Книга: Величайшие математические задачи
Назад: 7. «Недостаточные» поля. Великая теорема Ферма
Дальше: 9. Закономерности простых чисел. Гипотеза Римана

8. Орбитальный хаос. Задача трех тел

Если верить старой шутке, то о продвинутости физической теории можно судить по тому, с каким количеством взаимодействующих тел она не в состоянии разобраться. Закон всемирного тяготения Ньютона сталкивается с проблемами уже на трех телах. Общая теория относительности с трудом справляется с двумя. Квантовая теория и для одного-то тела непомерно сложна, а квантовая теория поля попадает в беду даже там, где тел нет вообще — в вакууме. В этой шутке, как и во многих других, есть доля истины. Так, над задачей гравитационного взаимодействия всего лишь трех тел, которые вроде бы подчиняются ньютонову обратно-квадратичному закону тяготения, математический мир бился не одну сотню лет. И до сих пор бьется, если говорить о красивой формуле для орбит этих тел. Правда, сегодня мы знаем, что динамика трех тел хаотична — настолько нерегулярна, что несет в себе элементы случайности.
Все это выглядит достаточно странно на фоне поразительного успеха гравитационной теории Ньютона, которая объяснила, помимо всего прочего, движение планет вокруг Солнца. Ответом было то, что Кеплер уже вывел эмпирически из астрономических наблюдений Марса: эллипс. Здесь задействованы только два тела: Солнце и планета. Очевидный следующий шаг заключается в том, чтобы записать уравнение для орбит трех тел и решить его. Но у этих орбит нет точных геометрических характеристик, нет даже формулы в геометрических координатах. До конца XIX в. о движении трех небесных тел было известно очень немного, даже в том случае, если одно из них настолько мало, что его массой можно пренебречь.
С тех пор наши представления о динамике трех (или более) тел сильно обогатились, а понимание того, насколько сложен этот вопрос и почему, выросло. Это может показаться ретроградством, но иногда, чтобы продвинуться вперед, лучше всего организовать стратегическое отступление и попробовать другие методы. Для задачи трех тел этот план кампании неоднократно приносил успех в случаях, когда лобовая атака безнадежно завязла бы в обороне.

 

