Книга: Значимые фигуры
Назад: 9. Повелитель теплоты. Жозеф Фурье
Дальше: 11. Меняя правила. Николай Иванович Лобачевский

10. Невидимые подпорки. Карл Фридрих Гаусс

 

На дворе год 1796-й, 30 марта. Молодой Карл Фридрих Гаусс уже некоторое время пытается решить, что ему изучать: языки или математику. Он только что совершил весьма значительный прорыв, открыв при помощи алгебраических методов геометрическую конструкцию, остававшуюся незамеченной более 2000 лет, со времен Евклида. Теперь он может при помощи только традиционных геометрических инструментов – линейки и циркуля – построить правильный семнадцатиугольник. То есть многоугольник с семнадцатью сторонами, все стороны и все внутренние углы которого равны. Не приближенно построить – это просто, – а точно. Мало кому выпадает возможность открыть нечто такое, о чем никто даже не подозревал на протяжении двух тысячелетий; еще меньше людей реализуют эту возможность. Более того, несмотря на несколько заумную природу, математика этого открытия совершенно оригинальна и очень красива, хотя само по себе оно не имеет практического значения.
Тон здесь задают Евклидовы «Начала». В них приведены методы построения равностороннего треугольника, квадрата, правильных пятиугольника и шестиугольника: правильных многоугольников с тремя, четырьмя, пятью и шестью сторонами. Как насчет семиугольника? Никак. Разумеется, восьмиугольник – это несложно: чертим квадрат, вписанный в окружность, и делим его стороны пополам; затем проводим через середины сторон радиусы окружности и получаем на окружности четыре новых угла. Если у вас есть метод построения какого-то (любого) правильного многоугольника, то этот фокус позволит вам построить многоугольник с удвоенным числом сторон. Девять? Нет, Евклид об этом молчит. Десять – опять просто: удвоим пять. Одиннадцать – ничего. Двенадцать – дважды шесть, все понятно. Тринадцать, четырнадцать – ничего. Пятнадцать можно получить, совместив методы построения трех- и пятисторонних многоугольников. Шестнадцать – удваиваем восемь.
Если говорить о Евклиде, то этим все и заканчивается. Три, четыре, пять, пятнадцать и все кратные этим числам на степени двойки. Семнадцать? Безумие. Тем более если учесть, что метод Гаусса определенно указывает, что правильный многоугольник в семь, девять, одиннадцать, тринадцать и четырнадцать сторон невозможно построить при помощи линейки и циркуля. Но, безумие или нет, такой метод существует. Существует даже простая причина тому (хотя почему этот факт является причиной, понять далеко не просто). Семнадцать – простое число, которое при вычитании единицы дает шестнадцать, то есть степень двойки.
В этой формуле, осознает Гаусс, скрыт ключ к методам построения правильных многоугольников при помощи линейки и циркуля. В маленькой записной книжечке он делает запись: Principia quibus innititur sectio circuli, ac divisibilitus eiusdem geometrica in septemdecim partes etc. Приблизительно это означает: «Окружность можно разделить на семнадцать [равных] частей». Это первая запись в той книжечке. Позже к ней добавилось 145 других открытий, причем каждому из них посвящена краткая, часто непонятная непосвященному, запись.
Так языки? Или математика?
Победитель очевиден.
* * *
Гаусс родился в бедной семье. Его отец Герхард работал в Брауншвейге садовником, а позже – смотрителем каналов и каменщиком. Мать Гаусса Доротея (урожденная Бенце) была настолько неграмотной, что не записала даже даты рождения сына. Однако она вовсе не была глупа и помнила, что сын ее вошел в этот мир в среду, за восемь дней до праздника Вознесения. Что характерно, Гаусс позже воспользовался этой ограниченной информацией, чтобы определить точный день.
