Книга: Максимум. Как достичь личного совершенства с помощью современных научных открытий
Назад: 1 Целенаправленная практика и ее возможности
Дальше: 3 Мысленные образы

2
Адаптивность и как ее обуздать

Бодибилдерам или обычным любителям спорта несложно понять, добились ли они успеха в своих тренировках и нарастили ли они бицепсы, трицепсы, квадрицепсы, грудные мышцы и т. д. Можно измерить их сантиметром, а можно просто взглянуть в зеркало. Бегуны, пловцы или велосипедисты отслеживают прогресс, измеряя сердечный ритм, следя за дыханием и оценивая промежуток времени, после которого в мышцах начинает выделяться молочная кислота.
Задача становится гораздо труднее, если вы пытаетесь развить нефизические навыки – например математические, музыкальные или лингвистические. Проследить изменения, которые происходят в мозге с течением времени, очень сложно из-за его способности к адаптации. В отличие от мышц, мозг после особенно напряженного дня занятий не ломит от усталости, и вам не приходится покупать новую кепку, потому что голова у вас выросла и старая стала мала. Человек не видит изменений, происходящих в его мозге, и потому склонен считать, что их практически не бывает.
Конечно, это не так. Многочисленные исследования доказали, что умственные упражнения меняют структуру и функциональность мозга, совсем как физические тренировки изменяют объем мышц или работу сердечно-сосудистой системы. Благодаря таким технологиям, как МРТ (магнитно-резонансная томография), ученые могут понять, чем мозг человека с определенным набором навыков отличается от человека без таких навыков и какие изменения в мозге вызывают определенные виды упражнений. Эта область все еще остается малоизученной, однако нам уже известно, как целенаправленное и осознанное развитие помогает увеличить физические и интеллектуальные возможности и способствует появлению новых навыков.
Многое из того, что сегодня известно об адаптивности организма, мы узнали благодаря исследованиям, проведенным с участием бегунов, тяжелоатлетов и других спортсменов. Как ни странно, в наиболее интересных исследованиях реакции мозга на продолжительные тренировки участвовали не музыканты, шахматисты или математики, а водители такси.
Как устроен мозг лондонских таксистов
На свете есть мало столь же запутанных городов, как Лондон. В нем нет упорядоченной решетчатой системы автодорог, как в Манхэттене, Париже или Токио. Вместо этого главные улицы города примыкают друг к другу под разнообразными углами, извиваются и изгибаются. Тут полно односторонних переулков, круговых развязок и тупиков, а посередине город и вовсе разрезает пополам Темза с дюжиной мостов в одном только центре. Куда бы в Лондоне вы ни направлялись, по пути вам наверняка придется пересечь как минимум один мост. Нумерация домов тоже не отличается логичностью, и даже если вы сумели отыскать нужную улицу, то можете потратить еще полчаса, пытаясь найти на ней правильный дом.
Именно поэтому туристам горячо рекомендуют не арендовать машину с GPS-навигатором, а положиться на лондонских таксистов. По всему Лондону разъезжает более 25 000 черных такси: эти вместительные машины можно назвать автомобильным эквивалентом удобных и комфортных ботинок. Таксисты с невероятной скоростью могут доставить вас из пункта А в пункт Б, выбрав наиболее короткий маршрут. При этом они принимают во внимание не только расстояние, но и время дня, загруженность дорог, временные затруднения из-за ремонта или перекрытия улиц, а также множество других факторов. Мало того, пунктам А и Б вовсе не обязательно быть домами с полноценными адресами. Предположим, вам захотелось снова попасть в один симпатичный магазинчик со шляпами на Чаринг-кросс, название которого вы не помните – то ли «Лорд», то ли «Лир». Зато вы помните, что по соседству находилась небольшая пекарня, где продавали отличные кексы. Как ни удивительно, этой информации будет достаточно, чтобы лондонский таксист отвез вас к нужному месту – магазину «Лерд Лондон» на Нью-роу.
Очевидно, что при такой запутанной схеме города далеко не каждый может работать таксистом. Чтобы получить лицензию таксиста в Лондоне, водители должны сдать экзамены, которые многими считаются самыми сложными из всех, что придумало человечество. За проведение теста отвечает департамент транспорта Лондона, предлагающий следующее описание качеств, которыми должен обладать таксист города:
«Чтобы получить лицензию на работу и право называться лондонским таксистом, водитель должен досконально знать область в радиусе 6 миль от Чаринг-кросс, включая название и расположение всех улиц, микрорайонов, парков и площадей; государственных учреждений; офисных и бизнес-центров; посольств; административных зданий; регистрационных бюро; больниц; церквей; спортивных стадионов и развлекательных центров; офисов авиакомпаний; железнодорожных станций; отелей; клубов, театров и кинотеатров; музеев и художественных галерей; школ, колледжей и университетов; полицейских участков и Главного полицейского управления; гражданского, криминального и коронерского судов; тюрем; достопримечательностей. То есть любых мест, которые могут представлять интерес для пассажира».

 

Область в радиусе 6 миль от Чаринг-кросс включает примерно 25 000 улиц. Но потенциальному таксисту нужно знать не только улицы и здания, но и достопримечательности. В газете The New York Times в 2014 году была опубликована статья о лондонских таксистах, в которой один из них рассказал, что на экзамене его попросили указать местоположение памятника в виде двух мышей с кусочком сыра. Как выяснилось, памятник располагался на фасаде здания и размер его составлял всего 30 сантиметров.