Древние люди не могли не замечать, что Луна постепенно сдвигается по ночному небу относительно звездного фона. Звезды тоже вроде бы движутся, но все вместе, как единое целое, как крохотные световые точки на громадном вращающемся куполе небес. Луна же, очевидно, совершенно особый объект: это великолепный сияющий диск, меняющий форму от узенького полумесяца новой Луны до полного круга и обратно. Это не светящаяся точка, как звезды.
Некоторые светящиеся точки тоже не подчиняются общим правилам. Они блуждают по небу. Они не меняют своего положения относительно звезд так быстро, как Луна, но все же не обязательно слишком долго наблюдать за небом, чтобы заметить, что они движутся отдельно. Пять таких «блуждающих звезд» видимы невооруженным глазом. Греки назвали их планетами (planetes) — блуждающими. И, конечно, это и есть планеты (planets), сегодня мы называем их Меркурием, Венерой, Марсом, Юпитером и Сатурном — в честь римских богов. С помощью телескопов мы узнали о существовании еще двух: Урана и Нептуна. Плюс наша Земля, разумеется. А вот Плутон уже не считается планетой благодаря спорному решению по терминологии, принятому в 2006 г. Международным астрономическим союзом.
Изучая небеса, древние философы, астрономы и математики пришли к выводу, что планеты блуждают по небу не беспорядочно. Они следуют собственными извилистыми, но достаточно предсказуемыми путями и через строго определенные промежутки времени возвращаются примерно в ту же позицию на ночном небе. Сегодня мы объясняем эти маршруты периодическим движением по замкнутой орбите плюс некоторым влиянием со стороны собственного орбитального движения Земли. Мы признаем также, что периодичность здесь не строгая, но близкая к тому. У Меркурия путь вокруг Солнца занимает около 88 суток, а у Юпитера — почти 12 лет. Чем дальше от Солнца находится планета, тем больше времени у нее уходит на полный оборот вокруг светила.
Первую количественно точную модель движения планет дала система Птолемея. Свое название она получила в честь Клавдия Птолемея, описавшего ее в своем трактате «Альмагест» (что означает «Величайшее построение») около 150 г. н. э. Это геоцентрическая, т. е. с Землей в центре мироздания, модель, в которой все небесные тела движутся вокруг нашей планеты так, будто поддерживаются серией гигантских сфер, каждая из которых вращается с постоянной скоростью вокруг неподвижной оси. Комбинации множества вращающихся сфер требовались для того, чтобы представить сложное движение планет в виде космического идеала равномерного движения по кругу — экватора сферы. Если сфер достаточно, а их оси и скорости выбраны правильно, эта модель очень точно отражает реальность.
Николай Коперник доработал схему Птолемея в нескольких отношениях. Самым радикальным изменением было то, что он заставил все тела, кроме Луны, обращаться не вокруг Земли, а вокруг Солнца, что сильно упростило модель. Это не понравилось католической церкви, но со временем научные взгляды взяли верх, и все образованные люди приняли как данность то, что Земля обращается вокруг Солнца. В 1596 г. Кеплер защищал систему Коперника в своей книге «Тайна мира» (Mysterium Cosmographicum), в которой описал связь между расстоянием от Солнца до планеты и ее орбитальным периодом. Если двигаться от Солнца наружу, прирост периода обращения вдвое превышает прирост расстояния от светила. Позже Кеплер решил, что это соотношение слишком неточно, чтобы быть верным, но именно оно посеяло семена будущих более точных выводов. Кроме того, Кеплер объяснил расстояния между планетами через пять правильных многогранников, аккуратно вписанных друг в друга и разделенных удерживающими их сферами. Пять многогранников поясняли, с его точки зрения, почему планет пять, но сегодня мы знаем о существовании восьми планет, так что данная особенность уже не является аргументом в пользу такой гипотезы. Вообще говоря, существует 120 способов последовательно вписать пять правильных многогранников друг в друга, и, вполне возможно, один из этих способов даст соотношение, близкое к соотношению орбит. Так что это просто случайное приближение, приписывающее природе искусственную и бессмысленную закономерность.
В 1600 г. астроном Тихо Браге нанял Кеплера в качестве ассистента, но их совместная работа продлилась недолго. После смерти Браге Кеплер получил место придворного математика при дворе императора Рудольфа II. В свободное время он анализировал результаты наблюдений Браге за Марсом. Одним из результатов этой работы стала «Новая астрономия» (Astronomia Nova), которая вышла в 1609 г. и представила миру два закона планетарного движения. Первый закон Кеплера гласит, что планеты двигаются по эллипсам — он установил этот факт для Марса, и казалось вероятным, что другие планеты подчиняются тому же закону. Первоначально он считал, что данные хорошо лягут на яйцевидную орбиту, но с этим ничего не получилось; тогда он попробовал эллипс. После проверки эллипс тоже был отвергнут, и Кеплер нашел другое математическое описание формы орбиты, однако в конце концов понял, что его описание — всего лишь иной способ определения эллипса.
«Я отложил [новое определение] в сторону и вернулся к эллипсам, будучи уверенным, что это совершенно иная гипотеза, тогда как обе они, как я докажу в следующей главе, суть одно и то же… Ах, каким глупым я был!»
Второй закон Кеплера гласит, что радиус-вектор планеты заметает за равные промежутки времени равные площади. В 1619 г. в работе «Гармония мира» (Harmonices Mundi) Кеплер завершил изложение своих трех законов куда более точным соотношением, связывающим расстояния и периоды: куб расстояния (большой полуоси эллипса) пропорционален квадрату периода обращения.
