Говорят, что между двумя
противоположными мнениями
находится истина.
Ни в коем случае!
Между ними лежит проблема.
ИОГАНН ВОЛЬФГАНГ ГЁТЕ
Химия умеет делать многое, что приходится обозначать с помощью терминов, которые плохо сочетаются в обыденной практике; все это напоминает скорее игру слов: например, сухой лед, холодный огонь, нетканая ткань и т. п. Далее речь пойдет о веществах, которые можно было бы назвать жидкотвердыми, но такое название несколько громоздко, поэтому за основу взяли слово, упомянутое в заголовке этой главы, – «между», по-гречески оно звучит как МЕЗО (mesos – промежуточный). Поскольку речь идет о фазовом состоянии (газ, жидкость, твердое тело – это фазовые состояния вещества), стали использовать термин МЕЗОФАЗА. Более широко известно иное название – ЖИДКИЕ КРИСТАЛЛЫ, но по существу оба термина означают одно и то же.
Такое состояние веществ было обнаружено давно, в 90-х гг. XIX в., со временем удалось понять особенности этого явления, но лишь в наши дни оно нашло свое применение, причем настолько массовое и многообразное, что остается только удивляться тому, как долго научный факт может ждать решения своей участи.
Простое наблюдение привело к открытию
В 1888 г. австрийский естествоиспытатель Фридрих Рейнитцер изучал химические свойства двух веществ, содержащихся в моркови: гидрокаротина и каротина, придающих моркови характерный цвет. Рейнитцеру было известно, что гидрокаротин близок по своим свойствам к холестерину, поэтому он временно сосредоточил свое внимание на холестерине. Это природное органическое соединение, которое содержится в клеточных мембранах всех живых организмов. Его химическая формула в то время еще не была установлена, и Рейнитцер пытался ее определить. С этой целью он получил производное холестерина: при взаимодействии с бензойной кислотой образовался холестерилбензоат, т. е. сложный эфир холестерина и бензойной кислоты. Как и большинство экспериментаторов, он постарался охарактеризовать полученное соединение, прежде всего определить его температуру плавления.
Проводя измерения для холестерилбензоата, он обнаружил, что при 145 °С кристаллическое вещество превращалось в мутную жидкость, которая сильно рассеивала свет. Далее он обратил внимание на то, что при более высокой температуре (179 °С) жидкость внезапно становилась полностью прозрачной. Эту вторую точку плавления Рейнитцер назвал «точка просветления» (рис. 1.77).
Казалось бы, совсем простое наблюдение, однако Рейнитцер понял, что две точки плавления у одного вещества – факт весьма необычный. В результате он предположил, что получил смесь двух изомеров, один из которых начинает плавиться раньше, и в температурном интервале «мутности» (145–179 °С) присутствуют две фазы – жидкая и кристаллическая. Для того чтобы подтвердить это предположение, он отправил полученное вещество авторитетному немецкому кристаллографу Отто Леману (рис. 1.78) с просьбой помочь разобраться в странном поведении холестерилбензоата. Леман, наблюдая мутную фазу в поляризованном свете под микроскопом, заметил радужное окрашивание отдельных участков. Такое окрашивание характерно для упорядоченных кристаллических структур, однако твердой фазы в исследуемом мутном образце он не обнаружил. Таким образом, свойства вещества напоминали кристаллическое состояние, но кристаллы отсутствовали. Это позволило Леману назвать исследуемое соединение жидким кристаллом.
Необыкновенный луч
Немного ранее было сказано, что Леман наблюдал мутную фазу в поляризованном свете. Такой свет постоянно используют химики при исследовании многих веществ (к ним относится большая часть соединений, присутствующих в живых организмах, – аминокислоты, углеводы и другие вещества). Поляризация света не только интересное, но и очень эффектное физическое явление, поэтому расскажем о нем немного подробнее.