Недюжинный ум мальчика проявился очень быстро. Когда ему было три года, отец однажды раздавал при нем плату работникам. Внезапно маленький Карл подал голос: «Нет, папа, это неправильно, должно быть…» Пересчет показал, что малыш был прав. Осознав потенциальные способности сына, родители Гаусса предприняли серьезные усилия, чтобы помочь ему развить их. Когда Гауссу было восемь лет, учитель Бюттнер в школе задал классу арифметическую задачу. Часто говорят, что он велел детям сложить все числа от 1 до 100, но это, вероятно, упрощение. Реальная задача, скорее всего, была сложнее, но в конечном итоге требовала именно этого: сложить большое количество чисел, разделенных равными интервалами. С точки зрения учителя, у такого примера есть важное и очевидное достоинство: существует хитрый способ упростить расчет. Не раскрывайте секрета вашим ничего не подозревающим ученикам – и вы надолго, может быть на несколько часов, загрузите их объемными вычислениями, в которых они почти наверняка где-нибудь да ошибутся. Но один восьмилетка посидел за партой несколько секунд, нацарапал на своей грифельной доске одно-единственное число, а затем решительно прошагал к столу учителя и положил перед ним доску лицом вниз. «Ligget se», – проговорил он своим деревенским говорком: «Вот он лежит». Никакого неуважения в этом не было, так в те времена было принято сдавать свой ответ. Другие ученики усердно считали, горка грифельных досок перед учителем медленно росла, а Бюттнер наблюдал за Гауссом, который спокойно сидел за своей партой. Когда же доски были проверены, оказалось, что из всех ответов верен только ответ Гаусса.
Но предположим, что задача действительно была 1 + 2 + 3 + … + 99 + 100. Какой хитрый прием можно здесь использовать? Ну, для начала нужно обладать достаточным воображением, чтобы понять, что такой прием существует. Затем его нужно найти. Этот же прием работает и для более сложных примеров такого рода. Считается, что Гаусс мысленно сгруппировал числа по парам: одно из начала списка, другое из конца. Тогда
1 + 100 = 101,
2 + 99 = 101,
3 + 98 = 101,
и дальше закономерность сохраняется (поскольку в начале списка числа увеличиваются каждый раз на единицу, а в конце при обратном порядке на столько же уменьшаются, компенсируя прибавление) до последней суммы
50 + 51 = 101.
Таких пар 50, каждая дает в сумме 101, так что суммарный итог составит 50 × 101 = 5050.
Ligget se.
* * *
Бюттнер понял, что судьба столкнула его с настоящим гением, и дал Гауссу лучший арифметический текст, какой только смог купить. Мальчик прочел его как роман – и освоил так же быстро. «Он мне не под силу. Я не могу больше ничему его научить», – сказал Бюттнер. Но он мог все же помочь своему протеже-вундеркинду. В 1788 г. Гаусс при помощи Бюттнера и его помощника Мартина Бартельса начал учиться в гимназии, где и приобрел вкус к лингвистике, изучив верхненемецкий и латынь.
Бартельс, знавший в Брауншвейге кое-кого из видных людей, рассказал им о талантах Гаусса. Рассказ о необыкновенном юноше дошел и до ушей герцога Карла-Вильгельма-Фердинанда Брауншвейг-Вольфенбюттельского, и в 1791 г., в возрасте 14 лет, Гаусс был удостоен личной герцогской аудиенции. Он был стеснителен и скромен – и невероятно умен. Герцог, в равной степени очарованный и впечатленный, пообещал выделить деньги на образование мальчика. В 1792 г. Гаусс на деньги герцога поступил в колледж Collegium Carolinum. В колледже его интерес к языкам, особенно классическим, значительно окреп. Герхард заявил, что подобные знания бесполезны в жизни и нечего тратить время на их приобретение, но вмешалась Доротея. Их сын должен получить наилучшее возможное образование, а оно включает в себя и греческий, и латынь. И точка.