Можно сказать, что этим завершилась подготовка сцены к появлению на ней Исаака Ньютона. В работе 1687 г. «Математические начала натуральной философии» (Philosophiae Naturalis Principia Mathematica) Ньютон доказал, что три закона Кеплера эквивалентны единственному закону тяготения: два тела притягиваются друг к другу с силой, пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними. Закон Ньютона обладал громадным преимуществом: он был применим к любой системе тел, сколько бы их ни было. Но за это приходилось платить: закон описывал орбиты не как геометрические формы, а как решения дифференциального уравнения, в которое входили, в частности, ускорения планет. Совершенно непонятно, как из такого уравнения определить форму планетарных орбит или, скажем, положение планет в заданный момент времени. Откровенно говоря, не совсем ясно даже, как найти эти самые ускорения планет. Тем не менее неявно вся эта информация в уравнении содержалась. Проблема заключалась в том, чтобы получить ее в явном виде. Кеплер уже проделал такую операцию для двух тел, и ответом стала эллиптическая орбита и скорость, при которой радиус-вектор каждой планеты описывает равные площади за равные промежутки времени.
Как же обстоит дело с тремя телами?
Хороший вопрос. Согласно закону Ньютона, все тела Солнечной системы притягивают друг друга. Более того, все тела во Вселенной притягивают друг друга. Но никто в здравом уме не стал бы пытаться записывать дифференциальные уравнения для каждого тела во Вселенной. Как всегда, чтобы продвинуться вперед, нужно было упростить задачу, но не слишком сильно. Звезды так далеки от нас, что их гравитационным влиянием на Солнечную систему можно пренебречь, если только вы не собираетесь описывать движение Солнца в Галактике или вращение самой Галактики. Движением Луны в значительной мере управляют два тела — Земля и Солнце — плюс некоторые тонкие эффекты от влияния других планет. В начале XVIII в. этот вопрос вышел за рамки чистой астрономии и приобрел практическое значение: ученые осознали, что движение Луны по небу можно использовать для навигации. (В те времена не было не только системы GPS, но и хронометров для определения долготы.) Но этот метод требовал более точных предсказаний, чем те, что позволяла сделать существующая теория. Очевидно, для начала следовало записать следствия из закона Ньютона для трех тел, которые в данном случае можно было рассматривать как точечные массы, поскольку планеты чрезвычайно малы по сравнению с расстояниями между ними. Затем следовало решить полученные дифференциальные уравнения. Однако методы, позволившие в задаче для двух тел перейти к эллипсам, в задаче для трех тел оказались неприменимы: добавление третьего тела портило всю картину. Несколько предварительных шагов сделать удалось, но затем вычисления зашли в тупик. В 1747 г. Жан д’Аламбер и Алексис Клеро, вечные соперники, приняли участие в конкурсе, объявленном Парижской академией наук по «задаче трех тел», которую оба пытались решить при помощи численных приближений. Задача для трех тел обрела название и вскоре стала одной из великих загадок математики.
Некоторые частные случаи этой задачи удавалось решить. В 1767 г. Эйлер обнаружил решения, в которых все три тела лежат на вращающейся прямой. В 1772 г. Лагранж нашел аналогичные решения для случая, когда тела образуют вращающийся равносторонний треугольник, который может расширяться или сжиматься. Оба решения оказались периодическими: тела повторяли одну и ту же последовательность движений до бесконечности. Однако даже кардинальное упрощение не позволяло получить хоть что-нибудь более общее. Можно было считать, что масса одного из тел пренебрежимо мала или что другие два тела движутся вокруг общего центра масс по идеальным окружностям (версия, известная как «ограниченная задача трех тел»), но найти точное решение уравнений все равно не удавалось.
В 1860 и 1867 гг. астроном и математик Шарль-Эжен Делоне пытался решить задачу для конкретного случая — системы Солнце — Земля — Луна — с использованием теории возмущений. Эта теория рассматривает действие солнечного притяжения на Луну как небольшие добавки, которые накладываются на действие земного притяжения. Делоне вывел приближенные формулы в виде сумм бесконечных рядов: результата сложения множества последовательных членов. Он опубликовал свои результаты в виде двух томов по 900 страниц в каждом. Эти тома были заполнены преимущественно формулами. В конце 1970-х гг. его расчеты были проверены с использованием компьютерной алгебры и подтвердились почти полностью: в них обнаружились всего две незначительные ошибки.
Это был поистине героический расчет, но ряд у Делоне сходился к своему пределу слишком медленно, чтобы этими выкладками можно было пользоваться на практике. Однако работа Делоне подтолкнула других математиков к поиску рядов, которые сходились бы быстрее. Она также вскрыла серьезное техническое препятствие, с которым неизменно встречается подобный подход: это препятствие — малые знаменатели. Некоторые члены последовательности представляют собой дроби, и знаменатель этих дробей вблизи резонанса (состояния, в котором периоды тел кратны друг другу) становится очень маленьким. К примеру, у трех внутренних спутников Юпитера — Ио, Европы и Ганимеда — периоды обращения вокруг планеты составляют 1,77, 3,55 и 7,15 суток, т. е. относятся один к другому почти точно как 1:2:4. Особенно мешает вычислениям секулярный резонанс, при котором кратны друг другу скорости поворота осей двух почти эллиптических орбит, — здесь при вычислении дроби с малым знаменателем погрешность становится очень большой.

