Книга: Краткая история науки
Назад: Глава 28 Машины и энергия
Дальше: Глава 30 Внутрь атома

Глава 29
Таблица элементов

 

Всякий раз, смешивая продукты, чтобы испечь что-то, мы используем химические реакции. Очищая чайник от накипи, мы тоже пускаем в ход достижения науки химии. Пластиковые бутылки для воды, разноцветная одежда, которую мы носим, стали возможными благодаря химическим знаниям, накопленным за сотни лет.
Химия превратилась в современную науку в девятнадцатом веке.
Давайте коротко вспомним: в начале того столетия химики приняли идею Дальтона по поводу атома (глава 21). Затем они резко продвинулись вперед, создав особый язык, который можно было использовать в любой стране мира. Появилась система обозначений для элементов, например, H2 для двух атомов водорода. Все согласились, что атом является мельчайшей частицей материи, что слово «элемент» будет использоваться только для субстанции, состоящей из атомов одного вида (углерод, например), в «соединении» же будет содержаться два или большее число элементов, связанных химическим путем.
Можно разложить соединение на элементы (аммиак разделить на азот и водород), но когда у вас в руках отдельные элементы, их уже нельзя разбирать на «части» дальше.
Хотя атомы оказались вовсе не крохотными твердыми шариками, о которых думал Дальтон, было невероятно трудно определить, чем в точности они являются. Отложив эту задачу, химики начали заниматься тем, как ведут себя атомы, помещенные в те или иные соединения.
Некоторые элементы просто не вступали в реакцию с другими вне зависимости от ваших усилий. Другие, наоборот, реагировали при соединении столь бурно, что возникала опасность взрыва. Иногда тем не менее вы получали реакцию по собственной воле, помогая ей начаться. Кислород и водород можно поместить в емкость, и ничего не будет. Если же туда попадет искра, то только держись, но, несмотря на драматический эффект, в конечном счете появится банальная вода.
С другой стороны, если магний и углерод поместить в сосуд, где не будет воздуха, можно нагревать их вечно, и ничего не произойдет. Добавьте хоть глоточек атмосферы, и вы получите яркую вспышку и огромное количество тепла.
Химики понемногу узнавали больше и больше о самых разных реакциях и все сильнее и сильнее интересовались их причинами и шаблонами, обнаруженными в лабораториях. Все эксперименты ученые разделили на две большие группы: синтез и анализ. Синтез – это соединение элементов, вы начинаете с простых элементов или веществ, потом они вступают в реакцию, и вы смотрите, что получается в итоге. Анализ – нечто противоположное: вы начинаете со сложного соединения и пытаетесь неким образом разложить его на составляющие, чтобы потом, изучая, что получилось, узнать свойства исходного вещества.
Эти методы позволили ученым понять, из чего состоят многие простые соединения. С другой стороны, они научились создавать более сложные, комбинируя новые и новые элементы.
Но все эти опыты сделали очевидными две простые истины.
Во-первых, как мы уже видели, элементы сами по себе могут быть положительными либо отрицательными. А как говорили древние – противоположности притягиваются. Например, натрий, положительный от природы элемент, легко комбинирует с отрицательным хлором, чтобы получился хлорид натрия (это обычная соль, которая есть на любом столе). Положительный и отрицательный заряды взаимно уничтожают друг друга, так что соль нейтральна.
Все стабильные соединения (такие, которые не меняются, если не прилагать специальных усилий) нейтральны, пусть даже они состоят из элементов, обладающих разным зарядом. Так, поваренная соль является отличным примером такого синтеза. Ничего сложного нет в том, чтобы провести химический анализ этого вещества – растворите соль в воде, поместите раствор в электрическое поле с его положительным и отрицательным полюсами, и она распадется.
Натрий отправится к отрицательному полюсу, хлор потечет к положительному.
Сотни экспериментов такого рода убедили химиков, что атомы любого элемента обладают либо отрицательным, либо положительным зарядом. И эта характеристика играет важнейшую роль в том, что случается, когда один элемент реагирует с другим.
Во-вторых, иногда группы атомов «слипаются» в процессе эксперимента, и эти группы в дальнейшем действуют как единое целое. Объединения атомов назвали «радикалами», и они тоже бывают заряжены положительно или отрицательно. Подобные штуковины сыграли особенно важную роль в органической химии, когда ученые начали изучать целые серии взаимосвязанных соединений (все они содержат углерод), таких как эфиры, спирты или бензолы. Это удивительные виды соединений, в основе каждого лежит кольцевидная структура атомов.
