Книга: Вселенная Стивена Хокинга
Назад: Глава девятая. Стрела времени
Дальше: Глава одиннадцатая. Объединение физики

Глава десятая. Кротовые норы и путешествия во времени

В предыдущей главе обсуждалось, почему время течет вперед: почему возрастает степень хаоса и почему мы помним прошлое, а не будущее. Время рассматривалось как прямая железнодорожная колея, по которой можно двигаться в одном из двух направлений.
Но что, если на путях есть петли и ответвления, которые позволяют поезду вернуться на пройденную станцию, двигаясь при этом только вперед? Другими словами, возможно ли путешествие в будущее или в прошлое?
Об этом рассуждал Герберт Уэллс в своем романе «Машина времени», этой же теме посвящали свои произведения и другие писатели-фантасты. И ведь многие из их идей, например подводные лодки и полеты на Луну, стали реальностью. Так каковы же перспективы перемещений во времени?
Первое свидетельство того, что законы физики действительно допускают возможность путешествия назад во времени, предъявил в 1949 году Курт Гёдель: он описал новый тип пространства-времени, который согласуется с общей теорией относительности. Гёдель был математиком, и известность ему принесло обоснование того постулата, что невозможно доказать все верные утверждения, даже если ограничиться областью такой скупой и сухой, как арифметика. Теорема Гёделя о неполноте, подобно принципу неопределенности, служит фундаментальным барьером для нашей способности понимать Вселенную и предсказывать ее развитие. Но пока эта теорема не является препятствием на пути к построению полной единой теории.
Гёдель узнал об общей теории относительности довольно поздно, когда он работал вместе с Эйнштейном в Институте перспективных исследований в Принстоне. Пространство-время Гёделя обладает любопытным свойством: вся Вселенная у него вращается. Возникает вопрос: вращается вокруг чего? И так математик отвечал на него: далекое вещество вращается относительно направлений, задаваемых маленькими юлами, или гироскопами.
Такое положение дел будет иметь побочный эффект: если некто отправится в далекое путешествие на космическом корабле, он может вернуться на Землю до того, как покинул ее. Это допущение сильно расстроило Эйнштейна, который считал, что общая теория относительности исключает путешествия во времени. Правда, мнение физика должно обнадеживать, если учесть его необоснованное неприятие гравитационного коллапса и принципа неопределенности. Решение Гёделя не имеет отношения к нашей Вселенной, поскольку мы можем показать, что Вселенная не вращается. К тому же во Вселенной Гёделя космологическая постоянная – Эйнштейн ввел ее, посчитав, что Вселенная должна быть статичной – отлична от нуля. Когда Хаббл показал, что Вселенная расширяется, необходимость в космологической постоянной отпала, и сейчас она, как правило, полагается равной нулю. Но с тех пор были найдены другие, более правдоподобные варианты пространства-времени, не противоречащие общей теории относительности и допускающие возможность путешествия в прошлое. Один из них – нутро вращающейся черной дыры, другой – пространство-время с двумя космическими струнами, которые движутся мимо друг друга на большой скорости. Как можно догадаться по названию, космические струны – это длинные струноподобные объекты с относительно большой длиной и маленьким поперечным сечением. В действительности они скорее напоминают резиновые нити, поскольку на них действует огромная сила натяжения, эквивалентная примерно миллиону миллионов миллионов миллионов тонн. Привязав Землю к космической струне, за 1/30 долю секунды ее можно разогнать с 0 до 100 километров в час. Такие струны кажутся чем-то из области научной фантастики, но есть все основания полагать, что они могли образоваться в ранней Вселенной в результате нарушения симметрии, которое мы рассматривали в главе 5. Из-за сильнейшего натяжения и произвольной начальной конфигурации струны, распрямляясь, могли разогнаться до очень высоких скоростей.
Вселенная Гёделя и пространство-время космических струн начинают существовать в столь искривленном, скрученном состоянии, что путешествия в прошлое совсем не исключены. Бог мог, конечно, сотворить космос таким покоробленным, но у нас нет никаких оснований в это верить. Наблюдения фонового реликтового излучения и концентрации легких химических элементов свидетельствуют о том, что ранняя Вселенная не отличалась кривизной, необходимой для перемещений во времени. Такой же вывод следует из теоретических соображений, учитывающих гипотезу об отсутствии границ. Значит, вопрос можно поставить так: если Вселенная у своих истоков не обладала кривизной, необходимой для путешествий во времени, можно ли впоследствии «скрутить» некоторые области пространства-времени настолько, чтобы сделать путешествия во времени возможными?