 

Если задача трех тел сложна, то задача n тел, т. е. произвольного числа точечных масс, движущихся под действием ньютонового тяготения, безусловно, еще сложнее. Тем не менее природа представляет нам наглядный и очень важный пример: Солнечную систему. В нее входят восемь планет, несколько карликовых планет, таких как Плутон, и тысячи астероидов, в том числе довольно крупных. Это не говоря о спутниках планет, некоторые из которых — Титан, к примеру, — превосходят по размеру планету Меркурий. Таким образом, Солнечная система — это задача 10, или 20, или 1000 тел в зависимости от степени детализации.
Для краткосрочных прогнозов вполне достаточно численных аппроксимаций (в астрономии 1000 лет — это немного), а вот понять, как будет развиваться Солнечная система в ближайшие несколько сотен миллионов лет, — совсем другое дело. Но есть один серьезный вопрос, ответ на который зависит от подобных долгосрочных прогнозов: речь идет о стабильности Солнечной системы. Планеты в ней, судя по всему, обращаются по относительно стабильным, почти эллиптическим орбитам. Эти орбиты слегка изменяются, когда их возмущают другие планеты, так что период обращения и размеры эллипса могут чуть-чуть меняться. Можем ли мы быть уверены, что и в будущем не будет происходить ничего, кроме этого мягкого влияния? И так ли вела себя Солнечная система в прошлом, особенно на ранних стадиях развития? Останется ли она стабильной или какие-нибудь две ее планеты могут когда— нибудь столкнуться? Наконец, может ли планета оказаться выброшенной из системы прочь, на просторы Вселенной?
В 1889 г. королю Норвегии и Швеции Оскару II должно было исполниться 60 лет. Норвежский математик Геста Миттаг-Лефлер убедил короля объявить к юбилею конкурс на решение задачи n тел с немаленьким призом. Решение должно было представлять собой не точную формулу — к тому моменту было уже ясно, что это означало бы требовать слишком многого, — а некий сходящийся ряд. Пуанкаре, заинтересовавшийся конкурсом, решил начать с очень простой версии: ограниченной задачи трех тел, где масса одного из тел пренебрежимо мала, как, скажем, у пылинки. Если вы наивно примените закон Ньютона к такой пылинке, приложенная к ней сила будет равняться произведению масс, деленному на квадрат расстояния. При нулевой массе результат тоже будет равняться нулю. Это не слишком помогает, поскольку получается, что пылинка мирно летит своей дорогой, не взаимодействуя с остальными двумя телами. Вместо этого можно применить модель, в которой пылинка испытывает влияние остальных двух тел, а вот они полностью ее игнорируют. В этом случае орбиты двух массивных тел оказываются круговыми, и движутся они с постоянной скоростью. Вся сложность движения в такой системе приходится на пылинку.
Пуанкаре не решил задачу, поставленную королем Оскаром, — она была попросту слишком сложной. Но его методы были настолько новаторскими и продвинуться ему удалось так далеко, что приз он все же получил. Исследование было опубликовано в 1890 г. Из него явствовало, что даже ограниченная задача трех тел может не иметь предполагаемого решения. Пуанкаре разделил свой анализ на несколько отдельных случаев в зависимости от общих параметров движения. В большинстве случаев решение в виде ряда вполне можно было получить. Но был один случай, в котором орбита пылинки становилась чрезвычайно путанной.
Пуанкаре вывел эту неизбежную путаность при помощи некоторых других методов, над которыми работал в то время. Эти методы давали возможность описать решения дифференциальных уравнений, не решая их. Его «качественная теория дифференциальных уравнений» стала зерном, из которого выросла современная нелинейная динамика. Основной идеей, которая легла в основу новой теории, было исследование геометрии решений, точнее, их топологии — темы, глубоко интересовавшей Пуанкаре (см. главу 10). В такой интерпретации положения и скорости тел представляют собой координаты в многомерном пространстве. По мере того как идет время, первоначальное состояние системы движется в этом пространстве по некоей криволинейной траектории. Топология этого пути или даже системы всех возможных путей могут рассказать нам много полезного о решениях.
Периодическое решение, к примеру, представляет собой замкнутую траекторию в форме петли. По ходу времени состояние системы вновь и вновь проходит по этой траектории, бесконечно повторяя одно и то же поведение. Тогда и система является периодической. Пуанкаре предположил, что для удобного поиска подобных петель удобно было бы провести многомерную поверхность так, чтобы она рассекла петлю. Мы сегодня называем такую поверхность сечением Пуанкаре. Решения, берущие начало на этой поверхности, могут со временем вернуться на нее. Сама петля при этом возвращается в точности в ту же точку, а решения, проходящие через ближайшие к этой точки, всегда возвращаются на наше сечение примерно через один период. Так что периодическое решение можно интерпретировать как неподвижную точку на «отображении первого возвращения». Это отображение сообщает нам, что происходит с точками поверхности, когда они в первый раз на нее возвращаются, если, конечно, возвращаются. Это может показаться не ахти каким достижением, но такой подход снижает размерность пространства — число переменных в задаче. А это почти всегда хорошо.
Значение великолепной идеи Пуанкаре становится понятно, когда мы переходим к следующему по сложности типу решения — комбинации нескольких периодических движений. Вот простой пример такого движения: Земля обходит вокруг Солнца примерно за 365 дней, а Луна обходит вокруг Земли примерно за 27 дней. Так что движение Луны совмещает в себе эти два разных периода. Разумеется, весь смысл задачи трех тел заключается в том, что это описание не совсем точно, но «квазипериодические» решения такого рода часто встречаются в задачах с участием многих тел. Сечение Пуанкаре помогает распознать квазипериодические решения: когда они возвращаются к интересующей нас поверхности, то не попадают в точности в ту же точку, но точка, в которую они попадают раз за разом, крохотными шажочками обходит на поверхности замкнутую кривую.
Пуанкаре понял, что если бы все решения были такими, то можно было бы подобрать подходящий ряд и смоделировать их количественно. Но, проанализировав топологию отображения первого возвращения, он заметил, что все может быть куда сложнее. Две конкретные кривые, связанные динамикой, могут пересечься. Само по себе это не слишком плохо, но если вы пройдете по кривым до того места, где они вновь вернутся на нашу поверхность, то результирующие кривые вновь должны будут пересечься, но в другом месте. Проведите их еще круг, и они снова пересекутся. Мало того: эти новые кривые, полученные передвижением первоначальных кривых, на самом деле не новы. Они представляют собой части первоначальных кривых. Чтобы разобраться в этой топологии, потребовалось немало размышлений — ведь никто раньше подобными играми не занимался. В результате получается очень сложная картина, напоминающая сеть, сплетенную каким-то безумцем: кривые в ней ходят зигзагами туда-обратно, пересекая друг друга, а зигзаги эти сами, в свою очередь, ходят зигзагами туда-обратно и т. д. до любого уровня сложности. В конце концов, Пуанкаре заявил, что зашел в тупик:
«Когда пытаешься описать фигуру, образованную этими двумя кривыми и их бесконечными пересечениями, каждое из которых соответствует дважды асимптотическому решению, то эти пересечения образуют своего рода сеть, паутину или бесконечно тонкое сито… Поражает сложность этой фигуры, которую я даже не пытаюсь нарисовать».

