Книга: Краткая история науки
Назад: Глава 27 Кашель, чихание и заболевание
Дальше: Глава 29 Таблица элементов

Глава 28
Машины и энергия

 

«Я продаю здесь, сэр, то, что весь мир желает иметь – энергию».
Инженер Мэттью Болтон (1728–1809), которому принадлежит это изречение, знал, о чем говорил. В 1770-х годах Болтон и другие амбициозные люди, среди которых был изобретатель Джеймс Уатт (1736–1819), использовали паровые машины в горном деле и промышленности.
Все выглядело так, что они приручили силу, или энергию.
Именно эти люди двинули вперед промышленную революцию в Британии, первой стране, где прошла индустриализация и возникла система фабрик. Это была революция, базирующаяся на научных открытиях, и она нуждалась в огромном количестве энергии, чтобы во все больших объемах производить товары и развозить их все дальше с увеличивающейся скоростью.
Наш современный мир нельзя представить без колоссального потока энергии.
И все началось с пара.
Сами по себе паровые машины очень просты, лежащий в их основе принцип вы можете увидеть всякий раз, когда кипятите воду в кастрюле с закрытой крышкой: сила пара толкает ее снизу, чтобы пар мог выйти, и крышка начинает дребезжать. Теперь представьте, что вместо кастрюли у вас закрытый цилиндр с единственной маленькой дырочкой на одном из концов. Внутрь него помещен подвижный поршень (например, диск, плотно прилегающий к стенкам цилиндра, да еще с выпуклостью, которая так же плотно входит в отверстие). Давление убегающего пара будет толкать не только поршень, но и то, что будет к нему прикреплено снаружи цилиндра: скорее всего, стержень, соединенный с ободом колеса. Таким образом паровой двигатель переводит энергию пара в движение, механическую энергию. Эта машина может выполнять полезную работу, например, катить некий механизм или выкачивать большое количество воды из шахты.
Ни Болтон, ни Уатт не изобретали паровую машину, к тому времени она использовалась около ста лет. Но ранние модели были грубыми, ненадежными и неэффективными. Уатт оказался человеком, который усовершенствовал это устройство, его образец не только обеспечил энергию для индустриализации Британии, но помог ученым открыть один из основных законов природы.
Паровой двигатель позволил увидеть, что тепло вовсе не субстанция, как думал Лавуазье, а форма энергии.
Среди мыслителей, занимавшихся двигателями во время индустриальной революции, особенно выделяется молодой французский инженер Сади Карно (1796–1832). Британия и Франция были тогда соперниками, и Карно осознавал, что англичане ушли вперед в разработке паровых машин и использовании получаемой от них энергии. Он хотел, чтобы его родина не отставала, и, посвятив себя исследованию работы паровых машин, он открыл фундаментальный научный принцип.
Этот принцип относился к такому предмету, как эффективность двигателя.
Если паровая машина абсолютно эффективна, то она превратит в механическую энергию все тепло, необходимое для нагревания воды. Вы можете измерить, сколько тепла выделилось при сжигании угля или дерева для создания пара, а затем определить, какой объем работы проделал поршень.
Увы, абсолютно эффективную машину создать невозможно.
Все двигатели имеют так называемый тепловой резервуар или отстойник, где конденсируется пар после того, как выполнит работу. Вы можете измерить температуру пара на входе и температуру пара (или воды) в конце каждого рабочего цикла, и в резервуаре она всегда ниже, чем у того пара, который только вступает в процесс.
Карно показал, что вы можете использовать разницу температур для расчета эффективности машины. Если абсолютную эффективность обозначить цифрой 1, то реальная эффективность будет определяться как 1 минус температура в отстойнике, поделенная на температуру в источнике (на входе).
Единственный путь добиться единицы – заставить машину извлечь все тепло из пара. Тогда пропорция между входной и выходной температурой будет равняться нулю. Это даст нам 1–0 = 1. Чтобы это произошло, один из наших замеров температуры должен показать либо ноль, либо бесконечность: бесконечно горячий пар на входе или «абсолютный нуль» (максимально низкую температуру, возможную в теории, мы увидим ниже) выходящей в отстойник.
Ни то, ни другое не является возможным, так что эффективность всегда ниже абсолютной.
