Книга: Сейчас. Физика времени
Назад: Приложение 1 Математика относительности
Дальше: Приложение 3 Доказательство иррациональности √2

Приложение 2
Время и энергия

Самое завораживающее, точное и (для физика) практичное определение энергии оказывается в то же время и самым абстрактным – слишком абстрактным даже для того, чтобы говорить о нем в первые несколько лет обучения университетской физике. Оно основано на наблюдении, что истинные уравнения, такие как E = mc², завтра будут не менее истинными, чем сегодня. Это гипотеза, которую большинство людей принимает на веру как нечто само собой разумеющееся, хотя кое-кто не прекращает ее тестировать. Если вдруг обнаружится какое-то отклонение, это станет одним из самых глубоких и важных открытий в истории науки.
На физическом жаргоне то, что уравнения не меняются, называется инвариантностью во времени (временной инвариантностью, то есть неизменностью). Это не означает, что в физике ничего не меняется; если объект движется, его положение в пространстве изменяется со временем, его скорость изменяется со временем, вообще, множество вещей в физическом мире меняется со временем – но только не уравнения, которые описывают это движение. В следующем году мы вновь будем рассказывать студентам, что E = mc², потому что это по-прежнему будет правдой.
Свойство временной инвариантности кажется тривиальным, но его математическое выражение может привести к поразительному выводу – доказательству того, что энергия сохраняется. Это доказательство обнаружила Эмми Нётер. Как и Эйнштейн, она бежала из нацистской Германии и поселилась в США.
Следуя описанной Нётер процедуре и начав с уравнений физики, мы всегда можем найти такую комбинацию параметров (координата, скорость и т. п.), которая не будет изменяться со временем. Когда мы применяем этот метод в простых случаях (в классической физике с силой, массой и ускорением), величиной, которая не меняется со временем, оказывается сумма кинетической и потенциальной энергии – иными словами, классическая (полная) энергия системы.
Вот это открытие. Мы и так знаем, что энергия сохраняется.
Но теперь получаем интереснейшую философскую связь. Вот и причина, по которой сохраняется энергия: все дело во временной инвариантности!
Есть и еще более значительный результат: такая процедура работает даже тогда, когда мы применяем этот метод к гораздо более сложным уравнениям современной физики. Представьте следующий вопрос: что, собственно, сохраняется в теории относительности? Энергия или энергия плюс энергия, заключенная в массе? Или еще что-нибудь? А как насчет химической энергии? Или потенциальной? Как рассчитать энергию электрического поля? Что по поводу квантовых полей, тех, к примеру, что сдерживают ядро атома? Их тоже включать? Вопрос за вопросом, и ни на один нет интуитивно понятного ответа.
Сегодня, когда возникают подобные вопросы, физики прибегают к открытому Нётер методу и получают однозначный ответ. Примените этот метод к релятивистским уравнениям движения Эйнштейна, и получите новую энергию, в которую войдет и энергия массы, mc². Применяя метод Нётер к квантовой физике, получите слагаемые, описывающие квантовую энергию.
Значит ли это, что «старая энергия» не сохранялась? Да, значит; если мы доработали уравнения, то, оказывается, не только частицы движутся иначе, чем предсказывалось ранее, но и вещи, которые, как мы считали, сохраняются, на самом деле не сохраняются. Классическая энергия больше не константа; мы должны включить в нее энергию, скрытую в массе, – и энергию квантовых полей. По традиции «энергией» системы называем сохраняемую величину. Так что, хотя сама энергия и не меняется со временем, меняется ее определение, поскольку мы продолжаем копать и открываем все более глубокие уравнения физики.
Подумайте вот о чем: правда ли те же самые физические уравнения, что работают в Нью-Йорке, действительны и в Беркли? Конечно. На самом деле такое наблюдение нетривиально; у него чрезвычайно важные следствия. Мы говорим, что уравнения не зависят от местоположения. Разными могут быть массы или электрические токи – но это все переменные параметры. Ключевой вопрос в том, различаются ли в разных географически местах уравнения, которые описывают физику поведения объектов и полей.
Уравнения, с которыми мы сегодня имеем дело в физике, – те, что входят в стандартную науку и экспериментально проверены, – работают всюду. Кое-кто считает это настолько поразительным, что тратит жизнь на поиск исключений из этого правила. Такие люди вглядываются в очень далекие объекты, как отдаленные галактики или квазары, и надеются увидеть, что там законы физики чуть-чуть отличаются от наших. До сих пор не удалось найти ничего подобного.
