Книга: Вселенная Стивена Хокинга
Назад: Глава десятая. Кротовые норы и путешествия во времени
Дальше: Глава двенадцатая. Заключение

Глава одиннадцатая. Объединение физики

Как мы уже выяснили в первой главе, построить полную единую теорию всего во Вселенной – чрезвычайно трудная задача. Поэтому мы продвигались вперед, создавая частные теории, описывающие ограниченный круг событий, пренебрегая другими эффектами или учитывая их приблизительно через определенные параметры. (Например, химия позволяет вычислять взаимодействия между атомами, и для этого не нужно знать внутреннего строения атомного ядра.) Мы надеемся в конце концов создать всеобъемлющую непротиворечивую теорию, которая включит в себя все частные теории на правах приближений и которую не придется настраивать путем подбора значений констант, чтобы согласовать с реальностью. Поиски такой теории известны как «объединение физики». Последние годы своей жизни Эйнштейн посвятил попыткам – безуспешным – отыскать подходящую модель, но то было стремление опередить свое время: тогда уже существовали частные теории тяготения и электромагнитных сил, а о ядерных силах было известно мало. К тому же ученый отказывался признавать реальность квантовой механики, несмотря на ту роль, которую сыграл в ее разработке. И все же принцип неопределенности, как видится, играет фундаментальную роль в нашей Вселенной, а следовательно, успешная единая теория должна учитывать его.
Как станет ясно дальше, сейчас перспективы появления такой теории намного радужнее, потому что мы куда больше знаем о Вселенной. Но не будем слишком самонадеянными – немало наших надежд обернулись миражами! Например, в начале XX века казалось, что все можно объяснить через свойства сплошного вещества – упругость, теплопроводность и прочее, но открытие структуры атома и принципа неопределенности поставили на этих планах жирный крест. В 1928 году, физик и лауреат Нобелевской премии Макс Борн и вовсе заявил группе ученых, посетивших Гёттингенский университет: «С физикой, какой мы ее знаем, через шесть месяцев будет покончено». Причиной его уверенности было незадолго до этого выведенное Полем Дираком уравнение, описывающее поведение электрона. Предполагалось, что аналогичное уравнение будет справедливо и для протона – другой известной на тот момент элементарной частицы – и что это станет приговором для теоретической физики. Но планы ученых в очередной раз были нарушены: состоялось открытие нейтрона и ядерных сил. Впрочем, я считаю, что все же есть некоторые основания для осторожного оптимизма, что наши поиски фундаментальных законов природы, возможно, вскоре увенчаются успехом.
В предыдущих главах я рассказал об общей теории относительности, частной теории гравитации, а также о частных теориях слабого, сильного и электромагнитного взаимодействий. Последние три можно объединить в рамках так называемых теорий великого объединения (англ. Grand Unified Theories; GUT), которые пока несовершенны: они не учитывают гравитацию и содержат ряд параметров, например отношения масс различных частиц, численные значения которых нельзя предсказать в рамках самой теории, а приходится подбирать, исходя из экспериментальных данных. Главная проблема теории, объединяющей тяготение с другими видами взаимодействий, в том, что общая теория относительности – это классическая теория; она не принимает во внимание принцип неопределенности квантовой механики. При этом другие частные теории существенно зависят от квантовой механики. Следовательно, на первом этапе необходимо интегрировать принцип неопределенности в общую теорию относительности. Как мы уже видели, такое сочетание имеет замечательные следствия, например, что черные дыры совсем не черные, что во Вселенной нет сингулярностей, что она полностью самодостаточна и не имеет границ. Как мы выяснили в седьмой главе, сложность в том, что в соответствии с принципом неопределенности даже «пустое» пространство заполнено парами виртуальных частиц и античастиц. Суммарная энергия этих пар должна быть бесконечна и, следовательно, как указывает знаменитое уравнение Эйнштейна E = mc2, их масса тоже должна быть бесконечной. Таким образом, их сила тяготения должна свернуть Вселенную до бесконечно малого размера.
