Книга: Укрощение бесконечности. История математики от первых чисел до теории хаоса
Назад: Простые конечные группы
Дальше: Абстрактная математика

Великая теорема Ферма

Применение алгебраических числовых полей к теории чисел стремительно развивалось во второй половине ХХ в., причем возникало всё больше связей с прочими областями математики, включая теорию Галуа и алгебраическую топологию. Кульминацией этой работы стало доказательство Великой теоремы Ферма почти через 350 лет после ее первого упоминания.
Идея, обеспечившая возможность решения этой задачи, пришла из прекрасной области, заключенной в самом сердце современных трудов по диофантовым уравнениям, – теории эллиптических кривых. Это те кривые, у которых полный квадрат равен кубическому многочлену, и они представляют ту область уравнений Диофанта, которая понятна математикам. Однако сам предмет не лишен своих нерешенных проблем. Самой значительной остается гипотеза Таниямы – Вейля, названная в честь Ютаки Таниямы и Андре Вейля. Она гласит, что любую эллиптическую кривую можно описать в терминах модулярных функций – обобщений тригонометрических функций, в частности изучавшихся Клейном.
ЧТО АБСТРАКТНАЯ АЛГЕБРА ДАЛА ИМ
В своем труде «Исследование законов мышления», опубликованном в 1854 г., Джордж Буль показал, что алгебра применима к логике, и в результате открыл то, что сейчас называется булевой алгеброй.
Я могу дать лишь набросок высказанных Булем идей. Самыми важными логическими операциями являются не, и, или. Если утверждение S истинно, то утверждение «не S» ложно, и наоборот. Утверждение «S и T» будет истинно тогда и только тогда, когда оба утверждения, S и T, истинны. Утверждение «S или T» истинно, когда истинны либо S, либо T, либо они оба одновременно. Буль обратил внимание на то, что если вместо Т мы поставим 1, а вместо S – 0, алгебра этих логических операций будет очень напоминать обычную, если мы примем, что 0 и 1 – целые числа по модулю 2; тогда 1 + 1 = 0 и – S по абсолютной величине равно S. Тогда «не S» есть 1 + S, «S и Т» есть ST и «S или T» есть S + T + ST. Сумма S + T соответствует исключающему или (xor на языке компьютерщиков). «S xor T» истинно при условии, что истинно либо T, либо S, но не оба одновременно. Буль открыл, что его курьезная алгебра логики полностью самосогласована, если вы запомните ее немного странные правила и будете использовать их систематически. Это был один из первых шагов в сторону формальной теории математической логики.
В начале 1980-х гг. Герхард Фрай открыл связь между Великой теоремой Ферма и эллиптическими кривыми. Предположим, что решение для уравнения Ферма существует; тогда вы можете построить эллиптическую кривую с очень необычными свойствами, такими, что даже само существование такой кривой покажется невероятным. В 1986 г. Кеннет Рибет развил эту идею, доказав, что если гипотеза Таниямы – Вейля верна, то кривая Фрая существовать не может. Получается, предположенное ранее решение теоремы Ферма тоже не может существовать, что доказывает Великую теорему Ферма. Этот подход основан на гипотезе Таниямы – Вейля и к тому же показывает, что Великая теорема Ферма – не просто исторический курьез. Напротив, она лежит в основе современной теории чисел.
Эндрю Уайлс с детства мечтал найти доказательство Великой теоремы Ферма, но, став профессионалом, решил, что это не более чем отдельная проблема – пусть нерешенная, но не такая уж и важная. Работа Рибета заставила его изменить мнение. В 1993 г. он заявил о доказательстве гипотезы Таниямы – Вейля для отдельного класса эллиптических кривых, достаточно общем, чтобы найти доказательство Великой теоремы Ферма. Но когда статья уже была готова к публикации, в ней обнаружился серьезный пробел. Уайлс был готов сдаться, когда «внезапно, неожиданно на меня снизошло это невероятное откровение… это было столь неописуемо прекрасно, столь элегантно и просто, и я оцепенел, не в силах поверить». При участии Ричарда Тейлора он пересмотрел свое доказательство и сумел исправить пробел. Его статья вышла в 1995 г.
В одном мы можем быть уверены: что бы ни подразумевал сам Ферма, заявляя, что у него есть доказательство его Великой теоремы, его подход был совершенно иным по сравнению с методами Уайлса. Нашел ли Ферма на самом деле простое и изящное доказательство, или он обманывал сам себя? Эту загадку, в отличие от самой теоремы, мы не разгадаем никогда.
Назад: Простые конечные группы
Дальше: Абстрактная математика