Многие химики активно взялись за классификацию этих соединений, пытаясь понять, из чего они состоят и как вступают в реакции – и не в последнюю очередь потому, что упомянутые вещества оказались нужны для промышленности. Постепенно такие промышленные химикалии начали изготавливать не в лабораториях, а прямо на заводах. Вырос спрос на удобрения, краски, лекарства, пигменты и, в особенности после 1850-х, на нефтепродукты.
Тогда зародилась современная химическая индустрия, и химия стала профессией, а не просто увлечением любопытных богачей.
Элементы тоже обладают уникальными химическими и физическими свойствами. По мере того как их открывали больше и больше, химики находили определенные шаблоны. Все выглядело так, словно отдельные атомы некоторых элементов, такие как водород, натрий или хлор, только и ждут, чтобы соединиться с другим одиночным атомом. Например, один атом водорода и один хлора в комбинации создают соляную кислоту (HCl). Одиночные атомы других, таких как кислород, барий или магний, обладали удвоенной емкостью для соединения с другими атомами или радикалами: так, требуется два атома водорода и один кислорода, чтобы получилась вода.
Третьи элементы выглядели еще более гибкими, и всегда появлялись исключения, не позволявшие установить четкие правила. Элементы (и радикалы) также различались по своей готовности вступать в химические реакции, фосфор был столь активен, что с ним требовалось особое обращение, кремний, наоборот, ни на что не реагировал и выглядел безопасным.
По физическим свойствам элементы тоже в значительной степени различались. При обычной температуре водород, кислород, азот и хлор были газами, ртуть и натрий – жидкостями. Большая часть представала в виде твердых тел: металлы вроде свинца, меди, никеля и золота. Многие другие, в первую очередь углерод и сера, оба хорошо изученные, тоже выглядели твердыми.
Но поместите большую часть таких твердых тел в обычную печь, и они без труда расплавятся, а некоторые испарятся (превратятся в газ). Жидкие ртуть и натрий тоже очень легко (и опасно) перевести в газообразное состояние.
У химиков девятнадцатого века не было возможности понизить температуру так, чтобы газы вроде кислорода или водорода превратились в жидкость или более того – в твердую субстанцию. Но они признавали, что проблема чисто техническая и что в принципе каждый элемент может существовать в одном из трех состояний: твердом, жидком или в виде газа.
В середине девятнадцатого века химия становилась зрелой наукой, и в этот воодушевляющий период имелось много тем для обсуждения: относительная атомная масса, то, как молекулы (группы разных атомов) соединяются между собой, разница между органическими и неорганическими соединениями и так далее. Многое, что сейчас выглядит обычным, тогда казалось удивительным: например, международная научная конференция.
В эпоху до телефона, электронной почты и легких путешествий ученые редко встречались и большей частью общались с помощью писем. Редко получалось так, что им удавалось послушать коллегу во время выступления, а затем поучаствовать в обсуждении. Первые конференции прошли в 1850-х, когда поезда и пароходы сделали поездки легче и быстрее, позволили людям науки встречаться с коллегами и обмениваться мнениями.
Благодаря конференциям по миру начала распространятся та вера, которую разделяло научное сообщество: наука сама по себе объективна и интернациональна, она превыше религии и политики, а то и другое разделяет людей и часто приводит к войнам между нациями.
Конгресс химиков 1860 года состоялся в городе Карлсруэ, в Германии.
На него прибыли многие ведущие ученые со всей Европы, и среди них оказались те, кто определил развитие этой науки до конца века. Цели конференции были установлены немцем Августом Кекуле (1829-96): он хотел, чтобы химики из разных стран пришли к согласию по поводу терминов, используемых для идентификации веществ, с которыми они работали, а также обсудили природу атомов и молекул.
Вспыльчивый итальянец с Сицилии Станислао Канниццро (1826–1910) и ранее активно выступал с такой инициативой, так что он охотно принял участие. Приехал и увлеченный своей работой русский химик из Сибири Дмитрий Иванович Менделеев (1834–1907). Делегаты обсуждали предложения Кекуле на протяжении трех дней, и хотя полного согласия достичь не удалось, начало было положено.
На конгрессе многие делегаты получили копию статьи, опубликованной Канниццро в 1858 году. В этой работе он обозрел историю химии в первой половине столетия. Итальянец призвал коллег принять всерьез результаты своего земляка Авогадро, проводившего четкое различие между молекулой и атомом. Канниццро также утверждал, что жизненно важно определить относительную атомную массу элементов, и показал, как это может быть сделано.
Менделеев принял вызов.
Он многим обязан своей выдающейся матери, которая перевезла Дмитрия, последнего из ее четырнадцати детей, в Санкт-Петербург, где Менделеев мог получить хорошее образование. Подобно многим выдающимся химикам того времени он написал учебник, основанный на его собственных экспериментах и на том, чему он сам учил студентов.