Некоторое время Гаусс всерьез интересовался сразу двумя областями – математикой и языками. Он самостоятельно открыл (без доказательств) пять или шесть важных математических теорем, в том числе закон квадратичной взаимности в теории чисел, о котором я расскажу позже, и высказал гипотезу о простых числах, согласно которой количество простых чисел, меньших x, приблизительно равно x/log x. Эту гипотезу независимо друг от друга доказали в 1896 г. Жак Адамар и Шарль де ла Валле-Пуссен. В 1795 г. Гаусс оставил Брауншвейг, чтобы начать учебу в Университете Гёттингена. Его профессор Авраам Кестнер в основном писал учебники и энциклопедии и не занимался исследовательской работой. Гаусс был о нем невысокого мнения и не скрывал этого. Он уже уверенно двигался в направлении карьеры лингвиста, когда боги математики весьма наглядно пришли ему на помощь с семнадцатиугольником.
* * *
Чтобы понять, насколько радикальным было открытие Гаусса, нам нужно вернуться на две с лишним тысячи лет назад, в Древнюю Грецию. Евклид в «Началах» систематизировал и привел к единому виду теоремы великих греческих геометров. Он был ярым поборником логики и утверждал, что все должно быть доказано. Ну, почти все. С чего-то нужно начинать, и начинают обычно с предположений, которые не доказываются. Такие предположения Евклид подразделил на три типа: определения, общепринятые положения и постулаты. Мы сегодня называем утверждения двух последних типов аксиомами.
На базе таких предположений Евклид проработал значительную часть греческой геометрии, шаг за шагом. На наш современный взгляд, кое-каких допущений у него все же недоставало – довольно тонких допущений, таких как «если прямая проходит через некую точку внутри окружности, то эта прямая, если ее продолжить достаточно, должна с этой окружностью пересечься». Но если оставить мелочные придирки, Евклид проделал замечательную работу, выведя далеко идущие следствия из простых принципов.
Вершиной «Начал» стало доказательство того, что существует ровно пять правильных многогранников – объемных фигур, гранями которых являются правильные многоугольники, одинаково организованные в каждой вершине. Перечислим эти пять фигур: тетраэдр с четырьмя гранями – равносторонними треугольниками; куб с шестью квадратными гранями; октаэдр с восемью гранями – равносторонними треугольниками; додекаэдр – двенадцатигранник с правильными пятиугольниками в качестве граней; и икосаэдр с двадцатью гранями – равносторонними треугольниками. Отметим, что если вы являетесь Евклидом и настаиваете на логических доказательствах, то вы не сможете построить трехмерную геометрию додекаэдра, если предварительно не разобрались в двумерной геометрии правильного пятиугольника. В конце концов, додекаэдр построен из двенадцати правильных пятиугольников. Так что прежде, чем приступать к настоящему делу – к правильным многогранникам, вам придется разобраться с правильными пятиугольниками и многими другими премудростями.
Среди базовых допущений Евклида имеется невысказанное, но безусловное ограничение на способы построения геометрических фигур. Все делается при помощи только прямых линий и окружностей. По существу, при построении разрешается пользоваться только линейкой и циркулем. Геометрия Евклида представляет собой математическую идеализацию, в которой прямые линии всегда бесконечно тонки и идеально прямы, а окружности бесконечно тонки и идеально круглы. Так что про Евклидовы построения никак не скажешь, что они сойдут, мол, для сельской местности; они точны, то есть достаточно хороши даже для проверки бесконечно педантичным сверхразумом с бесконечно мощным микроскопом.
* * *
Подход Гаусса к правильным многоугольникам основан на открытии Декарта, которое гласит, что геометрия и алгебра – две стороны одной монеты, связанные между собой координатами на плоскости. Прямая линия представляется уравнением, которому должны соответствовать координаты каждой ее точки. То же можно сказать об окружностях, только уравнение там получается посложнее. Если две прямые или окружности пересекаются, то точки их пересечения должны удовлетворять обоим уравнениям. Если вы пытаетесь найти эти точки путем решения пары уравнений, то для двух прямых все получится достаточно просто. Если прямая пересекается с окружностью или если пересекаются две окружности, то вам придется решить квадратное уравнение. Для этого существует формула, и ее ключевое действие – извлечение квадратного корня. Остальное сводится к простой арифметике: сложить, вычесть, умножить, разделить.
