2.2. Оптимизационное пространство дельта-нейтральной стратегии
Форма и свойства оптимизационного пространства зависят от многих факторов, большинство из которых было названо в предыдущем разделе. Бесспорно, форма оптимизационного пространства специфична для разных опционных стратегий. Каждая стратегия имеет свой уникальный набор параметров, области их допустимых значений и шаг оптимизации. Поэтому совершенно естественно, что разные стратегии будут иметь весьма различные оптимизационные пространства. Однако даже в тех случаях, когда параметры, области допустимых значений и шаг являются одинаковыми для двух разных стратегий (например, такая ситуация вполне реальна для дельта-нейтральной и частично-направленной стратегий), их оптимизационные пространства могут быть (и в большинстве случаев бывают) очень разными.
В этой главе мы ставим себе целью рассмотреть форму и свойства некоего типичного пространства, взяв в качестве примера базовую дельта-нейтральную стратегию. Два основных параметра этой стратегии (которые широко обсуждались в главе 1) зафиксируем на следующих значениях: порог критерия > 1 %, диапазон страйков 10 %. В предыдущей главе мы уже частично касались темы оптимизации, когда обсуждали эти параметры. Однако в разделе 1.6 мы находили оптимальные значения, полагаясь по большей части на научный подход, а не используя технические приемы оптимизации, которым посвящена эта глава.
Далее мы будем рассматривать оптимизационное пространство, соответствующее двум параметрам базовой дельта-нейтральной стратегии: «количество дней до экспирации опционов» и «горизонт истории для расчета НV». Смысл первого из двух параметров уже частично обсуждался нами в главе 1. Значение этого параметра оказывает самое прямое воздействие на структуру формируемого портфеля. Второй параметр относится к длине исторического периода, используемого для расчета исторической волатильности. В свою очередь, историческая волатильность используется для расчета значений критерия «математическое ожидание прибыли на основе логнормального распределения», на основании которого генерируются сигналы на открытие торговых позиций. Несмотря на то что влияние данного параметра непрямое, он также является одним из самых важных в данной стратегии, поскольку от его значений в большой степени зависит, какие опционные комбинации войдут в состав портфеля.
2.2.1. Размерность оптимизации
Одним из основных факторов, определяющих форму оптимизационного пространства, является набор параметров. При определении этого набора, первый и один из главных вопросов, на которые должен ответить разработчик, – это количество параметров, требующих оптимизации. В принципе, необходимо придерживаться правила минимизации числа параметров. Для этого есть две основные причины. Во-первых, чем больше параметров участвует в оптимизации, тем больше степеней свободы имеет оптимизируемая система и тем больше риск оверфитинга. Во-вторых, большая размерность оптимизации требует чрезмерного количества вычислений, что может быть технически нереализуемо. С другой стороны, чрезмерное сокращение количества оптимизируемых параметров может не позволить найти удовлетворительное решение, в результате чего потенциально прибыльная торговая стратегия может быть отвергнута как бесперспективная. По этим соображениям при построении автоматизированных торговых стратегий обычно используют от двух до четырех параметров.
Одномерная оптимизация
Хотя задача одномерной оптимизации наиболее проста (и редко используется на практике), ее можно рассматривать как частный случай более сложной многомерной оптимизации. С ее помощью легче понять постановку задачи, методы решения и трудности, возникающие при исследовании сложных оптимизационных пространств. Алгоритмы решения многомерных задач часто сводятся к последовательному многократному решению одномерных задач и не могут быть поняты без умения их решать.
На рис. 2.2.1 показаны три примера одномерного оптимизационного пространства. Каждая линия на графике демонстрирует оптимизацию параметра «период истории для расчета HV» базовой стратегии для трех вариантов фиксированного значения второго параметра «число дней до экспирации опционов». Область допустимых значений для оптимизируемого параметра составляет диапазон от пяти до 300 дней, шаг оптимизации – пять дней. Полное оптимизационное пространство в этом случае состоит из 60 узлов. Данная оптимизация проводилась на исторических данных за 10-летний период. В качестве функции полезности используется показатель прибыли (среднее значение за весь период оптимизации). Ни одно из трех оптимизационных пространств, представленных на рис. 2.2.1, не является гладким. Это неудивительно, поскольку данный рисунок построен на реальных рыночных данных, а абсолютно гладкими могут быть только пространства, построенные с помощью аналитически заданных формул. Тем не менее неизбежный статистический «шум» не мешает рассмотреть основные паттерны, характерные для каждой из линий и классифицировать эти оптимизационные пространства в соответствии с их модальностью.