 

Сегодня мы называем его картину гомоклинным («замкнутым на себя») плетением (см. рис. 31). Благодаря новым топологическим идеям, высказанным в 1960-е гг. Стивеном Смейлом, мы сегодня видим в этой структуре старого друга. Главное, что она помогла нам понять, — это то, что динамика хаотична. Хотя в уравнениях нет выраженного элемента случайности, их решения очень сложны и нерегулярны. В чем-то они похожи на по-настоящему случайные процессы. К примеру, существуют орбиты — более того, к этому типу относится большинство орбит, — движение которых в точности имитирует многократное случайное бросание монетки. Открытие того факта, что детерминистская система (т. е. система, будущее которой всецело и однозначно определяется ее текущим состоянием) может тем не менее обладать случайными чертами — замечательное достижение, оно изменило многие области науки. Мы уже не можем считать, что простые правила порождают простое поведение. Речь идет о том, что в обиходе часто называют теорией хаоса, и все это восходит непосредственно к Пуанкаре и его работе на приз короля Оскара.
Ну, почти все. На протяжении многих лет историки математики рассказывали об этом именно так. Но примерно в 1990 г. Джун Бэрроу-Грин обнаружила в недрах Института Миттага-Леффлера в Стокгольме печатный экземпляр работы Пуанкаре; пролистав его, она поняла, что он отличается от того варианта, который можно обнаружить в бесчисленных математических библиотеках по всему миру. Это оказалась официальная пояснительная записка к заявке Пуанкаре на приз, и в ней была ошибка. Подавая работу на конкурс, Пуанкаре упустил из виду хаотические решения. Он заметил ошибку прежде, чем работа была опубликована, доработал ее, выведя все, что было необходимо, — а именно хаос, — и заплатил (надо сказать, больше, чем стоил приз) за то, чтобы оригинальная версия была уничтожена, а в печать пошел исправленный вариант. Но по какой-то причине в архиве Института Миттага-Леффлера сохранился экземпляр первоначально ошибочной версии, хотя сама история забылась, пока Бэрроу-Грин не откопала ее и не опубликовала свое открытие в 1994 г.
Пуанкаре, судя по всему, считал, что хаотические решения несовместимы с разложениями в ряд, но это тоже оказалось ошибкой. Прийти к такому выводу было несложно: ряды казались слишком регулярными, чтобы представлять хаос, — на это способна только топология. Хаос — это сложное поведение, определяемое простыми правилами, так что это умозаключение небесспорно, но структура задачи трех тел определенно не допускает простых решений того рода, которые Ньютон вывел для двух тел. Задача двух тел интегрируема. Это означает, что в уравнениях достаточно сохраняющихся величин, таких как энергия, импульс и момент импульса, для однозначного определения орбиты. «Сохраняющихся» означает, что эти величины не меняют своего значения при движении тел по своим орбитам. Но задача трех тел неинтегрируема.
При всем том решения в виде рядов существуют, однако они не универсальны. Они не годятся для начальных состояний с нулевым моментом импульса — мерой суммарного вращения. Такие состояния бесконечно редки, поскольку нуль — всего лишь одно число среди бесконечного количества действительных чисел. Более того, в этих рядах фигурирует не время как таковое, а корень кубический из времени. Все это выяснил в 1912 г. финский математик Карл Фритьёф Зундман. Нечто аналогичное верно даже для задачи n тел опять же с редкими исключениями. Такой результат получил в 1991 г. Ван Цюдун. Но для системы из четырех или более тел у нас нет никаких достоверных данных о том, при каких именно обстоятельствах ряд не сходится, и мы никак не можем классифицировать эти обстоятельства. Мы знаем, однако, что такая классификация должна получиться очень сложной, потому что существуют решения, в которых все тела убегают в бесконечность или через некоторый конечный промежуток времени начинают колебаться с бесконечной частотой (см. главу 12). Физически такие решения — следствие нашего допущения, что все тела представляют собой точки, хотя и массивные. Математически они подсказывают нам, где искать самые дикие варианты поведения системы.