Вначале напомним, что видимый свет представляет собой волновые колебания электрического и магнитного полей (потому такие колебания называют электромагнитными). Направление и величину поля обозначают с помощью вектора. Векторы этих двух полей (на рис. 1.79 они показаны сплошными и пунктирными линиями) взаимно перпендикулярны, и к тому же они перпендикулярны к вектору, указывающему направление, по которому распространяется свет (участок А).
Напряженность полей (длина векторов) волнообразно меняется, кроме того, изменяется их ориентация относительно линии, по которой распространяется свет: они могут занять любое положение относительно этой линии, оставаясь перпендикулярными к ней. Для того чтобы это себе представить, начнем мысленно поворачивать всю конструкцию А вокруг линии луча (показано кольцевой стрелкой). В итоге в пространстве образуется объемное тело, которое можно рассматривать как некую пульсирующую конструкцию, движущуюся в направлении распространения света (участок Б). Именно так можно представить процесс распространения светового луча в виде некой механической конструкции.
Если на пути такого луча поместить специальный фильтр, например пластинку турмалина (прозрачный кристаллический минерал зеленоватой окраски), то на выходе получим луч, у которого колебания происходят не во всех возможных плоскостях, а только в одной плоскости, и вот такой луч называют поляризованным. Условно это можно изобразить как «протискивание» объемного тела сквозь узкую щель (рис. 1.80).
Естественно, в пластине турмалина, т. е. поляризаторе, никакой щели нет, это результат особого свойства кристалла. Таким свойством обладают многие кристаллические вещества, в том числе кварц, исландский шпат и др.
Если на пути поляризованного луча поставить вторую пластину турмалина и поворачивать ее по оси, определяемой направлением луча, то интенсивность проходящего света начнет снижаться (рис. 1.81).
Когда второй поляризатор будет повернут относительно первого на 90°, свет практически проходить не будет, такое положение фильтров называют скрещенным. Воспользуемся упомянутым сравнением: плоская волна не пройдет сквозь щель, которая расположена поперек плоскости этой волны.
Такое свойство двух поляризаторов позволяет экспериментально отличить оптически активное вещество (поворачивающее плоскость поляризованного света) от всех остальных. Поместим испытуемое вещество между двумя скрещенными поляризаторами. Если это вещество не обладает оптической активностью, то свет по-прежнему проходить не будет. Если оно оптически активное, то немного повернет плоскость световой волны, выходящей после первого поляризатора, и теперь уже второй фильтр пропустит часть света; это равносильно тому, что мы немного повернули второй поляризатор и он оказался «скрещенным частично». Часто такие опыты сопровождаются появлением красивых радужных бликов за счет интерференции, которая возникает при наложении лучей, не совпадающих по фазе.
Изготовить крупный поляризатор довольно сложно, его размеры ограничены величиной оптически совершенного кристалла – обычно это не более 10 см. Поэтому в настоящее время широкое распространение получили поляризационные полимерные пленки. В такую пленку впрессованы мельчайшие кристаллы поляризующих веществ, ориентированные определенным образом.
Существуют также полимерные пленки без кристаллической фазы, в них поляризация света происходит на ориентированных (например, с помощью растяжения) полимерных молекулах. Светофильтры из таких пленок часто применяют фотографы при съемке объектов с сильными световыми бликами (сверкающие поверхности частично поляризуют отраженный свет). Перед тем как надеть такой светофильтр на объектив фотоаппарата, фотограф находит для него необходимый угол поворота, т. е. смотрит через этот фильтр на снимаемый объект, поворачивая его таким образом, чтобы блики были минимальными.
Подобные светофильтры используют также в специальных очках для защиты глаз водителей от слепящего действия фар встречных автомашин. Улучшенное решение этой проблемы можно достичь, если на фары автомобиля поместить поляризаторы, а в очках водителя (встречной машины) расположить такие же фильтры, но повернутые на 90°. В этом случае водитель вообще не увидит свет фар встречной машины, зато свет от фар, падающий на дорогу, будет отчетливо виден. Проблема состоит в том, что поляризаторы заметно снижают интенсивность проходящего света и, соответственно, освещенность.