Каждая линия на рис. 2.2.1 иллюстрирует одну из трех основных форм оптимизационного пространства. Когда параметр «число дней до экспирации» был зафиксирован на значении «32 дня», оптимизационное пространство оказалось унимодальным. В этом случае целевая функция имеет единственный глобальный максимум, соответствующий значению «120 дней», оптимизируемого параметра «период истории для расчета HV». Локальные максимумы отсутствуют. Необходимо оговориться, что утверждение об отсутствии локальных максимумов и унимодальности данного оптимизационного пространства является в определенном смысле субъективным мнением. Поскольку данная линия не является гладкой, то в принципе можно утверждать, что локальные максимумы имеются, например, в точках «105 дней» (слева от глобального максимума) и «230 дней». Тем не менее, поскольку в масштабе всего пространства данные пики очень невелики, мы склонны относить их категории «статистического шума». При необходимости процесс определения модальности может быть формализован, что позволит избежать субъективных суждений.
Примером полимодального оптимизационного пространства может служить линия, полученная в том случае, когда параметр «число дней до экспирации» был зафиксирован на значении «108 дней». Глобальный максимум этой оптимизации приходится на значение «145 дней» параметра «период истории для расчета HV». В отличие от предыдущего примера целевая функция этого оптимизационного пространства имеет явно выраженный локальный максимум, приходящийся на «205 дней» параметра «период истории для расчета HV».
И, наконец, третья линия на рис. 2.2.1 является примером безмодального оптимизационного пространства. В том случае, когда сигналы на открытие торговых позиций генерировались только для краткосрочных опционов (параметр «число дней до экспирации» зафиксирован на значении «четыре дня»), целевая функция оказалась приблизительно нулевой почти для всего диапазона параметра «горизонт истории».
Поскольку в примерах, приведенных на рис. 2.2.1, целевая функция была исследована на всем диапазоне допустимых значений параметра (так называемый метод полного перебора), то выбор оптимального решения на первый взгляд кажется очевидным. Для унимодальной функции – это 120 дней, для полимодальной – 145 дней. Однако оптимальное решение не обязательно должно совпадать с глобальным или локальным экстремумом. Существует дополнительный, не менее важный критерий выбора оптимального решения – его робастность. Принимая во внимание понятие робастности, выбор 120 дней в качестве оптимального решения может оказаться не самым лучшим. Увеличение параметра (до 125, 130 и т. д.) ведет к достаточно резкому падению целевой функции. В то же время если в качестве оптимального решения выбрать 195 дней, то все соседние значения параметра (как в сторону увеличения, так и в сторону уменьшения) имеют достаточно высокие значения целевой функции. В данном примере глобальный максимум унимодальной функции полезности является более робастным оптимальным решением (он находится на более широком возвышении), чем глобальный максимум полимодальной функции (который расположен на достаточно узком пике).
Двумерная оптимизация
В дальнейшем мы будем рассматривать примеры, относящиеся к двумерной оптимизации. Будем использовать те же два параметра, что и в предыдущем примере: период истории для расчета HV (параметр, который оптимизировали в предыдущем примере) и количество дней до экспирации опционов (значения этого параметра были зафиксированы). Для первого параметра область допустимых значений находится в диапазоне от пяти до 300 дней, шаг оптимизации – пять дней. Для количества дней до экспирации диапазон значений составляет от двух до 120 дней, шаг оптимизации – два дня. Таким образом, полное оптимизационное пространство состоит из 3600 узлов (60 × 60).
На рис. 2.2.2 показано двумерное оптимизационное пространство целевой функции «средняя прибыль». Одномерные пространства, обсуждавшиеся ранее, представляют собой три частных случая этого двумерного пространства. Поскольку рис. 2.2.2 представляет собой топографическую карту, то вертикальные разрезы, проведенные по значениям 4, 32 и 108 параметра «число дней до экспирации», совпадают с профилями одномерных пространств, показанных на рис. 2.2.1. Несомненно, двумерное оптимизационное пространство позволяет получить лучшее представление о целевой функции и обо всей торговой стратегии в целом.
Глобальный максимум оптимизационного пространства, представленного на рис. 2.2.2, имеет координаты 30 по горизонтальной оси и 105 по вертикальной. Это означает, что средняя прибыль (то есть целевая функция) достигает своего максимума в том случае, когда позиции открываются, используя опционы, до истечения которых остается 30 дней, а историческая волатильность, используемая для расчета критерия, оценивается на историческом периоде длиной 105 дней. Данный глобальный максимум расположен на вершине небольшого «хребта», протянувшегося вдоль 30-й вертикали (параметр «число дней до экспирации») в диапазоне от 80 до 125 (параметр «горизонт истории для расчета IV»).
