium falciparum – паразиту, на счету которого сотни миллионов случаев малярии в год. Эффективность успешной передачи этого гена комарам оказалась еще выше, чем в случае с мушками: 99,5 %.
Первый из этих генных драйвов (изменение окраски) кажется безобидным, а второй (устойчивость к малярии) выглядит полезным. Но вот и третий пример. Работая независимо от калифорнийских ученых, британская команда исследователей – в ее состав входит и биолог Остин Берт, разработавший саму концепцию генного драйва, – создала легко передающиеся генные драйвы, распространяющие гены стерильности самок малярийных комаров. Поскольку эта стерильность – рецессивный признак, гены должны были стремительно распространиться в популяции, а их частота должна была повышаться до тех пор, пока у каждой самки не окажется по две соответствующие копии, – и в этот момент наступит коллапс популяции. Вместо того чтобы избавиться от малярии, генетически изменив комаров таким образом, что они больше не были способны переносить заболевание, на этот раз был использован более грубый инструмент – истребление популяции, лишенной способности к размножению. Если бы этот подход был применен к популяциям комаров в природе, это могло бы в конце концов привести к полному уничтожению данного вида.
Это не первый случай, когда ученые обращаются к генной инженерии для снижения численности насекомых. Обычная практика, использующаяся уже несколько десятилетий, – выпуск в природу стерилизованных самцов; с помощью этой технологии фактически был уничтожен ряд вредителей сельского хозяйства в Северной и Центральной Америке. Другой подход, который разрабатывает британская компания Oxitec, – вставка летального гена в геном комара; полевые испытания этого метода уже прошли в Малайзии, Бразилии и Панаме. Впрочем, в эти подходы изначально встроены самоограничения; генетические изменения быстро уничтожаются естественным отбором, и единственный способ действительно уменьшить численность комаров – периодически выпускать в природу большие партии модифицированных насекомых.

 

Использование CRISPR для создания генного драйва у комаров

 