Молекулы-палочки и молекулы-диски
Напомним, что Леман, наблюдая мутную фазу в поляризованном свете под микроскопом, заметил радужное окрашивание отдельных участков. Такое окрашивание характерно для упорядоченных кристаллических структур. Итак, жидкий кристалл представляет собой в бытовом понимании этого слова жидкость, однако в такой жидкости молекулы упорядочены, как в кристалле, что в обычных жидкостях не встречается. Леман сделал смелое и, как оказалось, правильное предположение: молекулы в расплаве ориентированы своими длинными осями в определенном направлении, что создает упорядоченность в такой жидкости.
Открытие жидких кристаллов вызвало недоверие в научном мире: мысль о том, что в жидкости может существовать порядок, напоминающий тот, что присутствует в кристаллах, многим казалась фантастической. Долгое время физики и химики придерживались теории, согласно которой могут существовать только три агрегатных состояния вещества: твердое, жидкое и газообразное. Появление сообщений о жидких кристаллах разрушало эту теорию, поэтому многие ученые относили жидкие кристаллы к коллоидным растворам, эмульсиям или рассматривали их как смесь жидкой и кристаллической фаз.
Исследования жидких кристаллов продолжались, были найдены и другие соединения, способные переходить в жидкокристаллическое состояние. В начале ХХ в. удалось сформулировать общие признаки таких соединений: их молекулы должны напоминать жесткие палочки – стержни, способные укладываться параллельно друг другу. У палочкообразной молекулы длина в 3–4 раза больше поперечного сечения, а необходимую жесткость придают бензольные ядра и часто двойные связи. Этому требованию соответствует холестерилбензоат, с которого, собственно говоря, и началось изучение жидких кристаллов. Его структурная формула, а также пространственное строение молекулы показаны на рисунке 1.82. Поскольку структурная формула и шаростержневая модель не могут продемонстрировать палочкообразную форму молекулы, в нижней части рисунка изображена объемная модель в виде ван-дер-ваальсовых радиусов, которые показывают истинный объем, занимаемый молекулой в пространстве, т. е. с учетом электронных оболочек. Для упрощения в объемных структурах удалены атомы водорода. Чтобы подчеркнуть палочкообразную форму молекулы, объемная структура помещена внутрь воображаемого цилиндра.
Ниже показаны другие стержнеобразные молекулы, способные переходить в жидкокристаллическое состояние, или, пользуясь научным языком, образовывать мезофазу (рис. 1.83).
В 1977 г. индийский ученый С. Чандрасекар обнаружил, что в жидкокристаллическом состоянии могут находиться не только стержнеобразные, но и плоские молекулы с циклическими фрагментами. Молекула представляет собой объемное тело, поэтому такие структуры правильнее рассматривать не как плоские образования, а как диски, поэтому их стали называть дискообразными молекулами (рис. 1.84).
Для того чтобы посмотреть, как располагаются молекулы в мезофазе, временно откажемся от химических формул и будем использовать условные изображения стержней и дисков. Существует несколько вариантов: природа как будто жонглирует различными возможными комбинациями.
Весьма простой способ реализуется в случае дискообразных молекул. Обычно они располагаются таким образом, чтобы оси дисков были параллельны, возможны также и более упорядоченные образования в виде стопок (рис. 1.85).
Если молекулы стержнеобразны, они могут выстраиваться параллельно друг другу, при этом начала и концы молекул находятся на разной высоте. Существует и более высокая упорядоченность – оси условных цилиндров параллельны, причем их начала и концы находятся на одной высоте, т. е. довольно строго расположены, как на воинском параде (рис. 1.86).
Весьма необычно размещаются молекулы в жидкокристаллической фазе упомянутого ранее холестеринбензоата. Молекулы располагаются в параллельных плоскостях, но длинные оси молекул в соседних плоскостях повернуты спирально относительно друг друга (на рис. 1.87 спиральный поворот плоскостей показан стрелками и пунктирной изогнутой линией).