И это еще не все. Помимо отличного знания города таксисты должны уметь проложить наиболее краткий и быстрый маршрут. Во время экзамена проводятся так называемые «заезды», когда экзаменатор называет испытуемому две точки в городе. В ответ водитель должен назвать точные адреса этих точек, проложить между ними наиболее быстрый маршрут и описать его, поворот за поворотом, перечисляя при этом все пересекаемые улицы. За каждый «заезд» дается определенное количество очков, и с каждым разом они становятся все сложнее и сложнее: места все менее известные, маршруты между ними – поистине головоломные. Половина водителей проваливает экзамен, зато получившие лицензии таксисты знают город лучше сервиса Google Карты.
Чтобы сдать экзамен, потенциальные таксисты на протяжении нескольких лет разъезжают по Лондону, делая пометки о том, что где находится и как туда добраться. Первый важный этап – освоить руководство для будущих таксистов, в котором представлено 320 «заездов». Как правило, сперва водители определяют наиболее быстрый маршрут, проезжая его на мотоцикле, а затем обходят районы возле начального и конечного пункта поездки, где-то в пределах радиуса в четверть мили. Во время таких прогулок они отмечают, какие здания и достопримечательности встречаются им на пути. Повторив этот процесс 320 раз, потенциальные таксисты нарабатывают своеобразную базу из 320 лучших маршрутов. К этому моменту они, как правило, уже хорошо знают область в радиусе 6 миль от Чаринг-кросс. Но успешные кандидаты на этом не останавливаются и продолжают выискивать наиболее быстрые маршруты для адресов, не указанных в руководстве, а также отмечать здания и достопримечательности, недавно появившиеся в городе. Даже сдав все экзамены и получив лицензию, лондонские таксисты продолжают совершенствовать свои умения ориентироваться в столице.
Удивительная память и отличные навыки навигации лондонских таксистов привели к тому, что ими заинтересовались многие ученые, в особенности психологи, изучающие процессы обучения (в частности обучения навигационным навыкам). Наиболее полное исследование лондонских таксистов, которое поможет нам понять, как упражнения влияют на мозг, было проведено Элеанор Макгвайр, нейробиологом из Университетского колледжа Лондона.
В одной из своих ранних работ, опубликованной в 2000 году, Макгвайр при помощи МРТ сравнила снимки мозга 16 таксистов-мужчин и 50 мужчин, занятых в других областях. В первую очередь Макгвайр интересовала область гиппокампа – части мозга, отвечающей в том числе за формирование воспоминаний. Гиппокамп активнее всего задействуется для определения мозгом положения в пространстве, а также когда человек пытается вспомнить, где находится тот или иной объект. (Собственно говоря, у человека даже два гиппокампа – по одному с каждой стороны мозга.) Например, у некоторых видов птиц, которые запасают корм в разных местах, гиппокамп гораздо больше, чем у тех птиц, которые этого не делают. При этом у некоторых видов птиц в зависимости от их опыта запасания и поиска пищи гиппокамп может увеличиваться до 30 % от первоначального размера. Но работает ли это так же у людей?
Во время своего исследования Макгвайр обнаружила, что задняя часть гиппокампа таксистов гораздо больше, чем у других участников эксперимента. При этом чем дольше человек работал таксистом, тем крупнее был задний гиппокамп. В другой работе, опубликованной несколько лет спустя, Макгвайр сравнила снимки мозга лондонских таксистов со снимками мозга лондонских водителей автобуса. Как и таксисты, водители автобусов весь день проводили в разъездах по Лондону, однако использовали при этом один и тот же маршрут и не имели возможности определить наилучший маршрут между пунктами А и Б. Макгвайр выяснила, что задний гиппокамп у таксистов значительно больше. Из этого следовал логичный вывод: разница в размере заднего гиппокампа связана не с навыком вождения, а с умением ориентироваться в пространстве – необходимым для таксистов навыком.
Правда, этому могло быть и другое объяснение: возможно, исследуемые таксисты от рождения обладали более крупным гиппокампом и оттого лучше ориентировались в городе. В таком случае получалось, что во время сложного экзаменационного процесса попросту отсеивались менее подходящие кандидаты и оставались только те, кто от природы обладал склонностью к ориентации в лабиринтах лондонских улиц.
Макгвайр подошла к решению этой проблемы очень просто: она начала изучать группу водителей, которые хотели стать таксистами. Она следила за кандидатами с того момента, как они приступили к подготовке к экзамену, и до тех пор, пока они не проваливали или успешно не сдавали его. В исследовании участвовали 79 водителей-мужчин, а также контрольная группа из 31 участника того же возраста. В начале исследования всем участникам сделали МРТ, которое не показало никаких различий в размере гиппокампа между контрольной группой и будущими таксистами.
Макгвайр вновь исследовала две группы спустя четыре года. За это время 41 участник получил лицензию таксиста, а 38 провалили экзамен или вовсе не стали его сдавать. Таким образом, испытуемые разделились на три группы: новоявленные таксисты, которые достаточно хорошо знали Лондон, чтобы сдать экзамен; провалившие экзамен участники, и мужчины из контрольной группы, никогда не готовившиеся к экзамену. Все участники в очередной раз прошли через МРТ, и затем Макгвайр определила размер заднего гиппокампа у каждого из них.