Простое уравнение Карно, предназначенное для определения эффективности двигателей, воплотило в себе и глубокий закон природы. Оно объясняет, почему «вечный двигатель», о котором иногда пишут в фантастике, не может существовать в реальном мире. Мы всегда должны использовать энергию, чтобы получать энергию, например, сжигать уголь или другое топливо, чтобы для начала нагреть воду.
В 40–50-х гг, девятнадцатого века другие ученые также работали над этой проблемой. Одним из них был немецкий физик Рудольф Клаузиус (1822-88), проведший большую часть жизни в наблюдениях за тем, как тепло ведет себя в тщательно контролируемых условиях эксперимента.
Чтобы объяснить некоторые вещи, он ввел понятие «энтропия».
Энтропия – это мера того, насколько неупорядоченной является некая система. Намного легче создать беспорядок, чем, наоборот, упорядочить набор разных элементов. Если вы смешаете белую и черную краску, то изготовите серую, причем без труда, но вот разделить смесь обратно, так, чтобы получить чистый белый и черный – невозможно. Если размешать чай с молоком и сахаром, то с некоторым количеством труда можно добыть из раствора сахар, но молоко не вернуть никак.
С энергией все точно так же: если вы сожгли уголь, вы не можете использовать полученную энергию, чтобы восстановить сожженное.
Для людей девятнадцатого века энтропия была подавляющей, неприятной идеей. Клаузиус объявил, что Вселенная становится более и более неупорядоченной, поскольку энтропия – ее нормальное состояние.
Если совокупность объектов теряет порядок, то требуется больше энергии, чтобы вернуть ее в упорядоченное состояние, и точно так же нужно больше сил, чтобы навести порядок в комнате, чем для создания бардака. В соответствии с гипотезой Клаузиуса Вселенная понемногу приходит в упадок, и в конечном счете мы получим мир, где энергия и материя равномерно распределены по пространству.
Даже наше Солнце в конце концов погаснет, примерно через пять миллиардов лет, и вместе с этим закончится жизнь на Земле.
Но в то же время, в данный конкретный момент растения и животные, человеческие существа, наши дома и компьютеры бросают вызов тому выводу, который сделал Клаузиус, и как говорили в древности: «Готовь сено, пока солнце светит».
Пока физики и инженеры были обеспокоены эффектом энтропии, они также занимались тем, что такое энергия в точности. Тепло – важная форма энергии, так что изучение этого феномена получило название «термодинамика» (комбинация греческих слов, обозначающих «тепло» и «сила»).
В 1840-х годах несколько человек пришли к одинаковым умозаключениям относительно взаимосвязи между различными формами энергии. Они изучали совершенно разные вещи: что происходит, когда вода замерзает или закипает? Каким образом наши мускулы получают способность поднимать предметы? Каким образом паровые машины используют горячий пар, чтобы производить некоторую работу?
Кстати, первая общественная железная дорога с паровозами начала функционировать на севере Англии в 1825 году.
Подойдя к одной и той же проблеме с разных направлений, они все поняли, что вы не можете создать энергию из ничего и не можете заставить ее исчезнуть полностью. Единственное, что вам доступно – превращать энергию из одной формы в другую и иногда это превращение позволит вам использовать ее для совершения некоей работы.
Это утверждение обычно называют принципом сохранения энергии.
Физик из Манчестера Дж. П. Джоуль (1818–1889) хотел понять взаимосвязь между теплом и работой. Как много энергии требуется, чтобы выполнить некий объем работы? Серией блестящих экспериментов он показал, что тепло и работа связаны напрямую и эту связь можно выразить математически.
Вы используете энергию для совершения работы (для езды на велосипеде, например), и тепло – общая форма энергии. Подумайте о восхождении на вершину горы. Мы пускаем в ход энергию всякий раз, когда напрягаем мускулы, и получаем ее из той пищи, которую съедаем и перевариваем; в свою очередь кислород, которым мы дышим, используется, чтобы «сжигать» калории в продуктах питания.
Теперь посмотрим: может быть два пути к вершине, один крутой, другой более пологий. Джоуль продемонстрировал, что не имеет значения, какой вы выберете путь, если говорить в терминах затраченной энергии. Крутой подъем может оставить вас с болью в мускулах, но количество энергии, которую вы затратили, перемещая вес тела с подножия на вершину, совершенно то же, вне зависимости от того, какой тропой вы шли, и даже не имеет значения – шли или бежали.