Данный хребет можно рассматривать, как оптимальную область, поскольку все узлы, расположенные в пределах этой зоны, имеют высокое значение целевой функции (> 6 %). Сама оптимальная область также окружена достаточно широкой областью, состоящей из узлов с относительно высокими значениями целевой функции. Поэтому найденное оптимальное решение можно в принципе считать робастным. Однако следует оговориться, что робастность оптимального решения неодинакова по двум параметрам. Изменения значений параметра «период истории для расчета HV» в пределах оптимальной зоны и вокруг нее приводят к меньшим изменениям целевой функции, чем изменения параметра «число дней до экспирации» (при отступлении от оптимального значения этого параметра [30 дней] в большую или меньшую сторону происходит резкое снижение целевой функции). Следовательно, робастность первому параметру выше робастности по второму.
Рассматриваемое оптимизационное пространство можно условно считать унимодальным. Это утверждение основывается на том, что оптимальная область возвышается достаточно высоко над остальной поверхностью (в случае двумерной оптимизации пространство можно называть поверхностью). Вместе с тем, поскольку данная поверхность не является гладкой, утверждение об унимодальности можно вполне оспорить. Помимо оптимальной области, данная поверхность содержит еще множество участков, в которых значение целевой функции не просто положительно, а колеблется в пределах довольно неплохого диапазона (2–4 %). По этой причине данную поверхность можно в принципе считать полимодальной. Хотя вопрос классификации не является для нас первостепенным, сам факт наличия локальных максимумов заставляет задуматься о том, что глобальный максимум может оказаться не самым лучшим решением. Если какой-нибудь локальный максимум имеет значение целевой функции, не слишком уступающее глобальному максимуму, но при этом его робастность существенно выше робастности глобального максимума, то вполне может оказаться, что наилучшим решением будет выбрать такой локальный максимум в качестве оптимального решения. Сделать объективный выбор можно, только применив какую-нибудь количественную методику, чему будет посвящен раздел 2.5.
Для того чтобы получить полное представление о форме и свойствах оптимизационного пространства, показанного на рис. 2.2.2, необходимо было вычислить значения целевой функции во всех 3600 узлах. Поскольку данная оптимизация рассчитывалась на 10-летней базе данных (как и все прочие оптимизации, рассматриваемые в этой главе), расчет одного узла занял порядка одной минуты. Соответственно, расчеты для всего оптимизационного пространства заняли порядка 60 часов. Для нашего исследования это вполне приемлемо, но для оперативной практической работы такие большие временные затраты не всегда допустимы. Особенно если учесть, что в реальности может быть больше двух параметров, и каждый параметр может иметь больше 60 значений в своем диапазоне. Кроме того, 3600 – это число узлов, которые необходимо вычислить только для одной целевой функции, а их обычно бывает больше (около трех-четырех). Поэтому на практике в большинстве случаев невозможно вычислить все оптимизационное пространство. Вместо этого приходится применять методы целенаправленного поиска оптимального решения (этому вопросу посвящен раздел 2.7).
2.2.2. Область допустимых значений параметров
В этом разделе мы рассмотрим, каким образом диапазон допустимых значений параметра влияет на форму оптимизационного пространства и на поиск оптимального решения. Начнем с того, что для каждого из двух параметров сократим вдвое диапазоны значений (относительно диапазонов, использовавшихся в предыдущем разделе). Для параметра «период истории для расчета HV» верхняя граница нового диапазона составит 150 дней, для параметра «количество дней до экспирации опционов» – 60 дней. Эти ограничения приведут к сжатию объема оптимизационного пространства в четыре раза. (В случае трехмерной оптимизации сокращение диапазона значений в два раза привело бы к восьмикратному сжатию объема.) В этом состоит положительный эффект такого сокращения диапазонов, поскольку теперь для построения полного пространства потребуется произвести 900 вместо 3600 вычислений.
На левом графике рис. 2.2.3 показано оптимизационное пространство, построенное для новых диапазонов допустимых значений. Сравнение этого уменьшенного пространства с более обширным вариантом (рис. 2.2.2) убеждает в том, что область глобального максимума не была потеряна в результате введения более жестких ограничений на диапазон допустимых значений параметров. Теперь эта область находится почти в центре пространства. Кроме того, за рамками нового оптимизационного пространства осталась большая часть области низких значений целевой функции. Это означает, что доля области оптимальных значений относительно общего объема оптимизационного пространства существенно возросла. Следовательно, вероятность нахождения глобального максимума в процессе поиска оптимального решения (используя методы, не требующие полного перебора) также повысилась. Однако, выбирая область допустимых значений, следует исходить из того, что мы не знаем, как выглядит полное оптимизационное пространство. Поэтому, сокращая диапазон допустимых значений, мы можем исключить из рассмотрения хорошую область, содержащую наилучшее решение.
