Книга: Краткая история науки
Назад: Глава 29 Таблица элементов
Дальше: Глава 31 Радиоактивность

Глава 30
Внутрь атома

 

Атом очень нравился химикам, именно он вступал в химические реакции, он занимал определенное место в соединениях, он обладал свойствами, которые можно грубо предсказать по его месту в периодической таблице. Каждый атом обязательно был либо отрицательным, либо положительным в отношениях с другими атомами и имел определенный шаблон для объединения с ними, именуемый валентностью.
Химики также весьма ценили разницу между единичным атомом и группировкой атомов, молекулой. Они понимали, что хотя большая часть элементов предпочитала существовать в виде единичных атомов – водород и кислород, например, – в природе имеется и молекулярная форма (Н2 или О2).
Относительные атомные массы тоже были определены точно и аккуратно, начиная с 1 у водорода.
Но совсем ничего не давало малейшего намека на внутреннюю структуру атома. Химики понимали, что могут манипулировать атомами в своих лабораториях, но не в состоянии сказать, чем же на самом деле являются эти единицы материи.
Большую часть девятнадцатого века физики больше интересовались другими вещами: как трансформируется энергия, как можно измерить электричество и магнетизм, какова природа тепла и почему газы ведут себя определенным образом. Физическая теория газов – именуемая кинетической теорией – также включала размышления об атомах и молекулах. Но физики подобно химикам соглашались, что хотя атомная теория очень полезна, чтобы объяснять то, что они видят и измеряют, но понять природу атомов они не в состоянии.
Первый намек на то, что атомы не просто мельчайшие частицы вещества, появился вместе с открытием первого компонента атома – электрона. Эксперименты давно показывали, что атомы могут обладать электрическим зарядом, поскольку электрический ток в растворе привлекал одни из атомов к положительному, а другие к отрицательному полюсу.
Физики вовсе не были уверены, что электрические свойства атомов играют какую-то роль в химических реакциях. Они измеряли их электрический заряд, и обнаружили, что он дискретен, то есть состоит из отдельных единиц, их и поименовали «электронами» в 1894 году, сразу после того как Дж. Дж. Томсон (1856–1940) в Кембридже начал использовать катодную трубку в экспериментальной работе.
Катодная трубка очень проста, и удивительным выглядит то, как столь несложное устройство может рассказать нам столько о фундаментальной структуре атома и Вселенной. Большая часть воздуха из трубки удаляется, чтобы создать частичный вакуум, и на каждом из концов устанавливается по электроду. Когда через трубку проводится электрический ток, то происходит множество интересных вещей, начиная с испускания разного рода лучей (радиации).
Радиация – это потоки частиц или энергии, и ее разновидность, порождаемая в катодной трубке, состоит большей частью из быстро движущихся заряженных частиц. Томсон и его коллеги из Кавендишской лаборатории начали измерять электрический заряд и вес некоторых из них, и еще они попытались понять, как эти два параметра связаны между собой.
В 1897 году Томсон высказал гипотезу, что эти лучи – потоки заряженных субатомных частиц, иначе говоря, кусочков атомов. Он оценивал, что они весят в разы меньше самого легкого из атомов, водорода. Несколько лет понадобилось ученым, чтобы согласиться с тем, что Томсон в самом деле обнаружил электрон, ту самую единицу заряда, которую он и другие уже измеряли некоторое время.
Итак, внутри атома есть электроны. Но что еще там находится?
Ответ на этот вопрос удалось получить не сразу, а постепенно, после многочисленных экспериментов с катодной трубкой. Вакуум внутри нее становился все более разреженным, и все более сильные электротоки проходили через прибор.
Среди тех, кто сумел получить выгоду от этих технических усовершенствований, оказался студент, потом сотрудник и в конце концов наследник Томсона в Кавендишской лаборатории, новозеландец Эрнест Резерфорд (1873–1937). В конце девятнадцатого века Резерфорд и Томсон идентифицировали два разных вида излучения, испускаемых ураном, элементом, который сыграл важную роль в развитии физики.
Один из видов лучей, производимых ураном, изгибался, попав в магнитное поле, другой не изгибался. Не имея представления, с чем он столкнулся. Резерфорд назвал их просто «альфа» и «бета» по именам двух первых букв греческого алфавита. Термины прижились, а Резерфорд продолжил экспериментировать с той и другой разновидностью излучения десятилетиями.