Результаты ее исследований никого не удивили бы, замеряй она размер бицепсов у бодибилдеров. Но тут речь шла о мозге, и научная общественность была поражена: у получивших лицензию водителей задний гиппокамп значительно увеличился. При этом у не сдавших экзамен участников и членов контрольной группы, вовсе не намеренных становиться таксистами, гиппокамп за четыре года не изменился. Годы досконального изучения Лондона привели к росту той части мозга, что отвечает за расчет маршрута из одной точки в другую.
Опубликованное в 2011 году исследование Макгвайр – самое яркое доказательство того, что человеческий мозг растет и изменяется от интенсивных занятий. Кроме того, ее работа ясно показывает, что дополнительные нейроны и другие ткани заднего гиппокампа ответственны за развитие навигационных навыков получивших лицензию таксистов. Задний гиппокамп среднего лондонского таксиста – нейронный эквивалент накачанных бицепсов и широких плеч профессиональных гимнастов. Они годами тренируются на кольцах, козле и брусьях, развивая именно те мышцы, что отвечают за выполнение упражнений на этих снарядах. Благодаря специфически развитой мускулатуре гимнасты могут выполнять упражнения, которые были им недоступны в начале их спортивной карьеры. Точно так же и таксисты «накачивают» свой гиппокамп. Разница лишь в том, что они имеют дело не с мышечными волокнами, а с тканями мозга.
Приручая адаптивность
Даже в конце XX века большинство ученых сочли бы результаты исследований Макгвайр невозможными. Господствовало мнение, что у взрослого человека мозг уже принципиально не меняется. Конечно, возможны мелкие изменения при появлении новых навыков, но и они объясняются лишь усилением или ослаблением определенных нейронных связей. Но в целом считалось, что структура мозга и его нейронных сетей на протяжении всей жизни остается неизменной. Эта идея никак не противоречила убеждению, что индивидуальные навыки «выдаются» каждому при рождении и определяются набором генов, а обучение лишь позволяет максимально использовать потенциал мозга. Многие сравнивали человеческий мозг с компьютером, а процесс обучения – с загрузкой на него файлов или установкой новых приложений: это позволяет делать что-то новое, но в целом потолок определяется количество байтов RAM-памяти или мощностью процессора.
Адаптивность человеческого тела заметить было всегда проще. Взять хотя бы отжимания. Если вы – мужчина от 20 до 30 лет в относительно неплохой форме, то скорее всего можете отжаться где-то 40–50 раз. Отжимаетесь 100 раз? Наверняка можете удивить этим друзей и выиграть несколько пари. Каков же мировой рекорд по отжиманиям? Наверное, скажете вы, 500 или, быть может, 1000 отжиманий? А вот и нет. В 1980 году Минору Йошида из Японии поставил мировой рекорд, отжавшись 10 507 раз без перерыва. После этого Книга рекордов Гиннесса перестала принимать заявки от людей, которые отжимались без перерыва. Вместо этого теперь учитывалось количество отжиманий в течение суток с обязательными перерывами. В 1993 году в этой категории был поставлен не побитый до сих пор рекорд: Чарльз Сервицио из США отжался 46 001 раз за 21 час и 21 минуту.
Другой хороший пример – подтягивания. Даже мужчины в хорошей спортивной форме редко могут подтянуться более 15 раз. Настоящие спортсмены – 40–50 раз. А Ян Кареш из Чехии в 2014 году за двенадцать часов подтянулся 4654 раза.
Короче говоря, человеческое тело может адаптироваться почти к чему угодно. Изменяются не только мышцы, но и легкие, сердце, система кровообращения и т. д. Возможно, и тут существует реальный потолок, но пока что никаких доказательств этому нет.
Благодаря исследованиям Макгвайр и других ученых теперь мы знаем, что и мозг способен подстраиваться под изменившиеся обстоятельства не хуже нашего тела.
Наиболее ранние исследования адаптивности мозга – или пластичности, как говорят нейробиологи, – проводились при изучении работы мозга слепых и глухих людей. После потери зрения или слуха мозг «перепрограммирует» себя так, чтобы его части, отвечавшие за эти чувства, не простаивали без дела. В основном слепые не видят из-за проблем непосредственно с глазами или зрительным нервом. Зрительная зона коры головного мозга при этом у них в полном порядке. Если бы наш мозг и впрямь был устроен как компьютер, зрительная зона слепого человека так и осталась бы незадействованной. Сегодня мы уже знаем, что мозг умеет перераспределять свои ресурсы так, чтобы задействовать неактивные зоны. Как правило, в случае слепых и глухих людей мозг «привязывает» неиспользуемые зоны к областям мозга, которые отвечают за другие органы чувств.
К примеру, для чтения слепые используют алфавит Брайля – то есть проводят пальцами по выпуклым точкам. Когда ученые исследовали при помощи МРТ слепых, то выяснили, что во время чтения у них задействуется именно зрительная кора мозга. У зрячих она активизируется при визуальном, а не тактильном получении информации. Зрительная кора помогает мозгу слепого человека интерпретировать тактильные ощущения от прикосновения к буквам алфавита Брайля.