Кроме того, диапазон допустимых значений не должен обязательно начинаться с наименьших возможных значений параметра, как это было сделано в предыдущих примерах (рис. 2.2.2 и 2.2.3, левый график). Допустим, что разработчик создает стратегию, работающую с более долгосрочными опционами. В этом случае он может задать нижнюю границу на диапазон допустимых значений параметра «число дней до экспирации». Допустим – это будет 60 дней (пусть верхняя граница остается без изменений). Изменение в диапазоне этого параметра потребует внесения изменений и в диапазон второго параметра, поскольку при торговле долгосрочными опционами неразумно оценивать их с помощью критерия, рассчитываемого на основании волатильности, оцененной на более коротком периоде, чем период обращения самих опционов. Следовательно, диапазон значений параметра «период истории для расчета HV» должен быть также ограничен снизу 60 днями (для того чтобы количество значений каждого параметра в пределах допустимого диапазона было одинаковым, верхнюю границу ограничим значением 210).
Рассмотрим оптимизационную поверхность, полученную для новых диапазонов допустимых значений параметров (правый график рис. 2.2.3). Совершенно очевидно, что в этом случае результаты оптимизации будут другими. Глобальный максимум теперь имеет другие координаты – 106 по горизонтальной оси и 145 по вертикальной. В том случае, когда рассматривалось более широкое пространство, этот узел являлся локальным максимумом. Теперь же, когда более высокий экстремум остался за рамками рассмотрения, локальный максимум превратился в глобальный. Значение целевой функции в этом узле составляет 4,1 % (ниже глобального максимума более широкого пространства, 7,1 %).
Таким образом, можно сделать вывод, что диапазон значений параметров влияет на форму оптимизационного пространства и в значительной степени определяет выбор окончательного оптимального решения. В целом, чем больше область допустимых значений параметров, тем больше шанс, что максимум целевой функции попадет в исследуемое оптимизационное пространство. Однако при этом уменьшается шанс найти этот максимум в процессе оптимизации, поскольку, во-первых, возникает необходимость проверять большее количество узлов и, во-вторых, из-за сложности поверхности возрастает риск «застрять» на локальных максимумах.
2.2.3. Шаг оптимизации
Шаг оптимизации не оказывает определяющего влияния на общую форму оптимизационного пространства, однако он влияет самым прямым образом на глубину его проработки. Чем шире шаг, тем больше деталей рельефа оптимизационного пространства может быть упущено в процессе оптимизации. Например, из-за слишком широкого шага оптимизации можно вовсе не обнаружить узкий пик функции полезности. Следовательно, при увеличении шага объем информации о целевой функции уменьшается.
Для рассматривавшейся ранее оптимизационной поверхности (рис. 2.2.2) использовался шаг два дня (для параметра «число дней до экспирации») и пять дней (для параметра «период истории для расчета HV»). Теперь мы увеличим эти значения – до четырех и 10 дней соответственно – и посмотрим какой эффект это окажет на информативность пространства. Левый график рис. 2.2.4 демонстрирует поверхность, полученную в результате увеличения шага. Сравнивая эту поверхность с рис. 2.2.2, мы видим, что, несмотря на уменьшение деталей, область глобального максимума сохранилась. Ранее узел глобального максимума имел координаты 30 по горизонтальной оси и 105 по вертикальной, теперь глобальный максимум имеет координаты 30 и 100. Хотя узел, имевший самое высокое значение целевой функции (7,1 %) исчез, его место в качестве глобального максимума занял соседний узел, целевая функция которого имеет весьма близкое значение (7 %).
Продолжим процедуру укрупнения шага, увеличив его значения до шести дней для параметра «число дней до экспирации» и 15 дней для параметра «период истории для расчета HV». Количество деталей рельефа уменьшилось еще больше (правый график рис. 2.2.4). Кроме того, полностью исчезла прежняя оптимальная область, располагавшаяся ранее вдоль 30-й вертикали и содержавшая узел глобального максимума. Новый глобальный максимум теперь имеет координаты 32 и 125, а значение новой целевой функция деградирует до 5,5 %. Отсюда следует вывод, что по мере укрупнения шага оптимизации происходит ухудшение находимых оптимальных решений.
Вместе с тем увеличение шага оптимизации имеет и свои плюсы. Несмотря на сдвиг в координатах глобального максимума и ухудшение находимых решений, новая оптимальная область по-прежнему остается приблизительно в том же районе оптимизационного пространства, что и при более детальной проработке. При этом само пространство получается более гладким. Преимущество сглаживания заключается в том, что большинство незначительных локальных экстремумов исчезает из оптимизационного пространства. В результате уменьшается вероятность того, что процесс оптимизации (использующий более экономные способы поиска оптимального решения, чем метод полного перебора) остановится на локальном максимуме.
Следовательно, увеличение шага оптимизации, с одной стороны, уменьшает шанс того, что максимум целевой функции, попадет в исследуемое оптимизационное пространство, но, с другой стороны, снижает количество вычислений и повышает эффективность поиска за счет устранения незначительных локальных экстремумов.