Процесс геометрического построения при помощи линейки и циркуля сводится, с точки зрения алгебраиста, к формированию последовательности квадратных корней. Если воспользоваться кое-какими специфическими приемами, станет ясно, что это то же самое, что решить уравнение, «степень» которого – наибольшая степень неизвестного в нем – равна 2, 4, 8, 16, то есть представляет собой степень двойки. Не каждое такое уравнение сводится к совокупности квадратных уравнений, но ключ здесь – степень двойки. Какая именно степень, определяет, сколько квадратных уравнений вам потребуется объединить в цепочку.
Правильные многоугольники превращаются в очень простые уравнения, если воспользоваться комплексными числами, в которых из –1 можно извлечь квадратный корень. Вот, к примеру, уравнение для вершин правильного пятиугольника:
x5 – 1 = 0.
Согласитесь, очень простое и элегантное уравнение. Если исключить очевидное действительное решение x = 1, то остальные удовлетворяют уравнению
x4 + x3 + x2 + x + 1 = 0.
По-прежнему красивое уравнение и, главное, четвертой степени, а 4 – степень двойки. Нечто аналогичное происходит и с уравнением семнадцатиугольника, но здесь в уравнениях складываются степени неизвестного вплоть до шестнадцатой, а 16 – тоже степень двойки.
С другой стороны, правильный семиугольник имеет аналогичное уравнение степени 6, которая не является степенью двойки. Так что вы определенно не можете построить правильный семиугольник при помощи линейки и циркуля. Поскольку Евклид строит пятиугольник, его уравнение тоже должно сводиться к серии квадратных уравнений. Применив алгебру, несложно выяснить, как именно. Вооруженный этой идеей, Гаусс обнаружил, что уравнение семнадцатиугольника тоже сводится к серии квадратных уравнений. Во-первых, 16 = 24, то есть степень двойки, что необходимо для разложения в систему квадратных уравнений, хотя не всегда достаточно. Во-вторых, 17 – простое число, что позволило Гауссу найти эту систему.
Любой знающий математик мог проследить за рассуждениями Гаусса после того, как тот показал верный путь, но никто другой даже не заподозрил, что Евклид в свое время назвал не все правильные многоугольники, которые можно построить.
Неплохо для девятнадцатилетнего юноши.
* * *
Благодаря финансовой помощи герцога Гаусс продолжал двигаться вперед семимильными шагами, особенно в теории чисел. С детства он умел молниеносно считать и мог мгновенно проделывать в уме сложные арифметические расчеты. В докомпьютерную эпоху такая способность была очень полезна. Она помогала ему быстро продвигаться вперед в теории чисел, и репутация молодого Гаусса заметно подросла, когда он написал один из самых известных исследовательских текстов в истории математики – «Арифметические исследования» (Disquisitiones Arithmeticae). Эта книга сделала для теории чисел то, что Евклид двумя тысячелетиями раньше сделал для геометрии. Благодаря субсидии, которую выделил пунктуальный герцог, книга вышла в 1801 г.; автор в ответ посвятил книгу спонсору.
Один из основных методов, используемых в книге, представляет собой типичный пример способности Гаусса синтезировать из массы неорганизованных и сложных результатов простые понятия. Сегодня мы называем этот метод модульной арифметикой. Многие ключевые результаты в теории чисел зиждутся на двух простых вопросах:
При каких условиях одно заданное число делится на другое?
Если не делится, то как связаны эти два числа?