Писателей-фантастов волнует и другая, смежная проблема – молниеносное перемещение между звездами и галактиками. Согласно теории относительности ничто не может двигаться быстрее света. Поэтому если отправить космический корабль к ближайшей к Солнцу звезде Проксима Центавра, то есть на расстояние примерно четырех световых лет от нас, придется дожидаться возвращения путешественников и рассказов об увиденном не менее восьми лет, а экспедиция к центру Галактики доберется до дома не раньше чем через 100 000 лет. И все же теории относительности есть чем нас утешить. И это так называемый парадокс близнецов, упоминавшийся во второй главе.
Поскольку единого стандарта времени не существует и оно свое у каждого наблюдателя, который измеряет его при помощи наличного хронометра, то вполне вероятно, что космические путешественники считают свое путешествие гораздо более коротким по времени по сравнению с теми, кто дожидается их на Земле. Так, вернувшись из космической экспедиции и постарев всего на несколько лет, они не очень-то обрадуются, не застав в живых никого из близких, которые умерли уже много тысяч лет назад. А потому, чтобы пробудить у читателей хоть какой-то интерес к своим произведениям, писатели-фантасты вынуждены предполагать, что когда-нибудь придумают способ передвигаться быстрее света. Но большинство сочинителей, похоже, не понимают, что если можно двигаться на такой безумной скорости, то в соответствии с теорией относительности можно попасть и в наше прошлое, совсем как в этом лимерике:
There was a young lady of Wight
Who traveled much faster than light.
She departed one day,
In a relative way,
And arrived on the previous night.

Причина этого явления в том, что в теории относительности нет единой меры времени для всех наблюдателей – она своя у каждого наблюдателя. Если ракета, летящая медленнее, чем свет, способна добраться от события A (например, финиша забега на 100 метров на Олимпийских играх 2012 года) до события B (например, открытия 100 004 по счету заседания Конгресса Альфа Центавра), то с точки зрения всех наблюдателей и согласно их часам событие A предшествовало событию B. Теперь предположим: чтобы сообщить новость об исходе забега на заседании конгресса, космический корабль должен лететь быстрее света. В этом случае наблюдатели, движущиеся с разными скоростями, не сойдутся во мнениях о том, произошло ли событие A до или после события B. В соответствии со временем наблюдателя, который находится в состоянии покоя относительно Земли, Конгресс мог открыться и после забега. Таким образом, с точки зрения этого наблюдателя, ракета может успеть добраться от A до B, только если преодолеет барьер скорости света. Но для наблюдателя на Альфа Центавра, который удаляется от Земли почти со скоростью света, событие B (открытие Конгресса) произойдет до события A (финиш 100-метрового забега). Согласно теории относительности законы физики одинаковы для всех наблюдателей независимо от скорости их движения.
Это свойство было проверено экспериментально и, скорее всего, сохранится, даже если на смену теории относительности придет новая, более совершенная теория. Таким образом, движущийся наблюдатель сказал бы, что если двигаться быстрее света можно, то можно и добраться от события B (открытия Конгресса) до события A (финиша 100-метрового забега). А если кто-то окажется еще шустрее, то успеет вернуться до начала забега и успеть сделать ставку на спортсмена, который точно победит.
Но преодолеть барьер скорости света не так-то просто. Согласно теории относительности космический корабль расходует все больше энергии, по мере того как его скорость приближается к скорости света. Это доказано в экспериментах, правда, не с космическими кораблями, а с элементарными частицами, разгоняемыми в ускорителях, например в лаборатории имени Энрико Ферми или ЦЕРН. Мы научились разгонять частицы до 99,99 % скорости света, но сколько бы энергии мы ни затрачивали, частицы отказывались двигаться быстрее света. Так же и с космическими кораблями: никакая тяга двигателя не позволит им разогнаться до сверхсветовых скоростей.
Отсюда, похоже, следует невозможность как молниеносных космических полетов, так и путешествий назад во времени. Но выход – не исключено – все же есть. Есть вероятность, что можно искривить пространство-время таким образом, чтобы сократить путь от A до B. Например, проложить тоннель, или кротовую нору, между этими событиями. Как ясно из названия, кротовая нора представляет собой узкий проход в пространстве-времени, соединяющий две удаленные друг от друга, почти плоские области.
