Сложно, как азбука
Время от времени математикам на ум приходят безумные, на первый взгляд, идеи, влекущие за собой, как оказывается позже, громадные последствия. ABC-гипотеза – из их числа.
Помните Великую теорему Ферма? В 1637 г. Пьер де Ферма высказал гипотезу о том, что если n³ 3, то уравнение Ферма
an + bn = cn
не имеет ненулевых целых решений. С другой стороны, при n = 2 таких решений бесконечно много, вспомнить хотя бы пифагорову тройку 3² + 4² = 5². Прошло 358 лет, прежде чем правоту Ферма доказали Эндрю Уайлс и Ричард Тейлор (см. «Кабинет…» с. 50).
Дело сделано, можно было бы подумать. Но в 1983 г. Ричард Мейсон вдруг понял, что никто и никогда не рассматривал внимательно Великую теорему Ферма для первых степеней:
a + b = c.
Не нужно быть алгебраическим гением, чтобы найти решения этого уравнения: 1 + 2 = 3, 2 + 2 = 4. Но Мейсон задумался, не станет ли этот вопрос интереснее, если наложить на a, b и c более серьезные ограничения. В результате возникла новая блестящая догадка и родилась новая гипотеза – так называемая гипотеза ABC (или гипотеза Эстерле – Массера), которая произведет настоящую революцию в теории чисел, если кому-нибудь удастся ее доказать. В ее пользу имеется огромное количество численных свидетельств, но доказательство пока, похоже, ускользает, за возможным исключением работы Синити Мотидзуки. Я еще вернусь к ней, когда мы разберемся, о чем, собственно, идет речь.
Более 2000 лет назад Евклид знал, как можно найти все пифагоровы тройки при помощи того, что мы сегодня называем алгебраическими формулами. В 1851 г. Жозеф Лиувилль доказал, что для уравнения Ферма при n ≥ 3 подобной формулы не существует. Мейсон заинтересовался более простым уравнением:
a (x) + b (x) = c (x),
где a (x), b (x) и c (x) – многочлены. Многочлен – это алгебраическая комбинация степеней x, такая, к примеру, как 5x4 – 17x3 + 33x – 4.
Решения, опять же, найти несложно, но они не могут все быть «интересными». Степенью многочлена называется наибольшая степень x, которая в нем присутствует. Мейсон доказал, что если это уравнение верно, то степени a, b и c меньше числа различных комплексных решений x уравнения a (x) b (x) c (x) = 0. Оказалось, что У. Уилсон Стозерс доказал то же самое в 1981 г., но Мейсон развил эту идею дальше.
Специалисты по теории чисел часто ищут аналогии между многочленами и целыми числами. Естественным аналогом теоремы Мейсона – Стозерса могла бы быть такая: пусть a + b = c, где a, b и c – целые числа, не имеющие общих делителей. Тогда число простых делителей у каждого из чисел a, b и c меньше числа различных простых делителей abc.
К несчастью, очевидно, что это утверждение неверно. Так, если взять сумму 9 + 16 = 25, то имеем 9 = 3 × 3 (2 делителя), 16 = 2 × 2 × 2 × 2 (4 делителя) и 25 = 5 × 5 (2 делителя). А их произведение abc = 9 × 16 × 25 имеет лишь три различных простых делителя (2, 3 и 5). Упс. Однако математики не сдаются. В данном случае они попытались модифицировать это утверждение так, чтобы оно выглядело правдоподобным. В 1985 г. Дэвид Массер и Жозеф Эстерле сделали именно это. Их вариант утверждения выглядит так:
«Для любого ε > 0 существует лишь конечное число троек положительных целых чисел, не имеющих общих делителей и удовлетворяющих уравнению a + b = c, таких, что с > d1 + ε, где d обозначает произведение различных простых делителей abc».
Это и есть гипотеза ABC. Если бы ее удалось доказать, многие глубокие и сложные теоремы, доказанные в последние десятилетия с огромными усилиями и самыми хитроумными методами, оказались бы ее прямыми следствиями и получили более простые доказательства. Более того, все эти доказательства были бы очень похожи между собой: провести несложную рутинную подготовку, а затем применить «теорему ABC», как она бы тогда называлась. Эндрю Грэнвилл и Томас Такер пишут, что разрешение этой гипотезы произвело бы «…необычайный эффект на наши представления о теории чисел. Доказательство или опровержение ее было бы ошеломительным».
Но вернемся к Мотидзуки, уважаемому специалисту по теории чисел с солидным багажом исследований. В 2012 г. он изложил предполагаемое доказательство гипотезы ABC в серии из четырех препринтов – статей, не представленных пока для официальной публикации. Вопреки его намерениям эта публикация привлекла внимание средств массовой информации, хотя с его стороны, конечно, было наивно полагать, что подобного исхода удастся избежать. В настоящее время специалисты проверяют 500 или около того страниц принципиально новой математики, из которых состоит доказательство. Это занимает много времени и усилий, потому что идеи в нем формализованны, сложны и необычны; однако никто не отвергает доказательство только по этой причине. Одна ошибка уже найдена, но Мотидзуки заявил, что она не портит доказательство. Он продолжает публиковать отчеты по ходу проверки, а эксперты продолжают свою работу.