Проведенное Ферма различие между 4k + 1 и 4k + 3 относится к этому же типу. Здесь речь идет о том, что произойдет, если разделить некое число на 4. Иногда оно делится нацело. Числа
0 4 8 12 16 20…
кратны четырем. Остальные четные числа
2 6 10 14 18…
не кратны. Мало того, каждое из них при делении на 4 дает остаток 2; то есть они представляют собой сумму числа, кратного 4, и «остатка» 2. Аналогично нечетные числа дают в остатке либо 1:
1 5 9 13 17 21…
либо 3:
3 7 11 15 19 23…
До того как Гаусс взял это дело в свои руки, обычно говорили, что эти последовательности содержат числа вида 4k, 4k + 1, 4k + 2 и 4k + 3, если расставить их в порядке возрастания остатков. Гаусс сказал иначе: это группы чисел, сравнимых с 0, 1, 2, 3 (или конгруэнтных 0, 1, 2, 3 соответственно) по модулю 4. Или, если вспомнить освященную временем латынь, modulo 4.
До сих пор все это только терминология, но главное здесь – структура. Если вы складываете два числа или перемножаете их и спрашиваете, с которым из чисел 0, 1, 2, 3 сравним (все по модулю 4) результат, то оказывается, ответ на этот вопрос зависит только от того, с какими из чисел сравнимы первоначально взятые вами числа. К примеру:
– если вы складываете числа, сравнимые с 2 и 3, то результат всегда сравним с 1;
– если вы перемножаете числа, сравнимые с 2 и 3, то результат всегда сравним с 2.
Посмотрим на примере. Число 14 сравнимо (по-прежнему все происходит по модулю 4) с 2, а число 23 – с 3. Их сумма равна 37 и должна быть сравнима с 1. Так и есть: 37 = 4 × 9 + 1. Произведение этих чисел равно 322 = 4 × 80 + 2.
Возможно, это звучит немного глуповато, но такая система позволяет нам отвечать на вопросы о делимости на 4 при помощи всего лишь этих четырех «классов сравнимости». Применим эту идею к простым числам, представляющим собой сумму двух полных квадратов. Любое целое число сравнимо (по модулю 4) с 0, 1, 2 или 3. Следовательно, их квадраты сравнимы с квадратами этих четырех чисел, то есть с 0, 1, 4 или 9, а те, в свою очередь, сравнимы с 0, 1, 0, 1 соответственно. Перед вами очень быстрый и очень простой способ доказать, что любой квадрат имеет вид 4k или 4k + 1, в старой терминологии. Но это еще не все. Суммы двух квадратов, следовательно, сравнимы либо с 0 + 0, 0 + 1, либо с 1 + 1; то есть с 0, 1 или 2. Здесь обращает на себя внимание отсутствие 3. Мы доказали, что сумма двух квадратов не может быть сравнима с 3 по модулю 4. Мы видим, что таким образом утверждение, которое на первый взгляд кажется довольно хитрым и неочевидным, и в модульной арифметике становится тривиальным.
Если бы этот метод был ограничен сравнимостью по модулю 4, в нем, конечно, не было бы особого смысла, но 4 можно заменить на любое другое число. Если вы, к примеру, выберете число 7, то каждое число будет сравнимо по модулю 7 с каким-нибудь числом из точно известного набора: 0, 1, 2, 3, 4, 5 или 6. Здесь опять же можно предсказать класс сравнимости суммы или произведения чисел по их собственным классам сравнимости. Так что можно производить арифметические действия (а следовательно, и алгебраические) с использованием классов сравнимости вместо чисел.