В отличие от кристаллов, где атомы или молекулы строго упорядочены по всей массе кристалла, в жидких кристаллах упорядоченные молекулы образуют агрегаты (домены), содержащие 104–105 молекул. Между доменами находятся участки аморфной жидкой фазы, где молекулы расположены хаотично. Ранее было сказано, как с помощью двух поляризаторов можно обнаружить оптическую активность. Поскольку жидкокристаллические домены тоже поворачивают плоскость поляризованного света, то в поляризационном микроскопе (в нем находятся два фильтра) можно наблюдать радужно переливающиеся участки, между которыми расположены темные включения – аморфная жидкая фаза (рис. 1.88).
Возникающие узоры необычайно живописны, ранее ими часто украшали обложки научных журналов. Иногда по внешнему виду таких узоров химики могут приблизительно оценить, каким образом, т. е. по какому из вариантов располагаются молекулы в жидкой фазе. Именно эти узоры и увидел впервые основатель учения о жидких кристаллах Отто Леман.
Самое интересное состоит в том, что, в отличие от обычных твердых кристаллов, структура жидкокристаллической фазы легко изменяется под действием слабых внешних воздействий: температурных, механических, электрических и др. Соответственно меняются и некоторые свойства мезофазы; узоры, которые можно наблюдать в поляризационном микроскопе, очень подвижны.
Мы рассмотрели те случаи, когда жидокристаллическая фаза возникает в определенном интервале температур, причем этот интервал не всегда удобен для экспериментальной работы: Леман наблюдал ее образование при 145 °С. Можно ли сделать так, чтобы мезофаза возникала при комнатной температуре? Такие способы были найдены, однако сами изучаемые объекты пришлось немного изменить.
Растворитель вместо температуры
Некоторые органические соединения сочетают в своем составе гидрофильные (тяготеющие к воде) и гидрофобные (водоотталкивающие) фрагменты. Наиболее известный пример – органические кислоты с длинной углеводородной группой: CH3–(CH2)n–COOH. Кстати, натриевые соли таких кислот представляют собой обычное мыло. Карбоксильная группа – СООН гидрофильна, а углеводородный «хвост» – гидрофобен. При растворении в воде такие молекулы самоорганизуются в группы (мицеллы), при этом углеводородные хвосты они убирают внутрь мицеллы, выставляя наружу гидрофильные концы СООН. Такая самоорганизация приводит либо к цилиндрам, уложенным параллельно друг другу, либо к плоским слоистым образованиям (рис. 1.89).
Постепенно выяснилось, что жидкие кристаллы различного типа присутствуют и в живых организмах. Мембраны, защищающие от внешних воздействий живые клетки, состоят из фосфолипидов, которые содержат гидрофобную углеводородную часть и гидрофильный конец – остаток фосфорной кислоты. Они, подобно карбоновым кислотам, тоже образуют мезофазы, обычно слоистого типа. Эти пластичные мембраны позволяют проникать внутрь клетки строго определенным ионам, что обеспечивает жизнедеятельность клетки. Таким образом, изучение жидких кристаллов постепенно привело исследователей к пониманию некоторых биологических процессов. Жидкокристаллическая фаза присутствует также в оболочке нервных волокон, в хрусталике глаза, в структуре сократительных белков (мышцы); с жидкокристаллическим состоянием связаны многие функции живого организма. Сыворотка крови тоже представляет собой жидкий кристалл; по узорам, видимым в поляризационном микроскопе, можно достаточно точно ставить диагноз и распознавать некоторые заболевания.
Дирижируем жидкими кристаллами
Способность жидких кристаллов легко изменять свою структуру (и, соответственно, оптические свойства) под действием слабых электрических воздействий нашла исключительно широкое применение. Она используется в широко известных теперь жидкокристаллических цифровых индикаторах, табло и мониторах. Рассмотрим, как устроена цифровая шкала популярных электронных часов.