Длина этого прохода не должна соотноситься с расстоянием между его конечными точками в почти плоском пространстве. Так что вполне можно представить себе, что мы нашли или создали кротовую нору, соединяющую окрестности Солнечной системы и Альфу Центавра. Длина этой норы может составить всего несколько миллионов километров, тогда как в привычном пространстве Землю и Альфа Центавра разделяют сорок миллионов миллионов километров. Таким образом, новость о 100-метровом забеге может успеть к открытию Конгресса. Но в этом случае наблюдатель, движущийся к Земле, должен найти и другую кротовую нору, через которую он успеет вернуться с заседания Конгресса на Альфа Центавра обратно на Землю еще до начала забега. Таким образом, кротовые норы, как и любой другой способ перегнать свет, позволят также путешествовать в прошлое.
Кротовые норы, соединяющие разные области пространства-времени, – это не изобретение фантастов, эта идея была предложена солидными учеными.
В 1935 году Альберт Эйнштейн и Натан Розен написали статью, в которой показали, что общая теория относительности допускает существование «мостов» – по выражению ученых, – которые теперь называют кротовыми норами. Мост Эйнштейна – Розена оказался слишком короткоживущим, чтобы космический корабль смог пройти по нему: корабль нырнул бы в сингулярность, когда нора схлопнулась. Правда, выдвинули предположение, что высокоразвитая цивилизация сумеет не дать кротовой норе закрыться. Для этого – или для того, чтобы искривить пространство-время любым другим способом, обеспечив возможность путешествий во времени, – нужна область континуума с отрицательной кривизной, например седлообразная. Обычное вещество, плотность энергии которого положительна, придает пространству-времени положительную кривизну, например форму шара. Поэтому для получения отрицательной кривизны, необходимой для посещения прошлого, требуется вещество с отрицательной плотностью энергии.
Энергия чем-то напоминает деньги: если баланс вашего счета положителен, то вы можете распоряжаться финансами на ваше усмотрение, но согласно классическим законам вековой давности нельзя уйти в минус ни по одному из счетов. Таким образом, классические законы не допускают отрицательной плотности энергии и, следовательно, возможности заглянуть в прошлое. Однако, как говорилось в предыдущих главах, на смену классическим законам пришли квантовые, основанные на принципе неопределенности. Они предполагают бо́льшую свободу и готовы мириться с отрицательным балансом по одному или двум счетам при условии, что общий баланс остается положительным. Другими словами, квантовая теория стерпит отрицательную плотность энергии в некоторых областях, если это компенсируется положительной плотностью энергии в других местах, то есть если суммарная энергия остается положительной. Примером допустимости отрицательной плотности энергии в квантовой механике служит так называемый эффект Казимира. Как мы убедились в седьмой главе, даже то, что мы принимаем за «пустое» пространство, на самом деле заполнено виртуальными парами частица-античастица, которые возникают, расходятся, сходятся и взаимно аннигилируют. Представим себе две металлические пластины на малом расстоянии друг от друга. Эти пластины действуют как зеркала для виртуальных частиц света – фотонов. В действительности они образуют своего рода полость наподобие органной трубы, которая резонирует только тогда, когда берут определенные ноты. Это значит, что виртуальные фотоны могут оказаться между пластинами, только если длины их волны (расстояние между гребнями соседних волн) укладываются в зазор между пластинами целое число раз. Если ширина полости представлена нецелым числом, выражающим количество длин волн, то после нескольких отражений от верхней и нижней пластин гребни одной волны попадут на впадины другой, и волны взаимно погасятся.
Поскольку длины волн виртуальных фотонов между пластинами могут принимать только резонансные значения, то их там должно быть несколько меньше, чем в области вне пластин, где виртуальные фотоны могут иметь любые длины волн. Таким образом, поверхности пластин, расположенные внутри зазора, будут испытывать удары меньшего числа виртуальных фотонов, чем внешние поверхности пластин. Поэтому есть основания считать, что пластины будут испытывать действие сил, толкающих их навстречу друг другу. Эти силы и вправду были обнаружены и измерены: они оказались такими, как предсказывает теория. Таким образом, существуют экспериментальные свидетельства существования виртуальных частиц, которые порождают вполне реальные эффекты.
Тот факт, что в зазоре между пластинами меньше виртуальных фотонов, означает, что плотность энергии там ниже, чем в других местах. Но суммарная плотность энергии «пустого» пространства вдали от пластин равна нулю, потому что иначе под влиянием ненулевой плотности пространство искривилось бы, то есть перестало быть почти плоским. Так что если плотность энергии между пластинами меньше, чем плотность энергии вдали от пластин, то в зазоре она должна быть отрицательной.