Аналогичные, кажущиеся нелепыми бесконечности [расходимости] появляются и в других частных теориях, но во всех случаях они устраняются при помощи так называемой перенормировки. В ее рамках одни бесконечности нейтрализуются введением других. Хотя эта методика может показаться сомнительной с математической точки зрения, она, похоже, работает: перенормировка используется в упомянутых теориях и позволяет получать предсказания, которые с удивительной точностью согласуются с наблюдениями. Но если мы желаем рассматривать перенормировку как инструмент для построения полной единой теории, нам придется признать, что у нее есть серьезный недостаток: реальные значения масс и величин сил нельзя предсказать в рамках теории – их приходится подбирать, исходя из результатов наблюдений.
При попытке включить принцип неопределенности в общую теорию относительности в нашем распоряжении оказываются только два свободных параметра: сила тяготения и значение космологической постоянной. Но регулировки только этих двух параметров недостаточно, чтобы устранить все бесконечности. Поэтому нам приходится мириться с теорией, которая предсказывает, что некоторые величины, например кривизна пространства-времени, в действительности бесконечны, но при этом могут быть измерены и, согласно измерениям, оказываются совершенно конечными! Какое-то время назад ученые уже заподозрили, что попытки соединить общую теорию относительности и принцип неопределенности могут встретить такое препятствие, но окончательно этот вывод был подтвержден подробными расчетами лишь в 1972 году. Спустя четыре года было предложено решение – так называемая супергравитация. Идея состояла в сочетании частиц со спином 2 – гравитонов, носителей гравитационного взаимодействия – с некоторыми другими частицами со спином 3/2, 1, 1/2 и 0. В некотором смысле все эти частицы могли рассматриваться как разновидности одной и той же «суперчастицы», тем самым обеспечивая объединение частиц вещества со спином 1/2 и 3/2 и частиц-носителей взаимодействий со спином 0, 1 и 2. Виртуальные пары частица-античастица со спином 1/2 или 3/2 имеют отрицательную энергию и, таким образом, они, как правило, компенсируют положительную энергию виртуальных пар со спином 2, 1 и 0. То есть множество возможных бесконечностей сокращается, но некоторые, по-видимому, все же сохраняются. К сожалению, расчеты, необходимые, чтобы установить, остались ли в супергравитации «несокращенные» бесконечности, оказались настолько громоздкими, что никто не был готов выполнить их. Даже чтобы выполнить все вычисления на компьютере, потребуется не менее четырех лет, и при этом, вероятнее всего, не удастся избежать ошибки – хотя бы одной, или даже нескольких. Так что мы сможем быть уверенными в правильности ответа, только если кто-нибудь повторит расчеты и получит тот же результат, а это не очень-то вероятно!
Несмотря на эти проблемы и на то, что частицы в теориях супергравитации не похожи на наблюдаемые частицы, большинство ученых считали, что супергравитация – это все же верный путь, который в перспективе приведет к объединению гравитации с другими силами. Но в 1984 году симпатии научного сообщества замечательным образом изменились: многие стали склоняться в пользу теории струн. Базовыми сущностями в ней являются не частицы – суть точки в пространстве, – а объекты, имеющие длину, но не имеющие других измерений, подобно бесконечно тонкому отрезку струны. У них могут быть концы (так называемые открытые струны), но они могут замыкаться сами на себя, образуя петли (замкнутые струны) (рис. 11.1 и 11.2). В любой момент времени частица занимает в пространстве одну точку, и ее историю можно представить в виде линии в пространстве-времени («мировой линии»). В отличие от нее, струна в каждый момент времени представляет собой линию в пространстве. Так что ее история в пространстве-времени выглядит как двумерная поверхность, так называемый мировой лист. (Любая точка на таком мировом листе задается двумя числами: одно из них определяет время, а другое – положение точки на струне.) Мировой лист открытой струны имеет вид ленты – ее края обозначают пути концов струны в пространстве-времени (рис. 11.1). Мировой лист замкнутой струны имеет вид цилиндра или трубы (рис. 11.2): в сечении трубы находится круг, который отображает положение струны в конкретный момент времени.

