Книга: Карнавал молекул. Химия необычная и забавная
Назад: Зримые танцы молекул на металлическом паркете
Дальше: Коротко о самом лауреате

Чья работа важнее?

Попробуем сопоставить результаты работы Ф. Габера и Г. Эртля – двух нобелевских лауреатов, изучавших один и тот же процесс. Габер, соединив интуицию ученого и невероятное упорство, фактически обеспечил всю мировую индустрию химически связанным азотом, которого в тот момент остро не хватало. Эртль объяснил, как протекает этот процесс. На первый взгляд преимущество Габера очевидно. Чья заслуга важнее – писателя, написавшего замечательный роман, или критика, который объяснил читателю достоинства нового романа? Подавляющее большинство отдаст предпочтение автору, но в нашем случае подобное суждение неуместно. Эртль разработал целую серию методов, недоступных во времена Габера, что позволило заменить различные гипотезы точным знанием того, как именно протекает процесс. Причем в качестве объекта была выбрана одна из наиболее известных и широко используемых реакций, которая долгое время не имела строго научного объяснения. Результаты Эртля дают возможность вычислить, как будет протекать процесс при различных температурах и давлениях, что позволяет выбрать оптимальные условия.

Итак, Эртль показал, как следует изучать гетерогенный катализ, он продемонстрировал это также на других примерах, которые мы рассмотрим ниже.

Очистить воздух городов

Известно, что бензин сгорает в двигателях автомобилей не полностью, в результате в выхлопных газах содержится не только нетоксичный диоксид углерода СО2, но и исключительно ядовитый монооксид углерода СО. Для борьбы с этим явлением используют каталитический процесс окисления СО до СО2, называемый в быту дожиганием:

2СО + О2 → 2СО2.

Выхлопные газы проходят через специальную насадку, содержащую катализатор окисления – металлическую платину (рис. 5.23).





Простая на первый взгляд реакция протекает весьма необычно. Прежде всего, она необратима, что затрудняет ее исследование, гораздо проще наблюдать равновесную реакцию, изменяя условия и тем самым сдвигая равновесие в ту или иную сторону. Оказалось также, что реакция имеет колебательный характер, проще говоря, пульсирует.

Существует близкая аналогия этого процесса – взаимоотношения хищников и травоядных, что далее рассмотрим на примере зайцев и рысей (рис. 5.24).







Установлено, что поголовье обоих видов (при условии, что человек не вмешивается в этот процесс) «пульсирует» определенным образом. При увеличении количества зайцев растет поголовье рыси, поскольку источник питания возрастает. Это приводит к заметному истреблению зайцев, их количество снижается, в результате отдельные особи рысей не получают пищи и их количество начинает уменьшаться. «Пульсация» происходит с периодом приблизительно 10 лет. На показанном на рисунке 5.25 графике видно, что максимумы кривых не совпадают – изменение поголовья рыси немного отстает по времени от той же величины у зайцев, что очень характерно для подобных колебательных процессов.







Интересная деталь: сосчитать, как меняется количество особей каждого вида в течение времени, непросто; Эртль, будучи ученым, просто взял статистику того, как изменялось со временем количество шкурок зайцев и рысей, сданных в компанию Hudson’s Bay.

Картину, похожую на ту, что показана на графике, Эртль обнаружил, изучая окисление СО на платиновом катализаторе с использованием современных спектральных методов. В результате он установил, что в тот момент, когда на отдельных участках каталитической поверхности концентрация СО превышает определенную величину, происходит перестройка поверхности катализатора (рис. 5.26).







Процесс изменения поверхности обратим, и при снижении концентрации СО до величины 0,2 моль/л поверхность приходит в прежнее состояние. Перестройка поверхности несколько отстает по времени от изменения концентрации СО, как и в случае с поголовьем рысей и зайцев. В итоге можно наблюдать, как по поверхности катализатора расходятся концентрические волны, что показано на четырех последовательных снимках (рис. 5.27).







Наблюдаемая картина по-своему красива и весьма необычна, поскольку показывает перестройку поверхности твердого тела под действием газообразного реагента. Фактически Эртль обнаружил неизвестное ранее явление – «химические волны» на поверхности катализатора. Проведенное Эртлем детальное изучение механизма этого процесса открывает пути к разработке катализаторов нового типа для подобных процессов.

Диапазон научного поиска

По разработанной схеме Эртль исследовал много различных каталитических процессов, причем преимущественно таких, которые можно считать основополагающими. Прежде всего, это каталитическое окисление аммиака на платинородиевом катализаторе (процесс Оствальда). С помощью этого процесса перерабатывают основную массу аммиака, синтезированного по способу Габера – Боша.

Эртль исследовал не только все основные стадии, приводящие к получению азотной кислоты:

4 NH3 + 5 O2 → 4 NO + 6 H2O,

2 NO + O2 → 2 NO2,

3 NO2 + H2O → 2 HNO3 + NO,

но и все побочные реакции:

2 NH3 + 2 O2 → N2O + 3 H2O,

4 NH3 + 3 O2 → 2 N2 + 6 H2O,

4 NH3 + 6 NO → 5 N2 + 6 H2O.

Проведенные Эртлем исследования реакций, происходящих на поверхности, далеко выходят за рамки интересов химической индустрии, найденные закономерности могут быть использованы в описании процессов коррозии (ржавление), в очистке сточных вод и в совершенствовании топливных элементов. Химия поверхности может даже объяснить причины разрушения озонового слоя, поскольку соответствующие реакции протекают на поверхностях кристалликов льда в стратосфере.

Итак, Эртль начал разрабатывать свои экспериментальные методы, взяв за основу технологии полупроводниковых производств. В свою очередь, созданные им изящные, необычайно тонкие приемы исследования – установки для получения высокого вакуума, приемы для получения сверхчистых поверхностей – оказались нужны в современной электронике и дали толчок развитию новых полупроводниковых технологий, которые сейчас стали нормой в производстве микропроцессоров.

Подведем итоги. Г. Эртль не открыл новый класс соединений или реакций, не создал новые катализаторы или лекарства, но показал, как можно детально изучать химические процессы, чтобы потом уверенно ими управлять.

История химии хранит не только результаты замечательных открытий, но и некоторые биографические сведения об их авторах. Рассказывая об основных научных достижениях Д.И. Менделеева, биографы обязательно упоминают, что любимым отдыхом для него было изготовление чемоданов (возможно, это легенда). В результате продавцы различных исходных материалов и полуфабрикатов для изготовления чемоданов полагали, что Менделеев – известный чемоданных дел мастер. Точно так же биографы А.М. Бутлерова всегда отмечают, что он увлекался пчеловодством.

История химии не стоит на месте, она пишется и в наши дни, а потому рассказ о научных достижениях Эртля будет неполным, если не привести некоторые биографические сведения, а также ряд высказываний, ярко характеризующих этого талантливого ученого.

Назад: Зримые танцы молекул на металлическом паркете
Дальше: Коротко о самом лауреате