Книга: Кому нужна математика? Понятная книга о том, как устроен цифровой мир
Назад: Приложения к главе 4
Дальше: Приложения к главе 6

Приложение к главе 5

Анализ метода выбора из двух

Допустим, у нас n серверов. Заявки (или задания) поступают с интенсивностью λn в единицу времени, и каждый сервер в среднем обрабатывает одно задание в единицу времени, то есть загрузка системы равна λ < 1 (если λ ≥1, то система перегружена, очередь будет расти до бесконечности). Рассмотрим случай, когда n очень велико и стремится к бесконечности.
Обозначим через fk долю серверов, у которых ровно k заявок (заявка, которая находится на обслуживании в данный момент, тоже учитывается). Обозначим через uk долю серверов, у которых заявок k или больше. Значения uk можно легко получить через fk и наоборот:

 

 

Понятно, что u0 = 1.
Представим, что система находится в равновесии. Тогда у нас в среднем

 

 

серверов, на которых ровно k заданий. Все эти серверы обрабатывают задания со скоростью одно задание в единицу времени. Другими словами, количество серверов с k заявками или больше уменьшается на n(ukuk+1) в единицу времени.
Теперь давайте посмотрим, на сколько количество серверов с k заявками или больше увеличивается в единицу времени. Чтобы увеличить число таких серверов, заявки должны поступать на серверы, у которых в данный момент k − 1 заявка. При методе выбора из двух вероятность того, что новое задание попадет на сервер с k или больше заявками, равна

 

 

потому что в этом случае оба случайно и независимо выбранных сервера должны иметь k или больше заявок, и для каждого из двух серверов эта вероятность иk. Значит, вероятность того, что новая заявка поступит на сервер, у которого ровно k − 1 заявка, равна

 

 

Поскольку заявок в единицу времени поступает λп, то получается, что число серверов с k или больше заявками в единицу времени в среднем увеличивается на

 

 

Так как система находится в равновесии, число серверов с k или больше заявками должно оставаться неизменным, то есть (П.9) равняется (П.11). Отсюда получаем уравнение баланса:

 

 

Результат, приведенный в работе, говорит, что при определенных общепринятых предположениях о законе поступления заданий и времени их выполнения, в пределе для бесконечного количества серверов, уравнение (П.12) действительно описывает равновесное состояние системы. Это достаточно сложный технический результат. Нетрудно проверить или даже догадаться, что решение уравнения (П.12) задается формулами:

 

 

Это так называемый двойной экспоненциальный закон. Двойка в формуле, та самая двойка – вторая степень – из выражения (П.10). Точно так же мы могли бы выбирать не из двух, а из r серверов и получили бы

 

 

Интересно заметить, что при тех же предположениях, но случайном выборе одного сервера, изменятся выражения (П.10) и, соответственно, (П.11). Действительно, на этот раз заявка выбирает только один сервер и вероятность попасть на сервер с k или больше заявками равна просто иk. Тогда вместо (П.12) получаем классическое уравнение баланса:

 

 

решение которого задается известной формулой Эрланга:

 

 

Очевидно, что иk в формуле (П.13) убывает гораздо быстрее.
Именно эти формулы мы использовали в . В нашем случае λ = 0,9, и в таблице мы привели значения fk. В первой колонке – значения k, во второй – значения fk, подсчитанные по формуле (П.14), в третьей – значения fk, подсчитанные по формуле (П.13).
Назад: Приложения к главе 4
Дальше: Приложения к главе 6