 

Рис. 11.1 и 11.2

 

Два отрезка струны могут соединиться, образуя единую струну; открытые струны могут соединяться своими концами (рис. 11.3), а в случае замкнутых струн схема напоминает соединяющиеся штанины брюк (рис. 11.4). Аналогичным образом отрезок струны может разделиться на два. В теориях струн то, что раньше принимали за различные точечные частицы, рассматривается как волны на струне, подобные колебаниям леера воздушного змея. Поглощению одной частицы другой частицей или излучению их соответствует соединение двух струн в одну или разделение струны на две части. Например, в теориях частиц считается, что сила притяжения, действующая на Землю со стороны Солнца, вызвана излучением гравитонов частицами вещества на Солнце и их поглощением частицами вещества на Земле (рис. 11.5). В теории струн этот процесс соответствует Н-образной трубе (рис. 11.6) (теория струн чем-то похожа на ремесло сантехника). Две вертикальные черты буквы «Н» соответствуют частицам на Солнце и на Земле, а соединяющая их горизонтальная черта соответствует гравитону, который движется между ними.

 

Рис. 11.3

 

Рис. 11.4

 

Рис. 11.5 и 11.6

 

История теории струн весьма любопытна. Она впервые была озвучена в конце 60-х годов прошлого века и стала плодом попыток создать теорию сильного взаимодействия. Авторы теории предлагали рассматривать такие частицы, как протон и нейтрон, как колебания струны. Сильное взаимодействие между частицами иллюстрирует переплетение струн, как в паутине. Чтобы теория давала наблюдаемую величину для сильного взаимодействия, струны должны напоминать резиновые ленты, которые удерживают груз в 10 тонн.
В 1974 году Жоэль Шерк из Высшей нормальной школы в Париже и Джон Шварц из Калифорнийского технологического института опубликовали статью, в которой показали, что теория струн способна описать природу гравитационных сил, но при куда большем натяжении струн – около тысячи миллионов миллионов миллионов миллионов миллионов миллионов (единица с тридцатью девятью нулями) тонн. На нормальных масштабах предсказания теории струн не отличаются от предсказаний общей теории относительности, а различия проявляются на очень малых расстояниях, в тысячу миллионов миллионов миллионов миллионов миллионов раз меньше сантиметра (сантиметр, деленный на число, равное единице с тридцатью тремя нулями). Но работа эта не привлекла особого внимания: как раз в это время большинство физиков потеряли интерес к первоначальной струнной теории сильного взаимодействия, увлекшись построениями, основанными на гипотезе о существовании кварков и глюонов, которая, похоже, лучше согласовывалась с наблюдениями. Шерк трагически погиб (он страдал от диабета и впал в кому, когда некому было сделать ему инъекцию инсулина), так что Шварц остался практически единственным сторонником теории струн. Правда, он исходил из куда большего их натяжения.
В 1984 году интерес к теории струн оживился, по-видимому, по двум причинам. Во-первых, не наблюдалось сколько-нибудь значительного прогресса в исследованиях, призванных доказать конечность супергравитации или ее способность объяснить наблюдаемые типы частиц. Во-вторых, Джон Шварц совместно с Майком Грином из Колледжа королевы Марии в Лондоне опубликовали статью, где показали, что теория струн может объяснить существование частиц со встроенной «леворукостью», подобной той, что присуща некоторым наблюдаемым частицам. Так или иначе, множество исследователей стали развивать теорию струн, и вскоре был создан новый ее вариант, в основе которого лежит предположение о гетеротических струнах. Он, как казалось, мог объяснить типы частиц, которые мы наблюдаем.
В теориях струн тоже возникают бесконечности, но считается, что в версии теории, сходной с той, что рассматривает гетеротические струны, все они сократятся (правда, пока это не известно наверняка). Но у теорий струн есть более серьезная проблема: похоже, что они непротиворечивы, только если пространство-время имеет или десять, или двадцать шесть измерений вместо обычных четырех! Конечно, дополнительные измерения пространства-времени – обычное дело в научной фантастике – это идеальный способ обойти обычное ограничение общей теории относительности, которая не допускает движения со скоростью, превышающей световую, а также движения назад во времени (см. десятую главу). Идея состоит в том, чтобы пройти коротким путем через дополнительные измерения. Это можно вообразить следующим образом. Представьте себе, что мы живем в пространстве с двумя измерениями, которое искривлено наподобие поверхности спасательного круга или тора (рис. 11.7). Если вы находитесь на одной стороне внутреннего края кольца и хотите перебраться в точку на другой стороне, вам придется двигаться по кругу вдоль внутреннего края. Но если вы способны двигаться также и в третьем измерении, то сможете выйти за пределы кольца и пройти в пункт назначения прямо через центр кольца.