В руках Гаусса эта идея стала краеугольным камнем далеко идущих теорем о числах. В частности, она привела его к одному из самых впечатляющих открытий, сделанному в возрасте 18 лет. Задолго до Гаусса Ферма, Эйлер и Лагранж обращали внимание на эту закономерность, но никто из них не привел доказательство. Гаусс доказательство вывел и опубликовал в 1796 г., когда ему было 19 лет; всего он нашел шесть доказательств. Для себя он называл эту теорему Theorema Aureum, то есть Золотая теорема. Ее официальное название, гораздо более неуклюжее и менее подходящее для новостных заголовков, – Квадратичный закон взаимности. Это инструмент, помогающий ответить на один базовый вопрос: как выглядят полные квадраты для заданного модуля? К примеру, мы видели, что любой квадрат (modulo 4) равен либо 0, либо 1. Эти числа называют квадратичными вычетами (modulo 4). Остальные два класса, 2 и 3, – квадратичные невычеты. Если вместо 4 мы возьмем 7, то квадратичными вычетами (modulo 7) окажутся
0 1 2 4
(квадраты 0, 1, 3, 2 в этом порядке), а квадратичными невычетами –
3 5 6.
В целом, если в качестве модуля используется нечетное простое p, вычетами является чуть больше половины классов сравнимости, а чуть меньше половины классов являются невычетами. Однако в том, какие числа попадают в вычеты, а какие – в невычеты, нет никакой очевидной закономерности.
Предположим, что p и q – нечетные простые числа. Можно задать два вопроса:
Является ли p квадратичным вычетом по модулю q?
Является ли q квадратичным вычетом по модулю p?
Неясно, должны ли эти вопросы быть хоть как-то связаны между собой, но Золотая теорема Гаусса утверждает, что оба они имеют один и тот же ответ, если только оба числа p и q не имеют вида 4k + 3; если имеют, то ответы противоположны: один – да, другой – нет. Теорема ничего не говорит о том, каким именно должен быть ответ; речь идет только о связи между ними. Но даже в этом случае, при некоторых дополнительных усилиях, Золотая теорема приводит к эффективному методу определения, является ли заданное число квадратичным вычетом по модулю другого заданного числа или нет. Однако если число является квадратичным вычетом по модулю другого числа, то этот метод не подскажет вам, какой именно квадрат нужно использовать. Даже такой базовый вопрос, как этот, скрывает в себе глубокие тайны.
Сердце «Арифметических исследований» – тщательно проработанная теория арифметических свойств квадратичных форм – всевозможных хитроумных вариаций на тему «суммы двух квадратов», – которая с тех пор успела развиться в несколько обширных и сложных теорий, тесно связанных со многими другими областями математики. На случай, если все это представляется вам ужасно заумным, поясню, что квадратичные вычеты играют важную роль, к примеру, в обеспечении хорошей акустики в концертных залах. Они говорят нам, какую форму следует придать отражателям и поглощателям звука на стенах. А квадратичные формы лежат в основе всей современной математики, как теоретической, так и прикладной.
Произведения Гаусса немногословны, элегантны и выразительны. «Если вы построили чудесное здание, строительных лесов на нем уже не должно быть видно», – писал он. Это справедливо, если вы хотите, чтобы люди полюбовались вашим зданием, но если вы готовите архитекторов и строителей, то вам обязательно нужно показать им леса и подробно познакомить с их устройством. То же можно сказать и о подготовке следующего поколения математиков. Карл Якоби жаловался, что Гаусс «как лис, заметающий свои следы на песке собственным хвостом». И Гаусс был не одинок в такой практике. Мы видели, что Архимеду, чтобы приведенные им в трактате «О шаре и цилиндре» доказательства работали, нужно было знать площадь поверхности и объем шара, но в этом трактате он не стал их раскрывать и оставил при себе. Справедливости ради заметим, что он раскрыл лежащие в их основе рассуждения в трактате «О методе». Ньютон при получении многих результатов, изложенных в его «Началах», пользовался методами дифференциального исчисления, а при представлении их замаскировал под чистую геометрию. Требования объема при журнальных публикациях, давление привычки и традиции до сих пор делают значительную часть публикуемых математических исследований менее вразумительными, чем нужно. Я не убежден, что такое отношение полезно для профессии, но изменить его очень трудно; кроме того, существуют и аргументы в его пользу. В частности, трудно следить за ходом мысли, которая то и дело отклоняется от верного пути в сторону и попадает в тупик; в этом случае можно лишь вернуться на верную дорогу по своим же следам.