Физики до сих пор помнят имя Джоуля, оно используется как единица измерения работы, энергии и количества теплоты.
Люди долгое время пытались найти способ измерить то, сколько теплоты содержит объект, иначе говоря – температуру. Галилей (глава 12) экспериментировал с «термоскопом», инструментом, который менялся при увеличении температуры. Устройство это позволяло видеть, когда предмет нагревается или остывает, термометр же позволяет выразить количество тепла в цифрах.
До сих пор используются две шкалы измерения температуры, одну предложил немецкий физик Даниель Габриель Фаренгейт (1686–1736), который использовал термометры, содержащие и спирт, и ртуть. По его шкале вода замерзает при 32 градусах и нормальная температура тела определяется в 96. Андерс Цельсий (1701-44) придумал другую шкалу, используя как опорные точки замерзание и кипение воды, первую обозначил как ноль и вторую – в 100 градусов. Его термометры показывали температуру между этими двумя крайними значениями.
Обе шкалы в ходу в разных частях мира, их используют и для того, чтобы испечь пирог, и для того, чтобы поныть по поводу погоды.
Шотландский физик Уильям Томпсон (1824–1907) предложил другую шкалу. Этот ученый в особенности интересовался тем, как тепло и другие формы энергии проявляют себя в природе. Томпсон занимал должность профессора в университете Глазго, и позже получил титул лорда Кельвина, поэтому его шкала известна как шкала Кельвина.
В процессе ее разработки он использовал строгие научные принципы и точные инструменты для наблюдений. По сравнению со шкалой Кельвина Цельсий и Фаренгейт выглядят грубыми, приблизительными.
Опорная точка для шкалы Кельвина – «тройная точка воды».
Она случается, когда три состояния воды – лед (твердое), вода (жидкость) и водяной пар (газ) находятся в термодинамическом равновесии. Последнее может возникать в экспериментальных условиях, когда вещество изолировано от окружающего мира таким образом, что температура и давление фиксированы. Поэтому нет изменений в состоянии вещества и никакое количество энергии не покидает систему и не входит в нее. Тройная точка воды достигается, когда твердое вещество, жидкость и газ находятся в идеальном балансе. Как только температура или давление меняется, баланс теряется.
По шкалам Цельсия и Фаренгейта температура уходит в минус, когда становится достаточно холодно. Вы могли слышать, как в прогнозе погоды говорят «минус два или три градуса» или даже больше. Но на шкале Кельвина нет отрицательных значений, вода по ней замерзает при 273,16 градуса (сравните с 0 Цельсия или 32 Фаренгейта), и при нуле наступает настоящий холод. Ноль здесь обозначает настоящее ничто, он именуется «абсолютным нулем», и при этой невероятно низкой температуре все движение прекращается, энергия замирает.
И точно так же как невозможно создать механизм с идеальной эффективностью, так же невозможно достичь и абсолютного нуля.
Кельвин и другие помогли объяснить научные и практические принципы функционирования двигателей разного рода. В конце девятнадцатого века три открытия, изложенных в этой главе, были названы тремя законами термодинамики: сохранение энергии, закон энтропии и абсолютная неподвижность атомов при «абсолютном нуле». Эти законы помогают нам понимать важные вещи относительно силы, энергии и работы.
Тогдашний мир принялся активно использовать вновь обретенную мощь: задвигались машины на фабриках, задымили трубы пароходов и паровозов, а концу жизни Кельвина появились автомобили. Паровозы и пароходы использовали тепло сжигаемого в топках угля, чтобы получать пар, который и оживлял машины, но автомобили оказались основаны на ином принципе, на двигателе внутреннего сгорания.
Такой двигатель требует жидкого, испаряющегося топлива, именуемого бензином, изобретенного в конце девятнадцатого века. И бензин стал одним из наиболее важных источников энергии для века двадцатого, и сейчас, в начале двадцать первого, он остается одним из самых ценных ресурсов для всего мира.
Назад: Глава 27 Кашель, чихание и заболевание
Дальше: Глава 29 Таблица элементов