 

Рис. 11.7

 

Почему мы не замечаем эти дополнительные измерения, если они реально существуют? Почему мы воспринимаем только три пространственных измерения и время? Согласно предположениям, все дело в том, что остальные измерения свернуты в пространстве до очень малого размера – примерно трех миллионно-миллионно-миллионно-миллионных долей сантиметра. Это так мало, что мы просто не замечаем их: мы воспринимаем только одно временное и три пространственных измерения, в которых пространство-время выглядит довольно плоским. Оно похоже на поверхность соломинки. Если посмотреть на нее вблизи, то видно, что поверхность двумерна (положение точки на соломинке задается двумя числами – расстоянием вдоль соломинки и расстоянием вдоль кругового измерения). Но если взглянуть на соломинку издалека, то ее толщина незаметна и соломинка выглядит одномерной (положение точки на ней задается всего лишь расстоянием вдоль соломинки). Точно так же дело обстоит и с пространством-временем: на очень малых масштабах оно десятимерно и сильно искривлено, а на больших масштабах эта кривизна и дополнительные измерения незаметны. Если эта картина верна, то она не сулит ничего хорошего путешественниками во времени: дополнительные измерения слишком малы, чтобы через них мог пройти космический корабль. Правда, возникает еще одна большая проблема: непонятно, почему некоторые измерения свернуты в мельчайший шар, а некоторые – нет. По-видимому, в ранней Вселенной все измерения были сильно искривлены. Но почему же одно временное и три пространственных измерения выпрямились, а остальные остались плотно свернутыми?
Возможное решение – обращение к антропному принципу. Двух пространственных измерений, по-видимому, недостаточно, чтобы обеспечить возможность зарождения таких сложных существ, как мы. Например, двумерным животным, живущим на одномерной Земле, пришлось бы перелезать друг через друга, чтобы разойтись. А съев что-нибудь, двумерное существо не смогло бы полностью переварить это, и ему пришлось бы выводить остатки еды тем же путем, которым еда попала внутрь, потому что если бы у двумерного существа был сквозной проход через тело, оно разделилось бы на две половины – попросту распалось бы надвое (рис. 11.8). Трудно также представить себе кровообращение в двумерном организме.

 

Рис. 11.8

 