Таким образом, у нас есть экспериментальные данные, указывающие как на то, что пространство-время может быть искривлено (отклонение света во время затмений), так и на то, что его можно искривить, чтобы сделать возможными путешествия во времени (эффект Казимира). Поэтому есть все основания надеяться, что прогресс науки и техники позволит в конце концов создать машину времени. Но если так, то почему никто не прибыл к нам из будущего, чтобы объяснить, как это делается? Конечно, могут быть серьезные основания не раскрывать нам секрет временны́х странствий, пока мы примитивны и недоразвиты. Но – если, конечно, человеческая природа радикально не изменится – с трудом верится, что какой-нибудь гость из будущего не проболтался бы. Разумеется, некоторые скажут, что наблюдение НЛО доказывает, что нас уже посещали инопланетяне или «будетляне». (Чтобы добраться до нас за разумное время, они должны были освоить перемещение со сверхсветовой скоростью, так что обе возможности вполне эквивалентны.)
Но я думаю, что визит любых пришельцев был бы куда более очевидным и, возможно, более неприятным событием. Если гости из других миров или будущего вообще захотят явить себя нам, зачем выбирать в свидетели тех, кто не заслуживает доверия? Если они стараются предупредить нас о большой опасности, то они не слишком в этом преуспели.
Отсутствие гостей из будущего можно объяснить тем, что прошлое уже «застыло»: мы наблюдали его и убедились, что там нет областей достаточно искривленных, чтобы попасть туда из будущего. С другой стороны, будущее неизвестно и открыто, и там вполне может найтись область с нужной кривизной. То есть если путешествия во времени возможны, то только в будущее. Так что капитану Кирку и его звездолету «Энтерпрайз» никак не пробраться в наше время.
Примерно понятно, почему нас не одолевают толпы туристов из будущего, но повисает вопрос: как избежать проблем, возникающих, если кто-то сможет вернуться в прошлое и изменить ход событий? Предположим, например, что вы попали в прошлое и убили своего прапрадеда, когда тот был еще мальчиком. Существует множество вариантов этого парадокса, но все они, в сущности, сводятся к одному и тому же: возможность изменять прошлое ведет к противоречиям.
По-видимому, есть два способа разрешения парадоксов, связанных с путешествиями во времени. Первый я буду называть подходом непротиворечивых историй, и он декларирует: даже если пространство-время свернуто так, что допускает путешествие в прошлое, все происходящее в пространстве-времени должно подчиняться законам физики. То есть вы можете вернуться назад в прошлое, только если история уже зафиксировала факт вашего появления в прошлом из будущего и если вы не убили своего прапрадеда и не совершили других действий, которые идут вразрез с вашим настоящим. К тому же, если вы отправитесь в прошлое, то не сможете изменить «застывшую» историю. А значит, не идет речи о свободе воли, вы не сможете делать то, что хочется. Конечно, можно сказать, что свобода воли – это всего лишь иллюзия. Если действительно существует полная единая теория, определяющая все на свете, то она, надо полагать, также определяет и ваши действия. Но механизм ее действия на такой сложный организм, как человек, невозможно просчитать. Мы говорим, что человек наделен свободной волей, потому что не можем предсказать поступков друг друга. Но если человек отправится в космос на ракете и возвратится до времени отправления, то он или она сможет предсказать свои дальнейшие действия, поскольку они будут частью известной истории. То есть в этой ситуации у путешественника во времени не будет свободы воли.
Другой возможный способ разрешения связанных с путешествиями во времени парадоксов можно назвать гипотезой альтернативных историй. Идея в том, что когда путешественник возвращается в прошлое, он попадает в альтернативную историю, которая отличается от записанной. Таким образом, он может действовать по своему усмотрению и ему не нужно с чем-либо координировать свои поступки. Стивен Спилберг вдоволь наигрался с этим предположением, когда снимал «Назад в будущее»: Марти Макфлай смог вернуться в прошлое и изменить историю отношений своих родителей на более подходящую.
Гипотеза альтернативных историй напоминает придуманный Ричардом Фейнманом способ представления квантовой механики в виде суммы по траекториям, о которой шла речь в четвертой и восьмой главах. По Фейнману, у Вселенной была не одна история, а скорее, набор всех возможных историй, каждая со своей вероятностью. Но между методом Фейнмана и альтернативными историями, пожалуй, есть одно важное различие. В фейнмановской сумме каждая траектория, или история, включает пространство-время целиком, а также все, что оно содержит. Пространство-время может иметь искривленную форму, позволяющую отправиться в прошлое на космическом корабле. Но корабль при этом останется внутри того же пространства-времени и, следовательно, той же истории, которая должна быть непротиворечивой. Так что фейнмановская сумма по траекториям согласуется с гипотезой скорее непротиворечивых, чем альтернативных историй.