Вскоре стало ясно, что не только уран, но целая группа элементов испускает такие лучи. Эти элементы вызвали большое воодушевление в начале двадцатого века, и сохраняют значение и сейчас. Их называют радиоактивными, и в число наиболее известных помимо урана входят радий и торий. Начав изучать их особые свойства, физики узнали много интересного о структуре атомов.
Альфа-лучи оказались в числе фундаментальных вещей (их часто еще называют альфа-частицами – различие между тем и другим часто размывается в очень маленьком и быстром мире атомной науки). Резерфорд и его коллеги направляли эти лучи на очень тонкие пластинки металла и смотрели, что выйдет. Обычно лучи проходили через металл, но иногда отражались, точно свет от зеркала.
Вообразите изумление Резерфорда, когда он понял, что произошло на его глазах. Выглядит все так, словно вы выстрелили из пушки в лист бумаги и обнаружили, что ядро отскочило.
Такой результат подразумевал, что альфа-частица встретила на пути очень плотную часть атома того металла, из которого состоит частица, наткнулась на ядро атома. Эксперименты показали, что атомы состоят большей частью из пустого пространства, и именно поэтому альфа-частицы легко пробивают пластину. И только когда они сталкиваются с концентрацией массы в центральном ядре, они отражаются.
Дальнейшая работа позволила продемонстрировать, что ядро обладает положительным зарядом. Физики начали подозревать, что позитивный заряд ядра балансируется отрицательными зарядами электронов и что электроны вращаются вокруг ядра в огромном пустом пространстве атома.
Резерфорда сейчас называют основателем ядерной физики, в 1908 он получил Нобелевскую премию по химии. Премия была названа в честь основателя, шведского миллионера, она стала высшим знаком отличия в научном мире после ее учреждения в 1901 году. Так что многие амбициозные ученые стали стремиться к тому, чтобы получить ее. Новозеландец оказался еще и хорошим наставником, и несколько его студентов и сотрудников тоже получили Нобелевку.
Датчанин Нильс Бор (1885–1962) был в их числе.
Он взял идею Резерфорда по поводу того, что почти вся масса атома сосредоточена в небольшом ядре, и, приложив к ней новый научный инструмент, именуемый «квантовой физикой», в 1913-м предложил то, что назвали «боровской моделью атома». В модели он изобразил, как устроен атом, используя всю информацию, имевшуюся в распоряжении ученых того времени.
Представлялось, что атом в чем-то похож на нашу Солнечную систему, где в центре Солнце/ядро, а планеты/электроны вращаются вокруг него по определенным орбитам. В модели Бора вес положительно заряженного ядра давал атому его атомный вес и место в таблице Менделеева, ядро же состояло из положительно заряженных протонов.
Чем тяжелее атом, тем больше в его ядре протонов.
Количество протонов должно соответствовать числу электронов, чтобы атом в целом был электрически нейтрален. Электроны вращаются вокруг ядра по определенным орбитам, и вот в этом месте в дело вступала «квантовость».
Одной из блестящих идей, легших в основание квантовой физики, стала мысль о том, что феномены в природе проявляются определенными, индивидуальными порциями или квантами (история квантов будет рассказана в главе 32). В число этих вещей входят масса, энергия или вообще что угодно из научных величин.
В модели Бора орбиты электронов находятся в различных, индивидуальных квантовых состояниях. Электроны, расположенные ближе к ядру, притягиваются к нему сильнее, расположенные дальше – привязаны слабее, и именно они имеют возможность принимать участие в химических реакциях и порождать такие вещи, как электричество или магнетизм.
Если все это выглядит в достаточной степени сложным… так оно и есть.
Бор это отлично знал, но он также понимал, что его модель атома позволит химикам и физикам заговорить на одном языке. Она была построена на основании физических экспериментов, но позволяла объяснить многое из того, что химики наблюдали в своих лабораториях.
В особенности она помогала бросить свет на то, почему элементы в периодической системе ведут себя определенным образом и имеют конкретный шаблон сочетаемости, или валентность. Те атомы, которые объединяются поодиночке, поступают так потому, что у них есть лишь один «свободный» электрон, другие ведут себя иначе, поскольку число таких электронов у них иное.
Модель Бора стала одним из символов современной науки, при том что сейчас мы знаем – атом намного сложнее, чем полагал датский ученый.