Проблемы возникнут также в случае наличия более трех пространственных измерений. Так, сила гравитационного притяжения между двумя телами уменьшалась бы с увеличением расстояния быстрее, чем в трехмерном пространстве. (В трех измерениях при увеличении расстояния вдвое сила притяжения уменьшается в четыре раза. В четырехмерном пространстве сила уменьшится в восемь раз, в пятимерном – в шестнадцать, и т. д.). Эти различия важны, потому что орбиты планет вокруг Солнца – например, орбита Земли – оказываются неустойчивыми: из-за малейшего возмущения круговой орбиты (например, вызванного силой притяжения других планет) Земля начнет двигаться по спирали от Солнца или к Солнцу. А потому мы либо замерзнем, либо сгорим. В действительности такая зависимость силы тяготения от расстояния в пространстве с более чем тремя пространственными измерениями означает, что Солнце не смогло бы существовать в устойчивом состоянии при равновесии между давлением и силой тяжести. Солнце либо распалось, либо коллапсировало бы в черную дыру. В любом случае оно не смогло бы служить источником тепла и света для жизни на Земле. На меньших масштабах электрическая сила, которая удерживает электроны на орбитах вокруг атомного ядра, зависела бы от расстояния так же, как и гравитационная сила. Следовательно, электроны либо покинули бы атом окончательно, либо, двигаясь по спирали, упали бы на атомное ядро. В любом случае атомов в привычном нам понимании не было бы.
Похоже, стало ясно, что жизнь (во всяком случае в том виде, в каком мы ее знаем) может существовать только в таких областях пространства-времени, где одно временно́е и ровно три пространственных измерения не свернуты до малого размера. В этих обстоятельствах можно обратиться к слабому антропному принципу, если удастся доказать, что теория струн как минимум допускает существование таких областей во Вселенной – и, похоже, это действительно так. Во Вселенной вполне могут иметься и другие области, равно как могут существовать и другие вселенные (что бы это ни значило), где все измерения свернуты до малого размера или где насчитывается более четырех почти плоских измерений. Но в таких областях и в таких вселенных не будет разумных существ, которые могли бы наблюдать другое количество эффективных измерений.
Другая проблема состоит в том, что существуют как минимум четыре различные теории струн (одна теория открытых струн и три теории замкнутых струн) и миллионы способов сворачивания лишних измерений, предсказываемых такими теориями. На каком основании следует выбрать ту или иную теорию и способ сворачивания? Одно время казалось, что на этот вопрос нет ответа, и прогресс остановился. Потом, начиная примерно с 1994 года, ученые стали обнаруживать так называемые дуальности: разные теории струн и разные способы сворачивания лишних измерений могли приводить к одинаковым результатам в четырех измерениях. К тому же кроме частиц, занимающих одну точку в пространстве, и струн, представляющих собой линейные объекты, были обнаружены и другие сущности под названием p-браны – двумерные объекты и объекты с бо́льшим числом пространственных измерений. (Частицу можно рассматривать как 0-брану, а струну – как 1-брану, но есть также p-браны с числом измерений от p = 2 до p = 9.) Это, похоже, свидетельствует о демократичном характере отношений между теорией супергравитации, теорией струн и теорией p-бран: они, по-видимому, согласуются друг с другом, но при этом ни одна из них не может считаться более фундаментальной, чем другие. Похоже, все они представляют собой разные приближения к некоей более фундаментальной теории, причем применимые в разных ситуациях.
Ученые продолжают поиски этой теории, но пока без особого успеха. Правда, я считаю, что единой формулировки фундаментальной теории, может быть, вообще не существует; но оснований для такого утверждения у меня не более, чем у Гёделя, показавшего, что невозможно построить арифметику на базе одного набора аксиом. Возможно, здесь действует тот же принцип, что и в картографии: нельзя изобразить поверхность земного шара или поверхность бублика на одной плоской карте – для Земли понадобятся как минимум две, а для бублика – четыре карты, чтобы отобразить все точки. Каждая карта годится только для ограниченной области, но все они где-то перекрывают друг друга. Набор карт гарантирует полное описание поверхности. Быть может, так же нужно действовать и физикам – в разных ситуациях использовать разные формулировки, но при этом две разные формулировки должны находиться в согласии в той области, где обе они применимы. Полный набор разных формулировок может рассматриваться как полная единая теория, хотя она и не может быть выражена при помощи единого набора постулатов.
Но может ли и вправду существовать такая единая теория? Может, мы просто гонимся за миражом? По-видимому, есть три возможности.
1. Полная единая теория (или набор перекрывающих друг друга формулировок) действительно существует, и в один прекрасный день мы построим ее, если достаточно умны.
2. Безусловной единой теории Вселенной не существует, есть лишь бесконечная последовательность теорий, которые описывают Вселенную с возрастающей точностью.
3. Теории Вселенной вообще не существует: невозможно предсказать события точнее некоторого уровня, они случайны и произвольны.
Некоторые станут отстаивать третью точку зрения на тех основаниях, что наличие полного набора законов природы было бы посягательством на право Бога передумать и вмешаться в мировой ход событий. Это напоминает о старом парадоксе: может ли Бог создать камень, который сам не в силах поднять? Идея о том, что Бог может передумать, – пример ошибки в рассуждениях, на которую указывал еще блаженный Августин: нелогично представлять, что Бог существует во времени, ведь время – это всего лишь свойство созданной Богом Вселенной. Бог, вероятно, знал, что затевает, когда творил ее!