Что интересно, мозг умеет перепрограммировать не только неиспользуемые области. Если вы регулярно занимаетесь каким-то делом, мозг «перебросит» нейроны в соответствующую зону, даже если у них уже есть другая работа. Самое впечатляющее доказательство этого феномена привели ученые, которые в конце 90-х годов провели интересный эксперимент – проследили, какие области мозга отвечают за разные пальцы на руках у высокообразованных слепых людей.
Испытуемые читали трехпальцевым методом: использовали указательный палец для определения точек, формирующих отдельные буквы, средний – для выявления пробелов между буквами и безымянный – для отслеживания места, где они читают.
Мозг зрячего человека устроен так, что за каждый палец отвечает строго определенная зона. Благодаря этому мы, например, можем понять, какой палец укололи, даже не глядя на него. В исследовании принимали участие слепые, которые обучали других чтению при помощи алфавита Брайля и по несколько часов в день проводили за чтением. Таким образом, они гораздо чаще активно использовали три пальца, что, как выяснили ученые, привело к активному расширению зон мозга, отвечающих за каждый из пальцев. Эти области разрослись настолько, что даже стали «заходить» друг на друга. В результате все испытуемые продемонстрировали не только исключительную чувствительность во всех трех пальцах – они чувствовали такие прикосновения, которых зрячие даже не замечали, – но и неумение точно сказать, к какому именно их пальцу прикоснулись.
Такие исследования пластичности мозга у слепых и глухих людей доказывают, что структура и функциональность мозга вовсе не так ригидны, как считалось раньше. Мозг меняется в зависимости от того, как мы его используем. Соответственно, при осознанных тренировках любой из нас может сделать мозг таким, как ему нужно.
Ученые только начали изучать способы использования таких свойств мозга. Пока что наиболее впечатляющих результатов они добились у людей, страдающих от возрастной дальнозоркости, свойственной почти всем после 50 лет. Совместное исследование американских и израильских нейробиологов и офтальмологов было опубликовано в 2012 году. Ученые изучали группу добровольцев среднего возраста, которые с трудом фокусировали взгляд на близко расположенных объектах. Такое отклонение называется пресбиопией, или старческой дальнозоркостью, и возникает из-за потери эластичности хрусталика глаза. В результате человеку становится сложнее разглядывать мелкие объекты. Также при пресбиопии размывается граница между светлыми и темными областями, что еще сильнее сказывается на способности фокусировать взгляд. Пресбиопия – благо для офтальмологов и фармацевтов всего мира и головная боль для людей старше 50, которые не могут читать без очков.
На протяжении трех месяцев участники исследования посещали лабораторию три раза в неделю и по 30 минут делали упражнения для глаз: пытались разглядеть небольшой объект, который по цвету практически совпадал с фоном. Чтобы заметить его, испытуемым приходилось прикладывать большие усилия и концентрироваться. Со временем все участники стали находить объекты на картинках быстрее и точнее. К концу эксперимента всем добровольцам вновь проверили зрение. В среднем за три месяца все они научились читать шрифт на 60 % меньше, чем до начала исследования. Кроме того, после эксперимента участники начали читать газеты без очков – то, что до этого было недоступно большинству из них. Выросла и скорость чтения.
Как ни странно, состояние непосредственно глаз при этом у них не улучшилось. Положительные изменения произошли за счет развития зоны мозга, интерпретирующей картинки, которые передают глаза. И хотя ученые так и не поняли, какие конкретно изменения произошли в мозгу, они склоняются к мнению, что мозг просто научился «фокусировать» изображение. Размытая картинка – результат сразу двух отклонений в работе глаз: невозможности видеть мелкие детали и различать контраст. Обе эти проблемы можно решить при помощи процессов распознавания изображений в мозге – совсем как графические редакторы компьютера или камеры могут «навести фокус» на картинке, усилив ее контрастность. Ученые считают, что трехмесячный курс упражнений помог мозгу лучше справляться с обработкой изображений, что и привело к улучшению зрения без влияния на состояние самих глаз.
Испытывая гомеостаз на прочность
Знаете, почему человеческий организм – и тело, и мозг, – в принципе отличаются большой пластичностью и адаптивностью? Забавно, но это объясняется тем, что отдельные клетки и ткани изо всех сил пытаются остаться такими, какие они есть, и ничуточки не меняться.
Человеческий организм стремится к стабильности. Он поддерживает внутри себя одну и ту же температуру, давление и скорость сердечного ритма, уровень глюкозы в крови и уровень pH (соотношение кислотности/щелочности), примерно один и тот же вес. Ни один из этих показателей нельзя назвать статичным – пульс растет от упражнений, вес меняется от переедания или диет, – но в целом все эти изменения временные и в конце концов организм возвращается в исходное состояние. В науке это явление называется гомеостазом, то есть стремлением системы (любой, но в основном живой) к равновесию.