 

Серьезный успех в решении задачи n тел был достигнут для того частного случая, когда все тела обладают одинаковой массой. Такое допущение нечасто работает в небесной механике, но вполне разумно для некоторых неквантовых моделей элементарных частиц. А главный интерес такая постановка вопроса представляет, конечно же, для математиков. В 1993 г. Кристофер Мур нашел решение задачи трех тел для случая, когда все тела гоняются друг за другом по одной и той же орбите. Удивительна форма орбиты: это восьмерка, показанная на рис. 32. Несмотря на то что у орбиты есть точка самопересечения, тела никогда не сталкиваются.

 

 

Расчет Мура был численным и проводился на компьютере. В 2001 г. Ален Ченсинер и Ричард Монтгомери заново независимо открыли это решение. Для этого они, с одной стороны, воспользовались давно известным в классической механике принципом наименьшего действия, а с другой — привлекли весьма хитроумную топологию, чтобы доказать, что такое решение существует. Орбиты тел периодичны во времени: через определенный временной промежуток все тела возвращаются к первоначальным позициям и скоростям, а затем повторяют те же движения до бесконечности. Для любой заданной суммарной массы существует по крайней мере одно такое решение для любого периода.
В 2000 г. Карлес Симо провел численный анализ и получил указания на стабильность восьмерки, за исключением, возможно, очень медленного долгосрочного дрейфа, известного как диффузия Арнольда и связанного с мелкими особенностями геометрии отображения карты возвращений Пуанкаре. При стабильности такого рода почти любые возмущения приводят объекты на орбиту, очень близкую к первоначальной, а среди мелких возмущений доля именно таких приближается к 100 %. При тех редких возмущениях, при которых стабильность все же нарушается, орбита дрейфует от своего первоначального положении чрезвычайно медленно. Результат Симо вызвал удивление, поскольку в задаче трех тел равной массы стабильные орбиты встречаются редко. Численные расчеты показывают, что стабильность сохраняется даже в том случае, когда массы тел слегка различаются. Так что вполне возможно, что где-то во Вселенной три звезды с почти идентичными массами бесконечно преследуют одна другую на орбите в форме восьмерки. По оценке Дугласа Хегги, сделанной в 2000 г., число таких тройных звезд лежит между одной на галактику и одной на Вселенную.
Для орбиты в форме восьмерки характерна интересная симметрия. Возьмем для начала три тела A, B и C. Пройдем с ними треть орбитального периода и обнаружим тела на тех же позициях с теми же скоростями, как в начальный момент, только на тех же местах будут находиться соответственно тела B, C и A. После двух третей периода там же мы найдем тела C, A и B. Через полный период мы увидим в точности первоначальную картину. Решение такого рода известно как хореография — танец планет, в котором они через определенные промежутки времени меняются местами. Численные данные свидетельствуют о существовании хореографий в системах более чем трех тел: на рис. 33 представлены некоторые примеры таких систем. Сам Симо, в частности, отыскал огромное количество хореографий.
Но даже здесь многие вопросы остаются без ответа. У нас до сих пор нет строгого доказательства существования хореографий. Для систем более чем из трех тел все они представляются нестабильными. Скорее всего, так и есть, но это тоже надо доказать. Орбита в виде восьмерки для трех тел заданной массы при заданном периоде представляется единственной, но доказательства тому опять же нет, хотя в 2003 г. Томаш Капела и Петр Згличинский опубликовали компьютерное доказательство того, что она локально единственна — ни одна из близлежащих орбит не работает. Возможно, хореографии — это зерно еще одной великой задачи.

