Книга: Вселенная на ладони
Назад: Сверхновые звезды
Дальше: Черные дыры

Нейтронные звезды и пульсары

В глубине Крабовидной туманности находятся дымящиеся руины когда-то могущественной звезды. После того как ее плотное ядро из железа скукожилось под прессом собственного веса, она превратилась почти в ничто. Под огромным давлением железо полностью распалось, превратившись, в конце концов, в нейтроны – нейтральные частицы, обнаруженные в центре атомов. Все звезды с массами, от восьми до тридцати раз большими, чем масса Солнца, ожидает именно такой конец: они завершают жизнь, будучи окруженными остатками сверхновой.
Однако степень, до которой нейтроны могут объединяться, имеет границы. Поэтому коллапс нивелируется когда ядро сжимается до сверхвысокой плотности и достигает размера всего 30 километров в диаметре. Все, что остается от красной супергигантской звезды, размеры которой когда-то в 100 тысяч раз превышали размеры Земли, – это шар, меньший по размеру, чем город Лондон. Огромные количества массы сжаты в настолько малый объем, что одна чайная ложка материала из нейтронной звезды будет весить 10 миллионов тонн.
По мере конденсации звезды скорость ее вращения резко увеличивается. Когда-то она, возможно, совершала один оборот вокруг своей оси за несколько недель. Теперь она совершает тридцать оборотов в секунду. Магнитное поле звезды становится более концентрированным и в триллионы раз более мощным, чем у Земли. И как результат, сверхгорячий материал упорядочивается, концентрируясь в мощные пучки, которые устремляются в разных направлениях прочь от полюсов нейтронной звезды.
Это превращает нейтронную звезду в подобие космического эквивалента земного маяка. Если нам случается оказаться на пути вращающихся пучков, мы улавливаем регулярные, повторяющиеся всплески радиоволн. Поэтому эти космические объекты называются пульсарами – от сокращенного словосочетания «пульсирующие звезды».
Пульсары соблюдают периодичность посылки сигналов столь четко и регулярно, что, когда был открыт первый пульсар, Энтони Хьюиш и Джоселин Белл дали ему прозвище LGM-1 (сокращенно от английского Little Green Men 1 – маленькие зеленые человечки). Предполагалось, что ничто в природе не способно сбить или нарушить такой устойчивый ритм. Сегодня мы знаем, что это самые точные определители времени из всех, какие только госпожа Природа может нам предложить. Настолько точные, что астрономы обсуждали возможность их использования в качестве основы для новых форм галактического интернета и GPS – глобальной системы позиционирования. Мы также использовали их несколько раз для того, чтобы сообщить о нашем местоположении в галактике потенциальным разумным цивилизациям.
ВСПЫШКИ ГАММА-ЛУЧЕЙ
Если вы думали, что сверхновые звезды очень мощные, то они ничто по сравнению с яростью и неистовством вспышек гамма-лучей (ВГЛ). Эти лучи способны выделять за какие-то сорок секунд больше энергии, чем Солнце за все 10 миллиардов лет своего существования, и регистрируются из всех концов Вселенной в течение уже миллиардов световых лет как яркие источники света. Гамма-лучи были открыты в 1967 году со спутников, запущенных в космос в разгар холодной войны и предназначенных для выявления секретных полигонов ядерных испытаний.
ВГЛ подразделяются на две категории: краткие (менее двух секунд) и длительные. Они во многом и сегодня остаются загадкой, однако длительные, как предполагается, являются результатом детонации массивных звезд в качестве сверхновых. Краткие ВГЛ – которые составляют около 30 % всех ВГЛ, – вероятно, результат столкновения двух нейтронных звезд.
К счастью, все ВГЛ, обнаруженные до настоящего времени, находятся в отдаленных от нас областях Вселенной. Между тем, ВГЛ, затрагивающие нашу Солнечную систему, имели бы для нас катастрофические последствия. Если бы Земля оказалась под воздействием пучка ВГЛ – что чрезвычайно маловероятно, – наш озоновый слой атмосферы был бы просто уничтожен, как и все живое на Земле.
Назад: Сверхновые звезды
Дальше: Черные дыры