Появление квантовой механики помогло осознать, что события невозможно предсказать с абсолютной точностью, что всегда есть некоторая доля неопределенности. Если хотите, можете отнести эту случайность на счет божественного вмешательства, правда, очень странного: нет никаких оснований подозревать, что у него была хоть какая-то цель. Действительно, если бы такое вмешательство имело место, оно по определению не могло бы быть случайным. В наше время мы полностью исключили третью возможность, пересмотрев цели науки. И главная цель состоит в том, чтобы сформулировать законы, которые позволят предсказывать события с точностью, допускаемой принципом неопределенности.
Вторая возможность – бесконечная последовательность все более совершенных теорий – пребывает в согласии с имеющимся на данный момент опытом. Во многих случаях повышение чувствительности измерений или выполнение наблюдений нового типа приводило к открытию новых явлений, которые не могли быть предсказаны в рамках существующей теории, и для учета этих явлений приходилось создавать новую, более точную теорию. Поэтому неудивительно, если современные теории великого объединения окажутся ошибочными: они постулируют, что между энергией объединения электрослабого взаимодействия, составляющей около 100 ГэВ, и энергией великого объединения, равной примерно миллиону миллиардов [одному квадриллиону] ГэВ, ничего существенного не происходит. Вполне можно ожидать открытия нескольких новых структурных уровней, более фундаментальных, чем кварки и электроны, которые мы сейчас принимаем за «элементарные» частицы.
Но похоже, что гравитация устанавливает предел этой череде «матрешек». Если бы существовала частица с энергией больше так называемой планковской энергии – 10 миллионов миллионов миллионов (единица с девятнадцатью нулями) ГэВ, то ее масса оказалась бы настолько концентрированной, что частица эта отрезала бы себя от остальной Вселенной, образовав микроскопическую черную дыру. Так что, по-видимому, у последовательности все более совершенных теорий должен быть предел, и мы подойдем к нему, исследуя взаимодействия на все более высоких энергиях. А следовательно, некоторая окончательная теория Вселенной должна существовать. Конечно, энергии около сотни ГэВ (тот максимум, который мы можем обеспечить в современных лабораторных экспериментах) далеко отстоят от планковской энергии. Ускорители частиц не позволят преодолеть эту пропасть в обозримом будущем! Между тем события с такими энергиями разворачивались на самых ранних этапах эволюции Вселенной. Думаю, есть все основания надеяться, что исследования ранней Вселенной в совокупности с требованиями математической непротиворечивости позволят создать полную единую теорию еще при жизни некоторых из наших современников. Конечно, если мы не уничтожим себя до того!
Что может означать создание окончательной теории Вселенной? Как мы уже выяснили в первой главе, мы никогда не сможем окончательно убедиться в правильности наших построений, поскольку нельзя получить доказательств. Но если теория непротиворечива с точки зрения математики и все ее предсказания согласуются с наблюдениями, то можно считать ее правильной с некоторой уверенностью. Это ознаменует конец долгой и славной эпохи в истории человечества, отмеченной отчаянными попытками умом объять Вселенную. Создание такой теории также коренным образом изменит представления обычных людей о законах, которые управляют космосом. Во времена Ньютона образованный человек мог получить представление обо всем объеме человеческих знаний, во всяком случае, в общих чертах. Но с тех пор прогресс науки ускорился настолько, что это стало невозможным. Теории постоянно корректируют, чтобы «совместить» их с результатами наблюдений, и поэтому ученые не успевают переосмыслить и упростить новые соображения, чтобы они стали понятными для обычных людей. Нужно быть специалистом, но даже и он может в полной мере осознать лишь небольшую часть научных теорий. К тому же наука развивается столь стремительно, что полученные в школе и университете знания довольно быстро устаревают. Немногие способны поспевать за удаляющимся передним краем познания, а потому большинству ученых приходится посвящать все свое время исследованиям в небольшой научной области. Все прочие имеют очень невнятное представление об их достижениях и том трепете, который они вызывают. С другой стороны, если верить Эддингтону, 70 лет назад лишь два человека понимали общую теорию относительности. Теперь она доступна десяткам тысяч выпускников университетов, и миллионы людей могут сказать, что по крайней мере знакомы с ней. Если полная единая теория будет построена, то ее упрощенное, популярное изложение, которое включат – хотя бы в общих чертах – в школьную программу – это всего лишь вопрос времени. И тогда мы все сможем судить о законах, управляющих Вселенной и ответственных за само наше существование.
Но даже если полная единая теория будет создана, это не значит, что мы в целом сможем предсказывать события. Причин на то две. Во-первых, это ограничения, которые накладывает квантово-механический принцип неопределенности на нашу способность предсказывать. Обойти его невозможно. Но на практике первое ограничение даже не такое сильное, как второе: мы, скорее всего, не сможем получить точные результаты для уравнений единой теории, за исключением самых простых случаев. (Мы не в состоянии даже выполнить точный расчет движения трех тел в ньютоновской теории тяготения, и сложность задачи растет с увеличением числа задействованных тел и сложности теории.) Мы уже знаем законы, которые управляют поведением вещества во всех условиях, кроме экстремальных. В частности, мы знаем фундаментальные законы, лежащие в основе химии и биологии. И при этом мы пока не можем считать все проблемы в этих областях науки решенными: у нас не очень-то получается предсказывать человеческое поведение на основании математических уравнений! А потому, даже если мы и выведем все фундаментальные законы, потребуется много лет, чтобы справиться с труднейшей интеллектуальной задачей – разработать более совершенные методы аппроксимации, которые позволят делать эффективные предсказания вероятных исходов в сложных реальных ситуациях. Полная непротиворечивая единая теория – это всего лишь первый шаг. Наша цель – полное понимание мира вокруг нас и нашего собственного существования.
Назад: Глава десятая. Кротовые норы и путешествия во времени
Дальше: Глава двенадцатая. Заключение