* * *
Академическая репутация Гаусса была высока до небес, и у него не было причин предполагать, что герцог в какой-то момент в будущем прекратит его финансировать, но постоянный оплачиваемый пост тем не менее еще более упрочил бы его положение. Чтобы получить такой пост, полезно было заработать еще и публичную репутацию. Возможность представилась в 1801 г. В первый день нового года астроном Джузеппе Пиацци произвел настоящую сенсацию, открыв «новую планету». Мы сегодня считаем этот объект карликовой планетой, но большую часть времени, миновавшего со времени открытия, он был астероидом. Но, каков бы ни был его статус, называется он Церерой. Астероиды – это сравнительно небольшие тела, орбиты которых располагаются (в основном) между орбитами Марса и Юпитера. На этом расстоянии от Солнца на основании эмпирической закономерности в размерах планетарных орбит (закона Тициуса – Боде) было предсказано существование планеты. Орбиты всех известных на тот момент планет вполне укладывались в этот закон, за исключением того, что между Марсом и Юпитером наблюдался большой промежуток, в котором как раз и могла таиться незамеченная планета.
К июню венгерский знакомец Гаусса, астроном и барон Франц Ксавер фон Цах, опубликовал результаты наблюдений Цереры. Однако Пиацци в начале года сумел пронаблюдать новооткрытое небесное тело лишь на небольшом участке его орбиты. Когда объект исчез из виду, скрывшись в сиянии Солнца, астрономы встревожились, что не смогут отыскать его вновь. Гаусс придумал новый метод получения точной орбиты на основании небольшого числа наблюдений, и Цах опубликовал предсказание Гаусса вместе с несколькими другими предсказаниями; каждый автор предсказывал что-то свое, совпадений не было. В декабре Цах обнаружил потерянную Цереру почти точно в той точке, где, по предсказанию Гаусса, она должна была находиться. Это достижение окончательно закрепило репутацию Гаусса как математического маэстро, и вознаграждением для него стало назначение в 1807 г. на пост директора Гёттингенской обсерватории.
К тому моменту Гаусс был женат на Иоганне Остгоф, но в 1809 г. она умерла, дав жизнь их второму сыну, который тоже вскоре умер. Гаусс был подавлен этой семейной трагедией, но продолжал заниматься своей математикой. Может быть, математика позволяла ему отвлечься и тем самым помогала справиться с горем. Он расширил свое исследование, связанное с орбитой Цереры, и создал на его основе общую теорию небесной механики: движения звезд, планет и их спутников. В 1809 г. он опубликовал «Теорию движения небесных тел, обращающихся вокруг Солнца по коническим сечениям». Менее чем через год после смерти Иоганны Гаусс вновь женился – на ее близкой подруге Вильгельмине Минне Вальдек.
* * *
К этому моменту Гаусс уже прочно утвердился в роли лидера немецкой – а значит, и мировой – математики. Его мнение ценилось и всюду встречало уважение; нескольких слов похвалы или критики из его уст было достаточно, чтобы кардинальным образом повлиять на чью-нибудь карьеру. В целом он не злоупотреблял своим влиянием и много делал для поощрения молодых математиков, однако его взгляды были очень консервативными. Гаусс сознательно избегал любых вопросов, которые могли вызвать споры и противоречия; он прорабатывал их для собственного удовольствия, но не публиковал. Иногда такое сочетание приводило к несправедливости. Самый вопиющий пример такого рода связан с неевклидовой геометрией, но эту историю я отложу до следующей главы.
