Герхард Эртль родился в 1936 г. в Штутгарте, Германия. С 1955 по 1957 г. учился в Техническом университете Штутгарта, затем в Университете Парижа (1957–1958) и позже в Университете им. Людвига Максимилиана в Мюнхене (1958–1959). В 1986 г. он стал директором Института имени Фрица Габера Общества Макса Планка, который возглавлял до 2004 г. В настоящее время Эртль уже не занимается активной исследовательской деятельностью, за ним сохранена почетная профессорская должность в берлинском Институте Ф. Габера.
Получение Нобелевской премии оказалось для Эртля совершенно неожиданным. Во-первых, за день до этого объявили, что премию по физике получил немецкий ученый Питер Грюнберг, и Эртль был уверен, что еще раз в этом году Германия победить не может и что немецкий ученый премию по химии точно уже не получит. Во-вторых, все журналисты предсказывали победу двум японцам: Сумио Иидзима, который доказал возможность получения нанотрубок из углерода с толщиной стенок в одну молекулу, обладающих большей жесткостью, чем все известные материалы, и Акихису Иноуэ, описавшего свойства металлического стекла из аморфных порошков. Прогнозы журналистов не оправдались.
Итак, Герхард Эртль стал вторым немецким лауреатом в 2007 г. Кроме того, это редкий случай, когда Нобелевская премия в области естественных наук присуждается одному человеку, а не делится между двумя или тремя учеными.
Эртль узнал о присуждении премии в тот день, когда ему исполнился 71 год, и в интервью сказал, что это лучший подарок ко дню рождения.
По мнению коллег, Эртль – блестящий лектор, его доклады на международных конференциях собирают огромные аудитории, куда люди специально приезжают из других стран. Речь Эртля – каскад точных образов, оригинальных и свежих идей. Это чувствуется даже по тому, как он представил свою работу в нобелевском докладе. Яркий рассказ ученый закончил, показав в заключение слайд с изображением картины Ван Гога «Звездная ночь» (рис. 5.28).
Эртль полагает, что знаменитый художник острым глазом давно сумел увидеть в окружающем мире то, что спустя более чем столетие ученые смогли обнаружить на поверхности платины, используя сверхчувствительные спектральные методы (имеется в виду каталитическое дожигание СО).
Герхард Эртль исключительно яркий, очень общительный и обаятельный человек, инициатор музыкальных вечеров, которые проходят в институте, сам он играет на виолончели.
Нельзя отказать себе в удовольствии привести выдержки из замечательной речи Эртля на нобелевском банкете, где он сказал, что в молодости мечтал быть музыкантом и потому позже рассматривал своих коллег-химиков как оркестрантов (рис. 5.29). Известно, что даже хороший дирижер не сможет достойно исполнить музыку с посредственным оркестром, однако Эртль считает, что ему очень повезло, он всегда был окружен группой превосходных научных сотрудников, которых можно сравнить если не с Королевским Стокгольмским филармоническим оркестром (шутливый реверанс в сторону организаторов нобелевской церемонии), то все же с Берлинским филармоническим оркестром.
В отличие от ситуации с реальным оркестром, где нюансы исполнения указаны композитором с помощью специальных нотных знаков, ученые, по мнению Эртля, представляют собой удачное сочетание и композитора, и исполнителя.
Чувства, которые возникают у ученого в случае научного успеха, очень точно, как считает Эртль, выразил великий немецкий поэт Иоганн Вольфганг Гёте, когда ему было уже более 80 лет: «Нет большей радости, чем изучать природу». Далее Эртль отмечает, что Гёте умер за год до того, как родился Альфред Нобель, и потому, естественно, не мог знать, что радость от изучения природы может быть еще больше, если она дополнена Нобелевской премией.
Да, будет пересечение шоссе
со светофором пешеходным переходом!
М. ЦИВЕЛ
Вместо фразы, стоящей в заголовке, обычно используют слово «кросс», существуют также авто-, вело- и мотокроссы. В последнее время словом «кросс» называют массовый бег по улицам города, но это неправильное использование термина, правильнее будет «забег». Точный перевод слова «кросс» – это пересечение: например, кроссворд – это пересечение слов. Поскольку далее речь пойдет об органической химии, напомним, что эта область химии изучает соединения углерода. Естественно, при получении новых органических соединений возникает задача – создавать химические связи между атомами углерода С – С, чтобы соединить между собой отдельные части будущей молекулы.
В органической химии есть добрая традиция называть некоторые особо значимые реакции именами их создателей. Это удобный прием, который позволяет быстро понять, о чем идет речь, и к тому же дает приятную возможность включать в повседневную рабочую речь не только громоздкие химические термины, но и живые имена великолепных химиков. То же самое у физиков, только они присваивают имена ученых явлениям или эффектам: например, Раман-спектр, эффект Мессбауэра и др.
Если атом углерода находится в составе насыщенного органического соединения, т. е. не содержащего кратных связей между атомами углерода, то часто он не испытывает никакого желания с чем-либо взаимодействовать. Соединить два таких атома С, расположенных в двух соседних молекулах, химической связью совсем не просто. Первым, кто нашел способ соединить подобные атомы, был химик А. Кольбе (рис. 5.30), правда, действовал он несколько необычным способом: в 1849 г. осуществил электролиз уксусной кислоты и получил этан, фактически соединив две группы СН3 (рис. 5.31).
Позже были найдены не электрохимические, а обычные химические способы. «Расшевелить» инертный атом углерода в органическом соединении можно, например присоединив к нему атом галогена; он также легко реагирует, когда находится в двойной связи, однако не все реакции, которые становятся благодаря этому возможными, устраивают химиков. Дело в том, что химики всегда стремились не только открыть новую реакцию или получить новое соединение, но и научиться управлять реакцией, чтобы направленно изменять свойства полученного вещества.
Один из самых известных способов, позволяющий создать связь С – С, – это реакция Вюрца, когда две галогенсодержащие органические молекулы взаимодействуют со щелочным металлом, например c натрием, который «забирает» атомы галогена, а органические группы соединяются между собой (рис. 5.32).
Сложность возникает, когда необходимо соединить различные органические группы, например C4H9 и C5H11. Реакция (рис. 5.33) Вюрца (рис. 5.34) не запрещает соединяться как различным, так и одинаковым химическим группам.
В результате образуется смесь трех продуктов: C4H9-C4H9, C5H11-C5H11, и C4H9-C5H11, и требуется трудоемкое разделение полученных соединений. Процесс, когда соединяются различные группы, называют перекрестным сочетанием, или кросс-сочетанием, именно о нем и пойдет речь.
Частично избежать соединения одинаковых групп и ориентировать процесс в направлении кросс-сочетания позволяет реакция Гриньяра. За открытие этой реакции Виктор Гриньяр (рис. 5.35) был удостоен в 1912 г. Нобелевской премии по химии. Вначале металлический магний реагирует с одним из галогенпроизводных, затем полученное магнийорганическое соединение реагирует с другим галогенпроизводным (рис. 5.36).
На самом деле эта реакция часто протекает не так однозначно, как показано на схеме. Если, например, группа R (или R′) имеет разветвленное строение либо содержит в своем составе карбонильную – С=О, нитрильную – С≡N или некоторые другие группы, то параллельно протекают побочные реакции, что в конечном итоге приводит к образованию смеси трудно разделяемых продуктов. В ряде случаях возможно также соединение одинаковых органических групп R – R. Таким образом, направить реакцию Гриньяра только в сторону кросс-сочетания удается далеко не всегда, в то же время чаще всего именно продукты кросс-сочетания R – R′ нужны химикам.