С появлением его модели появились и новые вопросы.
Во-первых, как положительно заряженные протоны могут сосуществовать в крохотном пространстве атомного ядра? Если говорить об электрическом заряде, то противоположности притягиваются, а вещи со схожим полюсом отталкиваются (вспомните, как ведут себя два магнита). Почему тогда протоны не отталкиваются друг от друга и отчего электроны не затягивает в ядро?
Во-вторых, легчайший из известных атомов принадлежит водороду, и давайте предположим, что водород с его атомной массой 1 состоит из единственного протона и почти невесомого электрона. Это означает, что масса собственного протона будет та же 1. Почему тогда атомные массы в таблице Менделеева просто не увеличиваются в арифметической последовательности: 1, 2, 3, 4 и так далее?
Ответ на первую загадку появился только тогда, когда квантовая механика получила дальнейшее развитие. Второй вопрос, касавшийся пробелов в линии атомных масс, получил ответ много раньше, с ним разобрался другой коллега Резерфорда по Кембриджу. Джеймс Чедвик (1891–1974).
В 1932 году Чедвик объявил о результатах своих экспериментов по «бомбардировке» атомов. Со времени первых опытов Резерфорда этот метод стал жизненно важным для физиков, занимавшихся структурой вещества. Чедвик направлял потоки альфа-частиц на свой любимый металл, бериллий, и обнаружил, что тот иногда испускает частицу с атомной массой в единицу, но не имеющую заряда.
Он использовал имя Резерфорда для этой частицы – нейтрон, – но вскоре стало ясно, что это не просто скомбинированные электрон и протон, как полагал Резерфорд, а фундаментальная частица природы. Нейтрон оказался чем-то вроде потерянного звена для физиков, он позволил объяснить загадки атомных масс и мест элементов в таблице. Предложенная Менделеевым схема классификации продолжила доказывать свою полезность.
Нейтрон Чедвика также позволил открыть такое явление, как изотопы.
Иногда атомы одного и того же элемента имеют разные атомные массы, если у них в ядре имеется отличающееся количество нейтронов, нейтральных частиц. Изотопами как раз называют атомы одного элемента с разной атомной массой, даже водород иногда может обладать атомной массой в 2 вместо 1, когда к его единственному протону добавляется нейтрон.
Чедвик получил премию Нобеля за открытие нейтронов и их свойств уже через три года после самого открытия.
Нейтрон оказался прекрасным «оружием» для бомбардировки ядер других атомов. Лишенный и положительного, и отрицательного заряда, он не отталкивается положительно заряженным ядром, где находятся плотно «напиханные» протоны. Чедвик признал это и увидел, что если вы собираетесь разбивать атомы, то вам необходима машина, способная ускорять их до высоких скоростей и энергий: циклотрон или синхротрон.
В таких устройствах используются магнитные поля большой силы; они нужны, чтобы приводить в движение атомы и их частицы, разгонять их до околосветовых скоростей. Чтобы заняться исследованиями подобного рода. Чедвик перебрался из Кембриджа в университет Ливерпуля, поскольку там нашлось финансирование на строительство циклотрона.
Работая с ним, ученый обнаружил, что, направляя ускоренные до предела нейтроны на ядра тяжелых атомов, таких как уран, можно получать невероятно мощную энергию. Если надеть на нее «упряжь», то мы начнем цепную реакцию, ведущую к моментальному результату: делению атома, его распаду. Атомные бомбы, спроектированные и изготовленные к концу Второй мировой войны, стали результатом этого открытия, и Чедвик стал ведущим ученым с британской стороны проекта.
Многие думали, что открытый им нейтрон решил все проблемы, связанные со структурой атомов. Но они ошибались, и с тех пор ученые еще не раз сталкивались с сюрпризами в этой области. Ведь даже простое обнаружение электрона, протона и нейтрона оказалось связано с открытием волн или частиц, таких как альфа, бета и гамма-лучи.
Физикам пришлось разбираться с другими таинственными вещами, например, с рентгеновскими лучами и с теми маленькими «порциями», которыми выдает свои «блюда» природа, с квантами. Ядерная физика и квантовая физика оставались самыми передовыми отраслями знания большую часть двадцатого века.
Назад: Глава 29 Таблица элементов
Дальше: Глава 31 Радиоактивность