Отдельные клетки тоже предпочитают стабильность. Они стараются поддерживать один и тот же уровень жидкости, а также баланс положительных и отрицательных ионов, в частности ионов натрия и калия, и различных молекул, и делают это, определяя, какие ионы и молекулы должны остаться в клетке, а какие – покинуть ее сквозь мембрану. И вот что также важно: для продуктивной работы клеткам нужна стабильность. Если окружающие клетку ткани становятся слишком горячими или холодными, меняется водный баланс или падает уровень кислорода, это сразу снижает функциональность клетки. Слишком радикальные или продолжительные изменения приводят к гибели клетки.
Поэтому в человеческом организме предусмотрены разные механизмы для поддержания состояния равновесия. Предположим, вы с энтузиазмом приступили к какому-нибудь занятию, требующему больших физических усилий. Сокращение мышечных волокон приведет к тому, что отдельные мышечные клетки станут требовать больше энергии и кислорода, источником которых является кровь, транспортируемая по сосудам. В результате упадет уровень кислорода и энергии в кровеносной системе, на что соответственно отреагирует организм: вырастет частота дыхания (для восполнения нехватки кислорода) и из разных источников будет выделена энергия для мышц, которая направится к ним по кровеносной системе. Вместе с этим вырастет и скорость кровообращения – чтобы быстрее доставить кислород и энергию в те части организма, которые в них больше всего нуждаются.
Если физическая нагрузка не так уж велика, механизмы гомеостаза будут работать в полную силу и упражнение скорее всего не приведет ни к каким переменам в организме. Ведь с точки зрения организма ему нет никакого резона меняться – все и так прекрасно работает.
Другое дело, если вы решаете перейти к изнурительным и тяжелым упражнениям, которые превышают способности механизмов гомеостаза. В таком случае системы и клетки организма оказываются в аномальном состоянии – падает уровень кислорода и разных связанных с энергией веществ: глюкозы, аденозиндифосфата (АДФ) и аденозинтрифосфата (АТФ). Изменяется и метаболизм клеток, в них запускаются разные биохимические реакции, приводящие к выработке нестандартных для этих клеток веществ. Клеткам такое положение дел не нравится, и в ответ они призывают на помощь разные гены из своей ДНК (большая часть генов клетки неактивна, и клетка может «включать» или «выключать» нужные ей гены). Активированные гены в свою очередь запускают или ускоряют разные биохимические процессы в клетке, которые изменяют ее поведение сообразно новым обстоятельствам – то есть стрессовой ситуации, в которой в данный момент находится организм.
Крайне сложно в точности описать все то, что происходит в клетке, когда нарушается гомеостаз организма. Ученые только недавно приступили к изучению этой богатой и сложной области. К примеру, недавно было проведено исследование на крысах, которое показало, что при увеличении нагрузки на определенную мышцу задних лап в их организме активизируется 112 различных генов. По тому, какие гены включались в работу, можно судить о происходящих в организме процессах. Например, активизировались гены, отвечающие за метаболизм и структуру мышечных клеток, а также гены, определяющие скорость, с которой формируются новые мышечные клетки. Результатом всех этих изменений стало укрепление мышц задних лап у крыс. По сути, организм вынудили выйти за пределы его зоны комфорта, и в ответ на это мышцы стали сильнее, расширив тем самым эти пределы. Равновесие вновь было восстановлено.
Так в общих чертах физическая активность воздействует на наш организм: когда определенные мышцы, сердечно-сосудистая система или другие системы находятся в стрессовой ситуации и нарушается равновесие, организм запускает процессы изменений, чтобы восстановить его. Предположим, что вы решили заняться спортом, например бегать трижды в неделю по полчаса, поддерживая пульс на рекомендуемом уровне в 70 % от максимального (примерно 140 ударов в минуту для молодых людей). Постоянные занятия приведут к снижению уровня кислорода в капиллярах мышц ног. В ответ на это организм начнет выращивать новые капилляры, чтобы повысить насыщаемость кислородом до комфортного уровня.
Получается, что стремление нашего организма к равновесию и стабильности можно использовать, чтобы меняться к лучшему: если достаточно долго прилагать какие-то усилия, организм в итоге перестроится так, чтобы эти усилия давались нам легче. В результате вы станете более крепким, выносливым, координированным. Но не все так просто: как только перестройка закончится – когда вырастут новые мышечные волокна и капилляры, – организм вновь войдет в состояние равновесия. Переменам придет конец. Чтобы этот процесс не замирал, вам придется постоянно повышать планку: начать бегать дальше, быстрее, по пересеченной местности. Если вы не будете этого делать, организм войдет в состояние гомеостаза (хоть и на новом для себя уровне).
Поэтому так важно постоянно выходить немного за пределы зоны комфорта: это заставит ваш организм беспрерывно подстраиваться и меняться. Но будьте осторожны! Ставя перед собой нереальные цели, вы рискуете заработать травмы, что отбросит вас далеко назад.
Эти процессы вкратце описывают, как реагирует на физическую активность наше тело. О том же, как реагирует мозг на умственную активность, ученым известно куда меньше. Принципиальное различие между телом и мозгом заключается в том, что клетки мозга взрослого человека в норме не делятся и не образуют новые клетки. Существуют исключения, как в случае с гиппокампом, но в большинстве областей мозга изменения, вызванные упражнениями, не приводят к появлению новых нейронов. Вместо этого мозг перераспределяет ресурсы – усиливает или ослабляет некоторые нейронные связи, иногда добавляет новые или убирает старые. Кроме того, мозг может увеличить выработку миелина – изоляционного вещества, составляющего оболочку нервных клеток. Миелин ускоряет передачу нервных импульсов – в некоторых случаях в 10 раз! Нейронные сети отвечают за многие процессы, в том числе мышления, памяти, контроля движений и интерпретации сенсорных сигналов. Ускорив передачу импульсов по этим сетям, мы можем многого добиться, например научиться читать газету без очков или быстро выстраивать оптимальный маршрут из пункта А в пункт Б.