На две стеклянные пластины наносят прозрачный токопроводящий слой, обычно оксид олова или индия. Зазор между пластинами (5–10 мкм) заполняют жидким кристаллом, такой «сэндвич» изолируют по бокам герметиком, чтобы жидкий кристалл не вытекал, и полученную ячейку накрывают сверху и снизу двумя поляризаторами, чьи плоскости поляризации скошены на определенный угол. Если к проводящим слоям приложить слабое напряжение (не более 1,5 В), то жидкие кристаллы переориентируются и светопропускание изменится. Поскольку на такую ячейку смотрят не на просвет, а в отраженном свете (часы носят на руке), то под нижнюю пластину подкладывают зеркало (рис. 1.90).
Теперь о самой важной детали в конструкции такого экрана. Проводящий слой нижней пластины делают сплошным, а верхний – с фигурными вырезами. С помощью всего семи небольших сегментов (электродов) можно изобразить любую цифру. Если напряжение не подано ни к одному из сегментов, то свет свободно проходит через два поляризатора и отражается от зеркала, экран выглядит светлым. Если подвести напряжение к некоторым сегментам, то ориентация жидкого кристалла в этих местах изменится и поляризованный свет проходить не будет. В результате мы увидим темные цифры на светлом фоне (рис. 1.91).
Такие цифровые индикаторы дают отчетливое контрастное изображение, надежны в работе и сравнительно дешевы. Еще одно важное преимущество – крайне низкое потребление энергии: их мощность составляет микроватты, поэтому часы могут работать годами, используя энергию крохотной батарейки. Конструкция плоских экранов у цветных жидкокристаллических мониторов более сложная, однако все упомянутые преимущества такого способа создания изображения сохраняются.
Распознать близких родственников
Один из самых эффективных методов разделения веществ – хроматография. В хроматографическую колонку помещают пористый гель, на который наносят жидкую фазу. Вместе с током инертного газа в колонку вводят смесь паров разных веществ. Они по-разному растворяются в жидкой фазе; те, что растворяются хуже, выводятся из колонки током газа. На выходе стоит детектор, который отмечает, когда и в каком количестве выходит каждое вещество. Тем не менее этот метод малоэффективен, если пытаются разделять «близких родственников»: например, орто-, мета- и пара-диметилбензолы (ксилолы), которые растворяются в жидкой фазе колонки практически одинаково. Решить проблему помогли жидкие кристаллы. Если в качестве хроматографической фазы использовать жидкий кристалл, образующий параллельные плоскости, то он будет охотнее принимать внутрь «выпрямленные» молекулы, т. е. пара-изомеры (отмечено на рис. 1.92 прямой стрелкой), а «угловатые» орто- и мета-изомеры будут проникать с трудом (отмечены полукруглыми стрелками), что и позволяет их разделить.
Имитировать собачий нос
Чувствительность собачьего носа к различным запахам поразительна, установлено, что они способны улавливать запахи некоторых веществ, находящихся в воздухе в крайне низкой концентрации (до 10-15 г/л). Оказалось, что жидкие кристаллы присутствуют также в обонятельных клетках – рецепторах. Эти клетки могут избирательно поглощать некоторые вещества. Возникшие в рецепторе изменения приводят к изменению контактного потенциала, и сигнал передается в мозг. Для того чтобы применить весь этот механизм для практических нужд, не потребовалось создавать искусственный мозг – использовали способность жидких кристаллов изменять окраску в поляризованном цвете. Например, смесь холестерилбензоата и холестерилхлорида приобретает зеленый цвет от незначительной примеси паров хлороформа в воздухе, а пары бензола окрашивают ее в голубой цвет. Такие системы гораздо чувствительнее человеческого носа, это позволяет создать на их основе тонко реагирующие детекторы, которые предупреждают о присутствии в атмосфере ничтожных количеств ядовитых или взрывчатых веществ.