 

 

Итак, стабильна ли Солнечная система?
Может, да, а может, и нет.
Продолжая исследовать великое озарение Пуанкаре — возможность существования хаоса, — мы сегодня гораздо лучше разбираемся в теоретических вопросах, связанных с достижением стабильности. Оказалось, что это тонкая и сложная задача. К тому же она, как ни смешно, практически никак не связана с существованием или отсутствием решений в виде рядов. Работа Юргена Мозера и Владимира Арнольда позволила доказать, что различные упрощенные модели Солнечной системы стабильны почти при любых начальных состояниях, за исключением, возможно, эффекта диффузии Арнольда, который не допускает более сильных форм стабильности почти во всех задачах такого рода. В 1961 г. Арнольд доказал, что идеализированная модель Солнечной системы стабильна в этом смысле, но только при допущении, что планеты обладают чрезвычайно малыми массами по сравнению с массой центральной звезды, что их орбиты очень близки к круговым и находятся почти в одной плоскости. Если говорить о строгом доказательстве, то «почти» и «очень близки» здесь означает «различаются не более чем на 10−43 долю», и даже в этом случае точная формулировка гласит, что вероятность нестабильности равна нулю. Там, где речь идет о возмущениях, результаты часто бывают гораздо шире, чем то, что удается строго доказать, так что из всего этого следует, что планетная система, в разумной степени близкая к идеальной, вероятно, стабильна. Однако в нашей Солнечной системе допуски составляют 10−3 по массе и 10−2 по степени приближения к окружности и наклонению. Понятно, что это несколько больше, чем 10−43, так что о применимости результатов Арнольда речь может идти лишь чисто теоретически. Тем не менее приятно, что в этом вопросе хоть о чем-то можно говорить определенно.
Практические стороны подобных задач тоже прояснились благодаря развитию мощных численных методов приближенного решения уравнений при помощи компьютера. Вообще-то это тонкий вопрос, ведь у хаоса есть одно важное свойство: маленькие ошибки способны очень быстро вырасти и погубить все решение целиком. Наши теоретические представления о хаосе и об уравнениях, подобных уравнениям Солнечной системы, в которой отсутствует трение, привели к развитию численных методов, свободных от многих наиболее неприятных свойств хаоса. Их называют симплектическими интеграторами. С их помощью удалось выяснить, что орбита Плутона хаотична. Однако это не означает, что Плутон беспорядочно носится по всей Солнечной системе, разрушая все вокруг себя. Это означает, что через 200 млн лет Плутон по-прежнему будет находиться где-то поблизости от своей нынешней орбиты, но где именно — мы не имеем ни малейшего представления.
В 1982 г. в рамках проекта Longstop под руководством Арчи Роя на суперкомпьютере проводилось моделирование внешних планет (начиная с Юпитера). В них не обнаружилось крупных нестабильностей, хотя некоторые планеты получали энергию за счет других планет странными путями. С тех пор две исследовательские группы занимаются развитием использовавшихся в проекте вычислительных методов и применением их к различным задачам, касающимся нашей Солнечной системы. Руководят этими группами Джек Уиздом и Жак Ласкар. В 1984 г. группа Уиздома предсказала, что спутник Сатурна Гиперион, вместо того чтобы вращаться честь по чести, должен беспорядочно кувыркаться, и последующие наблюдения подтвердили этот факт. В 1988 г. эта же группа в сотрудничестве с Джерри Сассменом построила собственный компьютер, спроектированный специально для работы с уравнениями небесной механики. В сущности, это цифровая модель Солнечной системы (в отличие от обычной механической модели, где движение планет — шариков на палочках — имитируется при помощи штырьков и шестеренок). Первый же расчет, смоделировавший следующие 845 млн лет Солнечной системы, вскрыл хаотичную природу Плутона. На данный момент группа Уиздома и ее последователи успели смоделировать динамику Солнечной системы на следующие несколько миллиардов лет.
Группа Ласкара опубликовала первые результаты по долгосрочному поведению Солнечной системы в 1989 г. При этом в расчетах использовалась усредненная форма уравнений, восходящих еще к Лагранжу. Понятно, что в таком расчете некоторые мелкие подробности размываются и исключаются из рассмотрения. Расчеты группы показали, что положение Земли на орбите хаотично, почти как у Плутона: если мы измерим сегодняшнее положение нашей планеты и ошибемся на 15 м, то ее положение на орбите через 100 млн лет невозможно будет предсказать сколько-нибудь определенно.
Единственный способ снизить влияние хаоса состоит в многократном моделировании с чуть разными начальными данными. Это позволяет получить спектр возможных вариантов вместе с вероятностью каждого из них. В 2009 г. Ласкар и Микаэль Гастино применили эту методику к Солнечной системе, рассмотрев 2500 различных сценариев. Различия между ними чрезвычайно малы — к примеру, это может быть сдвиг положения Меркурия на 1 м. Примерно в 1 % вариантов будущего Меркурий становится нестабильным: он сталкивается с Венерой, рушится на Солнце или выбрасывается за пределы системы.