В отличие от описанных выше, генные драйвы с CRISPR способны к самоподдержанию; поскольку характер наследования, по всей видимости, оказывается сильнее естественного отбора, модифицированные насекомые распространяются и передают свои дефектные признаки без ограничений. Эта устойчивость и делает генные драйвы такими мощными – и потенциально опасными – инструментами. Подсчеты показывают, что, если бы одна дрозофила из лаборатории в Сан-Диего в ходе первых экспериментов с генным драйвом оказалась на воле, она “раздала” бы кодирующие CRISPR гены (вместе с желтым цветом тела) 20–50 % всех плодовых мушек в мире.
Ученые, занимающиеся генными драйвами с использованием CRISPR, должны тщательно взвешивать риски перед каждым новым экспериментом; им необходимо разработать методические указания, обеспечивающие безопасность будущих исследований. Возможно, наиболее очевидная гарантия того, что генный драйв случайно не вырвется в природу, – это жесткое ограничение: физические барьеры, отделяющие организмы от окружающей среды, и экологические барьеры между естественным ареалом конкретного организма и географическим положением лаборатории. На недавней конференции, где Итан Бир представлял результаты своих исследований, он показывал слушателям фотографии систем и процедур безопасности, призванных предотвратить случайный “побег” подопытных насекомых. Но ученые также предложили набор процедур для инактивации вышедших из-под контроля генных драйвов и на случай, если все принятые меры предосторожности окажутся неэффективными. Одна из таких процедур называется обратный драйв (reversal drive) и представляет собой, по сути дела, антидот, перезаписывающий информацию поверх изменений в геноме, сделанных первым драйвом.
Даже при самом тщательном планировании экспериментов и соблюдении мер предосторожности при их выполнении мы не можем предусмотреть все опасности для окружающей среды, потенциально исходящие от генного драйва, и не в состоянии свести к нулю вероятность того, что генный драйв выйдет из-под контроля и нарушит тонкий баланс какой-либо экосистемы. Эти риски были отражены в недавнем совместном докладе Национальной академии наук, Национальной инженерной академии и Национальной академии медицины США, в котором были одобрены лабораторные (и некоторые полевые) исследования, проводящиеся в настоящее время, но было рекомендовано не выпускать генные драйвы в окружающую среду.
Также невозможно гарантировать, что этот невероятно мощный инструмент не окажется в руках людей, которые не остановятся перед тем, чтобы использовать генные драйвы кому-то во вред, – которых скорее даже привлекает мысль применять драйвы именно с этой целью. The ETC Group, международная инициативная организация, выступающая за развитие законодательного регулирования в области экологии и биологии, опасается, что генные драйвы (группа именует их “генными бомбами”) могут быть использованы в военных целях – например, для изменения микробиома человека или вывода из строя основных источников пищи.
Но как бы ни пугали нас генные драйвы, вряд ли мы сможем без конца оправдать их вечное заточение в стенах лабораторий. По словам Остина Берта,
ясно, что описанная здесь технология – не для простых случаев. Но, учитывая, какие страдания принесли человечеству некоторые виды организмов, игнорировать эту технологию тоже, очевидно, не стоит.
Генные драйвы обещают нам гораздо более прицельный подход к глобальным проблемам сельского хозяйства, сохранения видов и здоровья человека, чем ранее существовавшие технологии. Вот лишь несколько предложенных применений генного драйва: обращение генетических причин (reversal drive) устойчивости к гербицидам и пестицидам, развившихся у вредителей сельского хозяйства; сохранение биоразнообразия путем контроля численности или даже полного уничтожения (в отдельных регионах) популяций инвазивных видов, таких как сазан, жаба-ага или домовая мышь; уничтожение инфекционных заболеваний – таких как болезнь Лайма (вызываемая бактерией, которая переносится клещами) и шистосомоз (вызываемый паразитическими плоскими червями, которые переносится водными брюхоногими моллюсками). Но пока чаще всего говорят о генном драйве применительно к комарам.
Комары – виновники большего числа человеческих страданий, чем любое другое существо на Земле. Комары переносят малярию, лихорадку Денге, лихорадку Западного Нила, лихорадку Чикунгунья, лихорадку Зика и многие другие заболевания, которые все вместе уносят более миллиона жизней в год. Генные драйвы с использованием CRISPR, вероятно, будут лучшим оружием против этой вездесущей угрозы – независимо от того, лишим ли мы комаров способности переносить конкретные патогены или полностью уничтожим этих насекомых. Стратегии борьбы с комарами с использованием генов, подобные CRISPR, могут оказаться более безопасными, чем ядовитые пестициды, и они позволяют решать биологические проблемы с помощью самой биологии.
Будет ли для нас благом или, наоборот, окажется проклятием внезапное избавление от крылатых вредителей, населявших Землю более ста миллионов лет? Удивительно, но ученые не слишком-то беспокоятся о том, что станет с миром в случае исчезновения комаров. Как выразился один энтомолог, если мы уничтожим их завтра, экосистемы, частью которых были комары, лишь немного побарахлят и вскоре продолжат работать как обычно. Если этот ученый прав и мы способны создать мир, свободный от болезней, которые переносятся комарами, можем ли мы себе позволить не рискнуть создать его?
Я задаю эти вопросы, поскольку тоже ищу ответы на них. Без сомнения, эти вопросы относятся к числу наиболее острых научных проблем, стоящих перед нами сегодня. Жизненно необходимо, чтобы мы все высказали мнение по поводу того, каким образом нам стоит применять эту новую биотехнологию в растительном и животном мире. Я надеюсь, что соответствующее образование и вдумчивый самоанализ помогут нам ответить на эти вопросы – и мы сможем извлечь пользу из “отредактированной” флоры и фауны, избежав при этом самых больших опасностей.
Как и многие другие ученые, я не могу не рассматривать эксперименты на растениях и животных как некие испытательные запуски в процессе приближения к конечной цели редактирования генома. Я имею в виду, конечно, мечту, которую мы с Эммануэль вынашивали с тех пор, когда впервые задумались о последствиях нашего совместного исследования, – мечту о том, что однажды наша работа поможет переписать ДНК пациентов-людей, чтобы исцелить их от болезней.
Назад: Глава 4 Управление войсками
Дальше: Глава 6 Исцелить больных