От жидкостей к полимерам
Несмотря на массу разнообразных полезных свойств, жидкие кристаллы обладают одним недостатком – они представляют собой текучие жидкости, что ограничивает их применение. Постепенно исследователи пришли к мысли создать мезофазу в полимерах, тем более что многие из них по существу представляют собой сверхвязкие жидкости. Естественно, для достижения этой цели был использован опыт, накопленный при изучении жидких кристаллов. Решено было к длинной полимерной цепи подвесить в виде боковых ветвей фрагменты холестерина, который, как было уже известно, очень охотно образует мезофазу. Для того чтобы холестериновые «хвосты» могли укладываться в мезофазу, необходимо было предоставить им определенную свободу, для этого их прикрепили к полимерной цепи не непосредственно, а отодвинув от цепи с помощью гибких углеводородных перемычек. Полученный полимер, у которого от боковой цепи отходят длинные отростки, внешне напоминает расческу, поэтому такие полимеры получили название гребнеобразных (рис. 1.93).
Цветной измеритель температуры
Если в полимерную пленку ввести вещество, образующее жидкокристаллическую фазу с помощью спирально расположенных плоскостей и осветить ее дневным светом, то будет отражаться не весь свет, а только некоторые составляющие, вещество же приобретет окраску. Оказалось, что шаг жидкокристаллической спирали (он аналогичен шагу в резьбовой нарезке винта) очень термочувствителен, иногда достаточно изменить температуру всего на 0,01°, чтобы изменились шаг и, соответственно, окраска. С повышением температуры шаг спирали немного уменьшается, т. е. спираль немного сжимается; чем меньше такой шаг, тем меньше длина волны отраженного света. Происходит постепенный переход от красного цвета к синему. На этом принципе основаны бытовые измерители температуры тела, заменяющие ртутные термометры (гибкая полимерная пластинка, прикладываемая ко лбу), а также индикаторы, показывающие температуру в помещении: на темной цифровой шкале ярко высвечивается цифра, указывающая температуру (рис. 1.94).
Жидкие кристаллы и пуленепробиваемые жилеты
Полимерная химия знает, что наибольшей прочностью обладают такие волокна (или пленки), у которых полимерные цепи расположены упорядоченно, а полимерные звенья максимально вытянуты вдоль оси волокна. Для повышения прочности этих материалов используют хорошо отработанный метод – ориентирование полимерных цепей в процессе формования с помощью дополнительной вытяжки. Вытягивают волокна из расплава или из раствора, т. е. из жидкой неориентированной массы. А что, если ввести дополнительное ориентирование в самой жидкой фазе до стадии вытяжки? Создать определенный порядок в жидкости хорошо умеют жидкие кристаллы. Идею удалось реализовать, но стратегия была иной, нежели та, которая описана в предыдущем разделе (гребнеобразные полимеры). Фрагменты, образующие мезофазу, расположили не в боковых подвесках, а поместили внутрь полимерной цепи. Для того чтобы предоставить им определенную свободу для самоорганизации, их разделили гибкими алифатическими цепочками, кроме того, такие гибкие фрагменты придавали полимеру способность размягчаться при нагревании (рис. 1.95).
В результате удалось увеличить прочность волокон во много раз. Оказалось, что, меняя длину гибких и жестких блоков, можно плавно изменять свойства таких полимеров.
Ранее, когда речь шла о жидкокристаллическом состоянии, было сказано, что мезофаза может возникать не только в расплавах, но и в растворах. Эту идею также удалось применить к полимерам. Например, можно создать полимер, состоящий только из жестких блоков, он не способен размягчаться при нагревании, зато в растворе образует мезофазу, которая в процессе формования волокна из раствора позволяет получить упрочненные волокна. Например, полимер, показанный на рисунке 1.96, при прядении нитей из раствора в диметилацетамиде образует исключительно прочные волокна, торговое название которых теперь известно многим – кевлар.
Это волокно по прочности не уступает стали и в пять раз легче ее. Из кевлара делают пуленепробиваемые жилеты, тросы, конвейерные ленты, его используют также в судостроении и авиации.
Диапазон свойств жидких кристаллов необычайно широк и до конца еще не изучен, и границы их применения установить пока нельзя.