В 1999 г. Норман Мюррей и Мэтью Холман исследовали несоответствие результатов Арнольда и др., указывающих на стабильность, и моделирования, указывающего на нестабильность. «В чем дело? — спрашивали они. — Может быть, неверны численные результаты, а может быть, классические расчеты здесь неприменимы?» Воспользовавшись аналитическими, а не численными методами, они продемонстрировали, что классические расчеты применять нельзя. Возмущения, необходимые для отражения реальности, слишком велики. Главный источник хаоса в Солнечной системе — близкое к резонансному состояние системы Юпитера, Сатурна и Урана и еще одной системы — Сатурна, Урана и Нептуна, хотя ее близость к резонансу не столь важна. Для проверки этого положения они использовали численные методы; получилось, что горизонт предсказания — мера времени, за которое небольшие ошибки приобретут достаточные масштабы, чтобы вызвать серьезные последствия, — составляет приблизительно 10 млн лет. Их моделирование показывает, что Уран иногда опасно сближается с Сатурном, поскольку эксцентриситет его орбиты меняется хаотически и существует вероятность, что когда-нибудь он будет вообще выброшен прочь из Солнечной системы. Однако вероятное время такого события наступит через 1018 лет. Солнце взорвется и превратится в красный гигант гораздо раньше, примерно через 5 млрд лет. Это событие, естественно, скажется на всех планетах, не в последнюю очередь потому, что само Солнце при этом потеряет 30 % массы. Земля отодвинется прочь от Солнца и, возможно, сумеет избежать захвата необычайно расширившимся светилом. Однако в настоящее время считается, что приливные взаимодействия со временем все же затянут Землю внутрь Солнца, а океаны нашей планеты вскипят и испарятся задолго до этого. Но поскольку типичная продолжительность жизни вида, с эволюционной точки зрения, не превышает 5 млн лет, нам вряд ли стоит беспокоиться обо всех этих потенциальных катастрофах. Мы погибнем гораздо раньше от каких-нибудь других причин.
При помощи этих же методов можно исследовать прошлое Солнечной системы: берем те же уравнения и пускаем время назад — простой математический фокус. До недавнего времени астрономы склонны были считать, что планеты всегда находились примерно на нынешних своих орбитах, — с тех самых пор, как сконденсировались из газопылевого облака, окружавшего зарождающееся Солнце. Более того, на основании их состава и формы орбит делались выводы о размерах и составе того самого первичного газопылевого облака. Сегодня же ученые склоняются к мнению, что планеты начинали свое существование вовсе не на нынешних орбитах. По мере того как из пылевого облака под действием внутреннего тяготения образовывались планеты, Юпитер — самая массивная из них — начал выстраивать остальные тела, да и сами они постоянно влияли друг на друга. Такую гипотезу предложили в 1984 г. Хулио Фернандес и Винг-Хуен Ип, но какое-то время их работу рассматривали скорее как любопытную, но незначительную диковинку. В 1993 г. Рену Малхотра всерьез задумался о том, как изменения в орбите Нептуна могли влиять на остальные планеты-гиганты. К нему присоединились другие исследователи, и постепенно проявилась картина чрезвычайно динамичной юности нашей Солнечной системы.
Планеты продолжали формироваться, и пришло время, когда Юпитер, Сатурн, Уран и Нептун были уже почти готовы, но между ними циркулировало громадное количество скальных и ледяных планетезималей — небольших тел около 10 км в поперечнике. После этого эволюция Солнечной системы шла путем миграции и столкновения планетезималей. Многие из них были выброшены в пространство, что снизило суммарную энергию и момент импульса четырех планет-гигантов. Поскольку все эти миры обладали разными массами и находились на разных расстояниях от Солнца, то и реагировали они по-разному. Нептун стал одним из победителей в орбитальной схватке за энергию и в результате отошел подальше от светила. Уран и Сатурн сделали то же самое, но в меньшей степени. Юпитер же в смысле энергии остался в проигравших и сместился внутрь системы. Но он был столь массивен, что далеко не ушел.
Остальные, меньшие тела Солнечной системы, тоже испытали на себе действие этих перемен. Текущее состояние системы, вроде бы стабильное, возникло в результате затейливого танца гигантов, в ходе которого разыгравшийся хаос бросил мельчайшие тела навстречу друг другу. Так стабильна ли Солнечная система? Вероятно, нет, но человечеству не удастся убедиться в этом на практике.
Назад: 7. «Недостаточные» поля. Великая теорема Ферма
Дальше: 9. Закономерности простых чисел. Гипотеза Римана

Пупа
Тут что-то перепутали
Грант Геворкян
Доказательство несуществования совершенного кубоида очень просто.