При этом чем сложнее испытание, тем сильнее изменится структура мозга. Недавние исследования показали, что овладение новым навыком гораздо вероятнее вызовет структурные изменения мозга, чем усовершенствование уже освоенного. С другой стороны, слишком усиленные и продолжительные занятия приводят к эффекту «выгорания» и снижают эффективность обучения. Иными словами, мозг, как и тело человека, быстрее всего меняется, если мы совсем немного выходим за пределы зоны комфорта – но не слишком далеко.
Формируя мозг
В основе успеха методик целенаправленной и сознательной практики лежит тот факт, что мозг и тело человека реагируют на испытания развитием новых умений и способностей.
По сути, между подготовкой лондонского таксиста к экзамену и тренировками гимнаста перед Олимпиадой нет никакой разницы: они предполагают использование свойств адаптивности мозга и тела для развития новых навыков.
Проще всего это отследить на примере развития какого-нибудь музыкального навыка. За последние два десятилетия ученые досконально изучили процессы, которые происходят в мозгу при занятиях музыкой, и то, как эти процессы приводят к появлению талантливых исполнителей. Наиболее известное исследование на эту тему было опубликовано в 1995 году в журнале Science. Четверо ученых из Германии и психолог Эдвард Тауб из Университета Алабамы набрали экспериментальную группу из четырех скрипачей, двух виолончелистов и одного гитариста. Все музыканты были правшами. Перед началом эксперимента ученые сделали снимки мозга всех участников. Также была составлена контрольная группа из 6 немузыкантов. Тауб с коллегами хотели выяснить, различаются ли у участников из обеих групп зоны мозга, контролирующие движения пальцев.
В первую очередь Тауба интересовали пальцы музыкантов на левой руке: игра на скрипке, виолончели и гитаре требует исключительного контроля. Пальцы нужно передвигать вверх и вниз по грифу, со струны на струну, и проделывать все это порой на невероятной скорости и с абсолютной точностью. Кроме того, для извлечения некоторых типов звуков – например вибрато, – музыканты должны владеть сложнейшей техникой, когда палец чуть скользит или дрожит на струне. Из всех пальцев левой руки меньше всего напрягаться приходится большому: им, как правило, только придерживают гриф. Правая рука тоже используется реже левой, скрипачи и виолончелисты держат в ней смычок, а гитаристы перебирают ею струны или держат медиатор. Иначе говоря, тренировки всех музыкантов, играющих на струнных инструментах, направлены в первую очередь на развитие пальцев левой руки. Но какой эффект это оказывает на мозг?
Чтобы определить, какие зоны мозга отвечают за какие пальцы, команда Тауба использовала магнитоэнцефалограф – аппарат, измеряющий и визуализирующий магнитные поля, возникающие вследствие электрической активности мозга. В частности, ученые дотрагивались до отдельных пальцев участников эксперимента и наблюдали, какая область мозга реагирует на прикосновение. Выяснилось, что зона мозга, отвечающая за левую руку в целом, у музыкантов куда крупнее, чем у участников контрольной группы. Кроме того, обнаружилось, что у музыкантов области мозга, контролирующие пальцы, «захватили» и часть зоны, отвечающей за ладонь. При этом степень разрастания напрямую коррелировала с тем, как рано человек начал играть на инструменте. Область мозга у музыкантов, связанная с правой рукой, была такого же размера, как и у членов контрольной группы.
Вывод прост: годы игры на струнном инструменте привели к постепенному разрастанию зоны мозга, ответственной за пальцы левой руки, и соответственно – к лучшему владению этими пальцами.
За 20 лет, прошедших с того эксперимента, ученые еще больше узнали о том, как занятия музыкой влияют на структуру и работу мозга. Например, мозжечок – часть мозга, играющая важную роль в контроле передвижения, – у музыкантов крупнее, чем у обычных людей. И чем больше часов провел за инструментом музыкант, тем крупнее у него мозжечок. Кроме того, у музыкантов больше серого вещества в разных частях коры головного мозга, в том числе в соматосенсорной коре (отвечает за осязание и другие чувства), в верхнем темени (обрабатывает импульсы, поступающие от рук) и премоторной коре (планирует задачи по передвижению в пространстве и отслеживает их выполнение).
Не будем углубляться в подробности того, что именно происходит с каждой областью мозга: неспециалистам это вряд ли будет интересно. Но общая картина такова: занятия музыкой изменяют структуру и функциональность мозга так, что в итоге мы оказываемся более приспособлены к занятиям музыкой. Другими словами, эффективные занятия не только помогут вам научиться играть на музыкальном инструменте, они сделают вас более способными к музыке. Занимаясь должным образом, вы изменяете участки мозга и в каком-то смысле делаете себя талантливее.