Подход Фейнмана допускает возможность путешествий в прошлое на микроскопическом уровне. В девятой главе мы узнали, что законы природы остаются неизменными при комбинациях симметрий C, P и T. Это значит, что античастица, вращающаяся против часовой стрелки и движущаяся из A в B, может рассматриваться как обычная частица, вращающаяся по часовой стрелке и движущаяся в обратном направлении во времени – из B в A. Аналогично обычная частица, смещающаяся вперед по временной шкале, эквивалентна античастице, движущейся назад по времени. Как уже отмечалось в этой и в седьмой главе, «пустое» пространство заполнено парами виртуальная частица – виртуальная античастица, которые возникают вместе, разбегаются, сходятся и взаимно аннигилируют.
Так, пара частица-античастица может рассматриваться как одна частица, движущаяся по замкнутой траектории в пространстве-времени. Когда пара движется вперед по времени (от рождения к аннигиляции), она называется частицей. Но когда она движется назад во времени (от аннигиляции пары к ее рождению), она называется античастицей, движущейся вперед по времени.
В седьмой главе объяснялось, каким образом черные дыры испускают частицы и излучение, и механизм состоит в следующем: один из членов виртуальной пары частица-античастица (например античастица) падает в черную дыру, и второй член остается без партнера, с которым мог бы аннигилировать. Одинокая частица тоже может упасть в черную дыру, но может также и уйти из ее окрестностей. В последнем случае удаленный наблюдатель примет ее за частицу, испущенную черной дырой.
Впрочем, излучение черной дыры можно описать в виде иной, эквивалентной интуитивной схемы. Компонент виртуальной пары, упавший в черную дыру (например античастицу), можно рассматривать как частицу, движущуюся от черной дыры назад во времени. По достижении момента, когда рождается виртуальная пара частица-античастица, она тут же рассеивается гравитационным полем черной дыры и превращается в частицу, которая движется вперед по времени, удаляясь от черной дыры. А в случае если в черную дыру упала частица, ее можно рассматривать как античастицу, движущуюся назад по времени и исходящую из черной дыры. То есть излучение черных дыр показывает, что квантовая теория допускает возможность движения назад по времени на микроскопических масштабах и что перемещения во времени такого рода могут иметь наблюдаемые проявления.
Напрашивается вопрос: допускает ли квантовая механика возможность путешествий во времени на макроскопическом уровне, которой могли бы воспользоваться люди? На первый взгляд это кажется вероятным. По Фейнману, суммирование надлежит выполнять по всем траекториям, то есть не исключая траектории с таким искривлением пространства-времени, которое разрешает визит в прошлое. Почему у нас не возникает проблем с историей? Предположим, к примеру, что кто-то отмотал назад несколько лет и раскрыл нацистам секрет атомной бомбы…
Этих проблем можно избежать, если взять на вооружение то, что я называю гипотезой защиты хронологии. В согласии с ней законы физики «сговорились», чтобы не позволить макроскопическим телам передавать информацию в прошлое. Как и гипотеза космической цензуры, она не доказана, но есть все основания считать ее верной.
Гипотеза защиты хронологии заслуживает доверия, потому что когда пространство-время искривлено достаточно, чтобы сделать возможными путешествия в прошлое, виртуальные частицы, движущиеся по замкнутым траекториям в пространстве-времени, могут превращаться в реальные частицы, движущиеся вперед по времени со скоростями, равными скорости света, или медленнее. Эти частицы проходят по этой петле произвольное число раз и столько же раз минуют любую точку своей траектории. Таким образом, их энергия учитывается снова и снова, и плотность энергии становится очень высокой. В результате пространство-время обретает положительную кривизну, которая не позволяет попасть в прошлое. Пока еще не до конца понятно, становится ли под действием этих частиц кривизна положительной или отрицательной или же кривизна, продиктованная некоторыми типами виртуальных частиц, может подменяться кривизной, порожденной частицами другого типа. Так что вопрос о возможности путешествий во времени остается открытым. Но я не готов делать ставки на исход этого спора. У моего оппонента может оказаться нечестное преимущество: не исключено, что будущее ему уже известно.
Назад: Глава девятая. Стрела времени
Дальше: Глава одиннадцатая. Объединение физики