Гаусс оставил после себя широкий спектр работ в самых разных областях математики. Он дал первое строгое доказательство Основной теоремы алгебры о том, что любое полиномиальное уравнение имеет решения в комплексных числах. Он дал строгое определение комплексных чисел как пар действительных чисел, с которыми можно проводить определенные операции. Он доказал фундаментальную теорему комплексного анализа, известную как теорема Коши, потому что Огюстен-Луи Коши не только доказал ее независимо, но и опубликовал доказательство. В действительном анализе можно проинтегрировать некоторую функцию на определенном интервале и получить при этом площадь под соответствующей кривой. В комплексном анализе функцию можно проинтегрировать вдоль некоторой кривой на комплексной плоскости; называется такой интеграл интегралом по контуру. Гаусс и Коши доказали, что если начальные и конечные точки двух контуров совпадают, то значение интеграла по тому и другому контуру зависит только от этих точек, при условии что функция не принимает бесконечных значений ни в какой точке внутри замкнутой кривой, полученной в результате объединения двух контуров. Этот простой результат имеет глубокие следствия для соотношения между комплексной функцией и ее сингулярностями – точками, в которых она принимает бесконечные значения.
Гаусс сделал первые шаги к топологии и ввел понятие коэффициента зацепления – топологического свойства, которое часто можно использовать для доказательства того, что две сцепленные кривые невозможно расцепить при помощи непрерывной деформации. Эту концепцию позже обобщил для более высоких размерностей Пуанкаре (глава 18). Кроме того, это был первый шаг к созданию теории топологии узлов – темы, о которой Гаусс тоже размышлял и которая сегодня имеет свои приложения в квантовой теории поля и строении ДНК-молекулы.
* * *
Как директор Гёттингенской обсерватории Гаусс вынужден был посвящать много времени строительству новой обсерватории, которое завершилось в 1816 г. Не пренебрегал он и математикой: публиковал работы по бесконечным рядам и гипергеометрической функции, статью по численному анализу, кое-какие статистические идеи и работу «Теория притяжения однородного эллипсоида» о гравитационном притяжении сплошного однородного эллипсоида – лучшей аппроксимации для формы планеты, чем шар. В 1818 г. ему было поручено провести геодезическую съемку Ганновера, доработав при этом существующие методики съемки. К 1820-м гг. Гаусс заинтересовался измерением формы Земли. Ранее он доказал теорему, которую назвал Theorema Egregium (Замечательная теорема). Она характеризует форму поверхности независимо от окружающего ее пространства. За эту теорему и за проведенную геодезическую съемку в 1822 г. он был удостоен Копенгагенской премии.
В это время в семейной жизни Гаусса начался сложный период. Его мать постоянно болела, и он перевез ее к себе и поселил в своем доме. Ему предлагали пост в Берлине, и жена хотела, чтобы он согласился на этот пост, но Гаусс не хотел покидать Гёттинген. Затем, в 1831 г., его жена умерла. Побороть горе ему помог приезд физика Вильгельма Вебера. Гаусс был знаком с Вебером уже несколько лет, и они вместе работали над исследованием магнитного поля Земли. Гаусс написал на эту тему три значительные работы, изложил в них фундаментальные результаты в физике магнетизма и определил при помощи своей теории местоположение Южного магнитного полюса. Вместе с Вебером он открыл то, что мы сегодня называем законами Кирхгофа для электрических цепей. Они также построили один из первых работающих электрических телеграфов, способный посылать сообщения более чем на километр.
Когда Вебер покинул Гёттинген, математическая продуктивность Гаусса пошла на спад. Он перенес свою деятельность в финансовый сектор, организовав Вдовий фонд Гёттингенского университета. Опыт, полученный в этом деле, он употребил с пользой – и сделал себе состояние, вкладывая деньги в облигации различных компаний. Тем не менее он продолжал консультировать двух докторантов, Моритца Кантора и Ричарда Дедекинда. Последний позже описал ту спокойную и четкую манеру, в которой Гаусс вел исследовательские дискуссии; сначала участники вместе вырабатывали базовые принципы, затем он формулировал их и записывал на небольшой доске своим элегантным почерком.
Умер Гаусс очень спокойно, во сне, в 1855 г.
Назад: 9. Повелитель теплоты. Жозеф Фурье
Дальше: 11. Меняя правила. Николай Иванович Лобачевский