В других областях таких исследований проводилось куда меньше, тем не менее результаты все равно каждый раз говорят об одном и том же: долговременные занятия приводят к изменениям тех областей мозга, которые относятся к развитию соответствующих навыков.
Некоторые подобные исследования изучали чисто интеллектуальные навыки, например математические способности. У математиков нижняя теменная долька содержит гораздо больше серого вещества, чем у обычных людей. Эта часть мозга отвечает за математические вычисления и визуализацию объектов в пространстве. Именно на нижнюю дольку темени обратили внимание нейробиологи, изучавшие мозг Альберта Эйнштейна. Выяснилось, что она у Эйнштейна не только намного больше среднего, но и обладает необычной формой. Это заставило ученых задуматься: а не могло ли это напрямую повлиять на способность Эйнштейна создавать абстрактные математические построения? Но, быть может, некоторые люди, как и Эйнштейн, просто родились с более крупной нижней теменной долькой и потому обладают склонностями к математике? Ученые так не думают: они исследовали эту часть мозга у математиков и обычных людей и обнаружили, что, чем дольше человек занимался математикой, тем больше у него содержится серого вещества в правой задней теменной дольке – а это позволяет предположить, что увеличение дольки является результатом постоянных занятий математикой, а не врожденным свойством.
Проводились и исследования, целью которых было изучение навыков, совмещающих умственный компонент с физическим. В одном недавнем эксперименте ученые сравнили мозг пилотов-планеристов с обычными людьми, и также выяснили, что у пилотов в некоторых областях мозга содержится больше серого вещества – например в левой передней части премоторной коры, передней части передней поясной коры и области глазодвигательного поля. Эти зоны отвечают за умение контролировать рычаг планера, сравнение визуальных сигналов во время полета с сигналами, определяющими положение тела в пространстве и положение планера, а также за умение контролировать движение глаз.
Даже в занятиях, которые мы считаем чисто физическими – плавании или гимнастике, – мозг играет главную роль. Дело в том, что развитие этих навыков требует точного контроля каждого движения тела. Исследования доказали, что занятия такими видами спорта также влияют на структуру мозга: например, толщина коры, по которой определяют количество серого вещества, у ныряльщиков в трех областях больше, чем у тех, кто никогда не занимался прыжками в воду. При этом все упомянутые области играют роль в визуализации и контроле движений.
Таким образом, несмотря на мелкие различия, в целом картина для всего мозга одинакова: регулярные занятия приводят к изменениям в частях мозга, которые чаще задействуются во время этих занятий. Мозг адаптируется к сложным задачам, перераспределяя собственные ресурсы и изменяя нейронные сети так, чтобы облегчить их выполнение.
Таковы основные идеи проведенных исследований, изучающих воздействие упражнений на мозг. Существуют и другие детали, достойные упоминания.
Так, надо отметить, что с возрастом воздействие тренировок на мозг меняется. Мозг детей и подростков намного пластичнее и потому занятия оказываются наиболее эффективными в юном возрасте. По этой же причине упражнения в детском возрасте влияют на дальнейшее развитие мозга и в некоторой степени определяют его. Это называется эффектом веточки: если слегка изменить направление роста веточки, то, развившись полностью, она может приобрести формы, отличные от первоначальных и задуманных природой. Изменить направление роста взрослой ветки гораздо сложнее.
Доказательством этого феномена служит, например, количество белого вещества в некоторых областях мозга у взрослых пианистов. Во-первых, у музыкантов его больше, чем у немузыкантов, а во-вторых, его количество напрямую зависит от того, сколько времени они проводили за инструментом в детстве. Чем раньше ребенок усаживался за пианино, тем больше белого вещества у него было во взрослом возрасте. Конечно, можно научиться играть на фортепиано и в 40 лет, но к образованию такого же количества белого вещества это уже не приведет. В настоящий момент ученым неизвестно, как это практически влияет на жизнь музыкантов. Однако мы точно знаем, что количество белого вещества определяет скорость, с которой передаются сигналы нервам, то есть, научившись играть на пианино в детстве, вы все-таки получите некое неврологическое преимущество, недоступное тем, кто начал музицировать лишь во взрослом состоянии.
Стоит также отметить тот факт, что развитие определенных зон мозга посредством длительных тренировок не проходит для нас бесследно: во многих случаях люди, развившие какой-либо навык до очень высокого уровня, жаловались на деградацию других умений. Самый показательный тому пример можно найти в том же самом исследовании Макгвайр, посвященном лондонским таксистам. К концу четвертого года, когда водители получили лицензии либо провалили экзамен, Макгвайр двумя разными способами протестировала их память. Сперва она проверила, помнят ли участники эксперимента местонахождение различных лондонских достопримечательностей. Тут лицензированные таксисты проявили себя лучше всех остальных испытуемых. Вторым экспериментом стал стандартный тест на пространственную память, во время которого нужно ознакомиться со сложной фигурой и спустя полчаса описать ее (или изобразить). С этим заданием сдавшие экзамен таксисты справились куда хуже группы участников, которые никогда не готовились к экзамену. А вот испытуемые, которые провалили экзамен либо отказались от его сдачи, показали те же результаты, что и контрольная группа мужчин, не собиравшихся получать лицензию таксиста. При этом четыре года назад, когда Макгвайр с коллегами первый раз провели этот тест, все три группы справились с ним одинаково. Получается, что сдавшие экзамен водители, научившись лучше запоминать лондонские улицы, сделали это за счет других видов памяти. Нельзя сказать точно, почему это произошло, но вероятнее всего интенсивные занятия привели к тому, что мозг стал выделять под этот вид памяти больше ресурсов, из-за чего другим типам памяти «досталось» меньше серого вещества.
