Книга: Укрощение бесконечности. История математики от первых чисел до теории хаоса
Назад: Размер множества
Дальше: Гильберт

Противоречия

Однако величайшей целью фундаментальной математики было все-таки не доказательство существования математических идей. Гораздо важнее было доказать, что математика логически последовательна. Ведь всем сегодня понятно: можно выстроить некоторую четкую последовательность безупречно правильных логических шагов, приводящую к абсурдному выводу. Может, вы соберетесь доказать, что 2 + 2 = 5 или 1 = 0, например. Или что 6 – простое число, или что π = 3.
Ведь может показаться, что одно незначительное противоречие будет иметь ограниченные последствия. В быту люди вообще спокойно воспринимают такие противоречия, заявляя в один момент, что глобальное потепление уничтожает планету, а в другой – что авиакомпании-лоукостеры – гениальное изобретение. Но для математики последствия не могут быть ограниченными, и вы не избежите логических противоречий, просто закрыв на них глаза. В математике, как только что-то доказано, вы можете использовать это для других доказательств. Доказательство того, что 0 = 1, повлечет еще больше неприятностей. Например, утверждение, будто все числа равны. Если x – любое число, то сначала умножим обе части равенства 0 = 1 на х. Тогда 0 = x. И если y – любое другое число, то 0 = y. Значит, x = y.
Хуже того, стандартный метод доказательства от противного означает, что может быть доказано что угодно, если доказано, что 0 = 1. Чтобы доказать Великую теорему Ферма, мы рассуждаем так.
Предположим, что Великая теорема Ферма неверна.
Тогда 0 = 1.
Противоречие.
Значит, теорема Ферма верна.
Если бы было верно неудовлетворительное равенство [0 = 1], этот метод доказал бы, что Великая теорема Ферма неверна.
Предположим, что Великая теорема Ферма неверна.
Тогда 0 = 1.
Противоречия нет.
Значит, теорема Ферма неверна.
Коль скоро всё правда – и при этом ложь, о чем вообще может идти речь? Вся математика превращается в пустую и глупую игру.
ДАВИД ГИЛЬБЕРТ 1862–1943
Давид Гильберт окончил в 1885 г. университет в Кенигсберге, защитив сразу свою диссертацию по теории инвариантов. Он работал в университете, пока не стал профессором в Гёттингене в 1895 г. Но он продолжал развивать теорию инвариантов, доказав свою теорему о базисе в 1888 г. Его методы отличались от принятых в то время способов исследования абстрактным подходом, и один из ведущих ученых того времени, Пауль Гордан, вообще счел его труды неудовлетворительными. Перед публикацией в авторитетном математическом журнале Mathematische Annalen Гильберт переработал свою статью, после чего Клейн назвал ее «самой важной работой по общей алгебре из всего, что когда-либо публиковал этот журнал».
В 1893 г. Гильберт начал писать более всеобъемлющую монографию по теории чисел под названием «Отчет о числах». Хотя изначально целью было обобщение уже накопленных сведений, ученый включил в статью много собственных открытий, ставших позже основой для того, что сейчас нам известно как теория полей классов.
К 1899 г. он снова поменял направление исследований и занялся аксиоматическим обоснованием геометрии Евклида. В 1923 г. на Втором международном конгрессе математиков в Париже он представил список из 23 главных нерешенных проблем. Этот список, известный как проблемы Гильберта, оказал решающее влияние на главные направления математики в последующие годы.
Примерно в 1909 г. его работа по интегральным уравнениям привела к открытию гильбертовых пространств, сейчас составляющих основу квантовой механики. Также в статье от 1915 г. он подошел вплотную к открытию уравнений Эйнштейна для общей теории относительности. Он добавил в доказательство примечание о том, что его статья согласуется с уравнениями Эйнштейна. Из-за этого сложилось ошибочное убеждение о том, что Гильберт якобы предвосхитил открытие Эйнштейна.
В 1930 г. Гильберт ушел в отставку и получил титул почетного гражданина Кенигсберга. Его речь на церемонии заканчивалась словами: «Мы должны знать. Мы будем знать» – кратким выражением его веры в математику и решимости справиться с любыми проблемами.
Назад: Размер множества
Дальше: Гильберт