Подобно Канниццро Менделеев желал упорядочить набор открытых к тому времени элементов. Были обнаружены многие шаблоны, например, то, что именовали семейством галогенов – хлор, бром и йод, вступавшие в реакцию сходным образом. Элементы эти также могли легко заменять друг друга в химических взаимодействиях. Некоторые металлы, такие как медь и серебро, тоже вели себя сходным образом.
Менделеев попытался расположить элементы в порядке возрастания их относительной атомной массы, используя водород как единицу, и результаты своих усилий представил в 1869 году.
Русский ученый не просто составил упорядоченный список элементов, он придумал таблицу с рядами и колонками. Вы можете читать ее по диагонали точно так же, как и сверху вниз и справа налево, и увидеть разные связи между элементами со схожими свойствами. Поначалу эта «таблица элементов», как он назвал ее, выглядела очень грубой, и мало кто обратил на нее внимание.
Но по мере того, как Менделеев заполнял ее, все чаще происходило нечто интересное: то тут, то там появлялось пустое место, все выглядело так, словно некоего элемента не хватает в перечне тех, что известны ученым. На самом деле в таблице имелась целая недостающая колонка, предсказанная системой относительной атомной массы. Через много лет она оказалась заполнена не вступающими в реакцию газами (благородными или инертными).
Подобно благородному дворянину, не желающему иметь место с теми, кого он считает ниже, эти газы держатся в стороне от химических реакций. Основные элементы этой группы были открыты в 1890-х, и Менделеев поначалу не принял это открытие. Вскоре, однако, он понял, что гелий, неон и аргон были предсказаны его собственной таблицей.
В 1870–80-х химики, используя таблицу, открыли некоторое количество элементов, существование которых предвидел русский ученый. Многие коллеги поначалу отвергли его «безумные измышления» по поводу того, что элементы, впоследствии названные бериллием и галлием, должны существовать. Но по мере того как начали заполняться бреши в таблице, мнение понемногу изменилось, ценность таблицы Менделеева была осознана в полной мере. Она помогала открывать новые элементы и объясняла, на что будет похож каждый из них и как он станет вступать в реакцию с другими.
То, что началось как попытка Менделеева внести порядок в систему элементов, стало настоящим ключом к секретам природы. Сейчас его таблица висит в классах и химических лабораториях по всему миру.
Большую часть девятнадцатого века химики активно занимались проблемой химического состава: какие атомы и радикалы входят в те или иные соединения. Инициатор первого химического конгресса Август Кекуле рискнул заглянуть дальше, он попытался затронуть вопрос химической структуры.
Сегодняшняя химия и молекулярная биология опираются на знания ученых о том, как атомы и молекулы расположены внутри вещества: какие они принимают формы и какие места занимают. Без подобной информации невозможно разрабатывать новые лекарства, и Кекуле стал первопроходцем в этой области.
Он рассказал о сне, в котором увидел цепочку из атомов углерода, свернутую в кольцо подобно змее, кусающей свой хвост. Это озарение привело к одному из величайших открытий, к обнаружению структуры бензола, соединения из водорода и углерода, имеющего как раз кольцевую структуру; радикалы или атомы могут присоединяться к разным местам этой структуры.
Это стало большим шагом вперед в органической химии.
Сны – это одно, тяжелая и упорная работа – совсем другое, и Кекуле провел за экспериментами в своей лаборатории много часов. Он придал смысл органической химии – химии соединений углерода – и научил весь химический мир распределять эти соединения по группам.
Кекуле был изумлен тем, как гибко ведет себя углерод, соединяясь с другими химикалиями. Газ метан, широко использовавшийся для освещения и отопления, имеет формулу CH4 – один атом углерода присоединен к четырем атомам водорода. Два атома кислорода могут вступать в комбинацию с тем же углеродом, образуя CO2, диоксид углерода. Но эти способы соединения оказались вовсе не единственными, поскольку те же кислород и углерод могут соединяться поодиночке, образуя CO, смертоносный газ оксид углерода.
Химики в конечном счете придумали слово, чтобы описывать шаблоны объединения атомов: валентность. И ее можно определить по месту, которое занимает элемент в периодической таблице Менделеева. Тогда было много размышлений, почему все обстоит именно таким образом, но проблема оказалась решена много позже, когда физики разобрались во внутренней структуре атомов и узнали, что такое электрон.
Электрон связал атом химиков с тем атомом, который изучают физики, и в следующей главе мы узнаем эту историю.
Назад: Глава 28 Машины и энергия
Дальше: Глава 30 Внутрь атома