Наконец, нужно сказать, что когнитивные и физиологические изменения в мозге, вызванные тренировками, требуют постоянного внимания. Перестанете заниматься – и все вернется на круги своя. Космонавты, которые прожили без гравитации долгое время, при возвращении на Землю обнаруживают, что им трудно ходить. Спортсмены, забросившие тренировки из-за травмы, спустя какое-то время понимают, что травмированная часть тела стала гораздо слабее. Тот же эффект наблюдался у спортсменов, принявших участие в интересном эксперименте: они целый месяц провели в постельном режиме, не вставая с кровати. Они стали слабее, медлительнее, у них выросла утомляемость.
То же касается и мозга. Когда группа ученых во главе с Макгвайр исследовала вышедших на пенсию лондонских таксистов, выяснилось, что в области заднего гиппокампа у них наблюдается меньше серого вещества, чем у работающих таксистов. Впрочем, количество серого вещества у вышедших на покой таксистов все равно было больше, чем у тех, кто никогда не работал в таксопарке. Тем не менее, как только таксисты перестали каждый день активно использовать навигационную память, изменения в мозге, вызванные их работой, потихоньку стали исчезать.
Создавая свой собственный потенциал
Узнав об адаптивности мозга и организма в целом, сразу начинаешь по-другому смотреть на человеческий потенциал. Это в свою очередь приводит к развитию совершенно нового подхода к обучению.
Задумайтесь: большинство людей ведут образ жизни, не предполагающий никакого физического напряжения. Они сидят за компьютерами, мало двигаются. Не бегают и не прыгают, не поднимают тяжести, не делают ничего, что задействовало бы чувства координации и баланса. Людей устраивает низкий уровень физических способностей, достаточный для ежедневной работы и легкой нагрузки по выходным (игры в гольф, поездок на велосипеде или прогулок по лесу), но с возможностями тренированного спортсмена это не идет ни в какое сравнение. Эти люди не пробегут 1 милю меньше чем за 5 минут или 10 миль меньше чем за час; не забросят баскетбольный мяч в корзину с 30 метров или мяч для гольфа в лунку – со ста, не выполнят тройной прыжок, тройной аксель или тройное обратное сальто. Все это требует напряженных тренировок, к которым обычные люди не готовы. Но при этом они могут развить эти навыки благодаря адаптивности человеческого организма. Большинство из нас не умеют делать все эти удивительные вещи не потому, что не могут, а потому, что не хотят. Нас устраивает комфортная жизнь в состоянии равновесия, без резких взлетов и падений.
То же справедливо и для нефизической активности – от написания отчетов, вождения машины и работы учителем до руководства бизнесом, продажи домов или выполнения операций на мозге. Мы выучиваем достаточно, чтобы справляться с ежедневными задачами, но редко более того. Мы практически никогда не подкидываем мозгу задачки, которые вели бы к образованию серого или белого вещества или изменению нейронных сетей, как лондонские таксисты или, например, виолончелисты. И в этом нет ничего страшного. Но важно помнить, что такая опция существует. Если вы хотите стать в чем-то значительно лучше, вы можете этого добиться.
В этом и заключается принципиальная разница между традиционным подходом к обучению и целенаправленной практикой и осознанным развитием: устоявшийся подход не предполагает изменения гомеостаза. При использовании традиционных методов обучения мы редко далеко выходим за пределы зоны комфорта и тренируемся, чтобы лишь достичь строго определенного потолка.
Осознанное развитие предполагает не достижение потенциала, а его создание. Чтобы научиться чему-то, чего вы не умели раньше, нужно постоянно выходить из состояния равновесия и заставлять мозг и тело адаптироваться к изменяющимся условиям. Отказавшись от традиционного подхода к обучению, вы сумеете взять свою судьбу в собственные руки и будете сами решать, чего в состоянии достичь.
Разумеется, возникает логичный вопрос: как эффективнее всего выходить из состояния равновесия и развивать свой потенциал? Бо́льшая часть этой книги посвящена поискам ответа на этот вопрос, но, прежде чем перейти к этой теме, нам нужно понять еще одну важную вещь: какие именно изменения в мозге мы хотим получить? Понять, что нужно делать, чтобы стать сильнее или выносливее, гораздо проще. Хотите стать сильнее – наращивайте мышцы, выносливее – развивайте легкие, сердечно-сосудистую систему и систему кровообращения. Но как вам изменить мозг, чтобы стать прекрасным музыкантом, математиком, таксистом или хирургом? Как ни странно, для прогресса во всех этих областях требуются одни и те же изменения. Поняв это, вы сразу осознаете, как люди развивают экстраординарные способности в самых разных сферах деятельности, связанных с умственным трудом, то есть фактически во всех сферах. Давайте обсудим и эту тему.
Назад: 1 Целенаправленная практика и ее возможности
Дальше: 3 Мысленные образы