А теперь о замечательном следствии. Та же самая математика Нётер, что работает с уравнениями, не изменяющимися со временем, действительна также и для уравнений, которые не изменяются с местоположением. Воспользовавшись методом Нётер, мы можем найти комбинацию параметров (массы, координат, скорости, силы), которая и с переменой локации остается прежней. Применив эту процедуру к классической физике Ньютона, мы получим величину, равную произведению массы на скорость, – то есть классический импульс. Мы знаем, что импульс сохраняется, а теперь знаем также, почему сохраняется. Дело в том, что уравнения физики инвариантны относительно положения в пространстве.
Той же процедурой можно воспользоваться в теории относительности и квантовой физике, а также в их комбинации, известной как релятивистская квантовая механика. Комбинация, которая не меняется со временем, здесь выглядит немного иначе, но мы все равно называем ее импульсом. Она содержит релятивистские члены – а также электрическое и магнитное поля и квантовые эффекты, – но по традиции мы продолжаем называть ее импульсом.
Тесная связь между временем и энергией переносится и в квантовую физику с ее принципом неопределенности. Согласно квантовой физике, энергия и импульс части системы обычно неопределенные, хотя мы и можем их определить. Вероятно, нет возможности точно измерить энергию конкретного электрона или протона, но принцип не предусматривает аналогичной неопределенности для полной энергии системы. В большом наборе частиц энергия может перемещаться между различными частями системы, но полная ее энергия фиксирована; она сохраняется.
В квантовой физике поведение волновой функции во времени имеет слагаемое eiEt, где I = √−1, E – энергия, t – время. Когда Дирак решил свое уравнение для электрона, обнаружил, что в нем содержатся отрицательные энергии; именно это вынудило его предположить, что Вселенная представляет собой бесконечное море электронов с отрицательной энергией. Фейнман нашел этому другую интерпретацию. Он предположил, что отрицательной величиной оказывается не энергия E, а время t, тоже присутствующее в качестве сомножителя. Вместо отрицательной энергии у него появились электроны, движущиеся назад во времени, и Фейнман опознал в них позитроны.
В теории относительности физики видят пространство и время тесно переплетенными, а их комбинация носит название пространство-время. Инвариантность физики во времени ведет к сохранению энергии системы. Инвариантность в пространстве ведет к сохранению импульса. Если совместить то и другое, то инвариантность физики в пространстве-времени ведет к сохранению величины, известной как энергия-импульс. Ученые рассматривают энергию и импульс как два аспекта одного и того же. С этой точки зрения они скажут, что энергия – четвертый компонент четырехмерного вектора энергии-импульса. Если три компонента импульса обозначить как px, py и pz, то вектор энергии-импульса будет выглядеть как (px, py, pz, E). Разные физики расставляют эти четыре компонента в разном порядке. Некоторые считают энергию настолько важной, что ставят ее на первое место. Тогда они называют энергию нулевым, а не четвертым компонентом вектора: (E, px, py, pz).
Электрическое и магнитное поля тоже объединены в теории относительности, но более сложным способом. Вместо трехмерного вектора электрического поля (Ex, Ey, Ez) и трехмерного вектора магнитного поля, обычно записываемого (Bx, By, Bz), в теории относительности они становятся компонентами четырехмерного тензора F (от field – поле), который записывается так:

 

 

Матрица кажется сложной, и каждый компонент в ней повторяется дважды, но у нее есть преимущество: чтобы получить новый тензор F в другой системе отсчета, мы пользуемся теми же релятивистскими уравнениями, которые применяли при поиске пространственных координат и времени. Кроме того, вместо включения в наши уравнения отдельно электрического и магнитного полей просто включаем туда F. Уравнения при этом выглядят проще. Это позволило объединить электрическое и магнитное поля – то есть сделать их как бы частями одного более крупного объекта, тензора поля, а не двух отдельных сущностей.
Назад: Приложение 1 Математика относительности
Дальше: Приложение 3 Доказательство иррациональности √2

Игорь Леонидович Новожилов
Господь Бог Всемогущий молитвами Святого Вонифатия и Приснодевы Марии, Афонской Отроковицы Божественной и Святого Панелиимона, избавь от психических болезней население планеты сей, старанием Всех Архистратигов Божиих ходатайством Всех Ангелов Божиих, работой трудной Всех Безсеребрянников Божиих. Аминь.
Евгений
Перезвоните мне пожалуйста 8 (962) 685-78-93,для связи со мной нажмите цифру 2, Евгений.
Антон
Перезвоните мне пожалуйста 8 (962) 685-78-93 Антон.