61. Путь самурая
Два самурая вышли одновременно – один направился из Токио в Киото, другой в обратном направлении, из Киото в Токио. Они встретились в 12:00, поклонились друг другу, как того требует кодекс самураев, и пошли дальше. Первый пришел в Токио в 16:00, второй в Киото в 21:00. В котором часу они начали свой путь? (Предполагаем, что дорога между Токио и Киото одна, а шли они все время с постоянной скоростью.)
Варианты ответов
1. В 4:00.
2. В 6:00.
3. В 8:00.
Правильный ответ: 2
На первый взгляд, у нас слишком много неизвестных и слишком мало уравнений. Нам неизвестны: скорость первого самурая v1, скорость второго v2, расстояние от Токио до Киото L, а еще то, что требуется установить, – время, когда они отправились в путь t. А какие нам известны соотношения, связывающие их? L = v1 × (16 – t) = v2 × (21 – t). И еще мы знаем, что в момент, когда они встретились (12:00), общее пройденное ими расстояние также равнялось L: L = (v1 + v2) × (12 – t). Как видим, L из этих соотношений мы легко можем исключить, и тогда у нас останется только два уравнения с тремя неизвестными v1, v2, t. То, что неизвестных больше, чем уравнений, показывает, что все их определить мы не сможем, найти скорости самураев не представляется возможным, но это и не требуется, ищем время t. Избавляемся от скоростей, переходя к их отношению v1/v2 и замечая, что из наших уравнений вытекает: это отношение равно (21 – t) ∕ (16 – t). В конечном итоге у нас получается квадратное уравнение t² – 24t + 108 = 0, которое элементарно решается и дает два корня t = 12 ± 6 = 6; 18. Очевидно, нам подходит только первое решение в силу простого соображения: они не могли стартовать позже, чем финишировал первый самурай (а это случилось, напомним, в 16:00).