Книга: Счастливый клевер человечества. Всеобщая история открытий, технологий, конкуренции и богатства
Назад: Прокатный стан и бесшовные трубы
Дальше: Компьютеры

История азотных удобрений

Роль азота

С момента открытия азота французским химиком Лавуазье мы располагаем информацией о важнейшей роли этого химического элемента в жизни растений, который очень распространен на Земле и составляет 78% атмосферного воздуха351. Его биологическое значение связано с тем, что он является обязательным компонентом всех белковых веществ (составляет 18% их массы). А с белковыми веществами неразрывно связана биокаталитическая активность всего живого, так как все содержащиеся в нашей клетке ферменты имеют в своей основе молекулу белка, а большинство ферментов вообще состоит исключительно из белков.

Если бы растения на Земле не снабжались азотом в нужном количестве, то повсеместно снизилась бы урожайность и, следовательно, невозможной была бы аграрная революция, а значит, и рост населения! Корректируя его уровень, мы, по сути дела, регулируем синтез белковых веществ. При достаточном количестве азота стебли и листья земных растений приобретают интенсивную зеленую окраску, а при его недостатке сильно ухудшается рост растений, стебли плохо ветвятся, становятся тоньше, а листья мельче и бледнее352.

Проблема азотного питания всегда решалась путем использования двух форм соединений: аммиачной и нитратной. Лишь к концу столетия стала распространяться точка зрения, что растения для синтеза органических веществ быстрее усваивают аммиачный азот, а не азот нитратов. С одной стороны, аммиак, поглощенный растением или образовавшийся в результате восстановления нитратов, является первичным исходным материалом для синтеза белков, с другой — конечным продуктом распада белков в нем. На основании этого Д. Н. Прянишников высказал тезис о том, что аммиак есть альфа и омега азотистого обмена веществ в растении, т.е. этот процесс начинается аммиаком и им же заканчивается.

В природе приход и расход азота в его круговороте сбалансированы. В процессе современной агрокультурной деятельности человека естественный баланс нарушается: потери значительно превышают поступление, и почва обедняется данным элементом. В такой ситуации внесение азотных удобрений и навоза может ликвидировать дефицит в азотном балансе почвы и создать условия для сохранения и повышения ее плодородия. На этом строится наше интенсивное земледелие.

Ранее считалось, что растение в год потребляет 60–70% азота из внесенных азотных удобрений. Впоследствии же выяснилось, что весь внесенный в почву азот удобрений расходуется за один вегетационный период: часть используется растениями, часть иммобилизуется353 и часть безвозвратно теряется (Ягодин, 2004). Кроме того, в процессе жизнедеятельности микроорганизмов часть азота удобрений в почве трансформируется в органические не усвояемые растениями формы. Поэтому синтетические удобрения обеспечивают в современном мире около половины всего азота в зерновых культурах, а это значит, что двое из пяти человек получают белки для своего питания благодаря процессу Габера–Боша (синтеза аммиака), в противном случае это был бы лишь один из 10. Вот почему ни одна другая инновация не оказала такого влияния на нашу цивилизацию, как искусственный синтез аммиака, ведь сами люди не могут синтезировать аминокислоты, протеиновые строительные блоки, и должны получать их извне — из растительной пищи. От первых клеточных организмов мы унаследовали свой открытый характер.

История создания азотных удобрений

У человечества не было проблем с фосфорными или калийными удобрениями. А вот с азотными дело обстояло иначе. До недавних пор они появлялись в земле исключительно естественным путем. Но население Земли быстро росло, и запасов азота в почве стало не хватать. Для получения искусственных соединений азота его необходимо было «связать»354.

Долгое время человечеству было известно только одно естественное природное вещество — селитра. Это название из двух латинских слов (sal — соль и nitrum — природная сода, щелочь) прижилось, поскольку в древние времена и Средние века состав веществ был неизвестен. Селитра была нужна не только сельскому хозяйству, но и военным для производства пороха. Благодаря стараниям Юстуса Либиха355 стало очевидным, что старые способы получения селитры не покроют растущих потребностей. Поэтому с 1830 г. добывать ее начали в Чили, в пустыне Атакама, где к тому времени образовались уникальные залежи селитры из разложившегося за тысячи лет птичьего помета — гуано.

В XIX в. Чили стало главным поставщиком селитры, ведь совокупный мировой спрос к тому времени увеличился со времен Мальтуса в миллион раз! Резко вырос спрос на селитру и со стороны военной промышленности. А источником для получения азота мог быть только… воздух. Цианамидный метод356 и так называемая «норвежская селитра» (получаемая пропусканием влажного воздуха через электрическую дугу) оказались слишком дорогими. Однако к 1909 г. был разработан еще один метод связывания азота, по которому азот сначала превращали в аммиак, а уже из него производили нитраты или иные азотистые соединения. Разработал этот метод немецкий химик Фриц Габер.

Аммиак и «Циклон Б»

Афоризм о том, что в мирное время ученый принадлежит миру, а в военное служит своей стране, приписывают Фрицу Габеру, лауреату Нобелевской премии по химии, выдающемуся ученому и по совместительству… разработчику химического оружия. Габер родился в Польше, но учился в Германии у Роберта Бунзена357. В начале прошлого века Фриц Габер вместе с Карлом Бошем358 успешно решил задачу получения азота из атмосферного воздуха. Синтез аммиака сегодня называют процессом Габера – Боша.

Впервые получить жидкий аммиак Габеру удалось в 1908 г. Он не просто его получил, но еще и синтезировал селитру, сняв с повестки дня вопрос о нехватке удобрений для производства продовольствия в интересах перенаселенной Европы. Другим применением селитры стало производство азотной кислоты в качестве сырья для взрывчатых веществ.

Исследования Габера по синтезу аммиака финансировала германская промышленная корпорация BASF. Впоследствии инженер этой фирмы Карл Бош доработал технологию настолько, что уже в 1910 г. на заводах корпорации начали производить аммиак. Благодаря изобретению Габера необходимая для войны359 взрывчатка в Германии имелась в неограниченном количестве. Вскоре Габер был назначен содиректором Берлинского института физической химии и электрохимии, где продолжил работы двойного назначения. Он лично разработал способ боевого применения хлора и руководил химической разведкой в немецких войсках, инструктируя бойцов, как пользоваться газовым оружием360.

Фриц Габер всегда был патриотом Германии. В 1920-х гг. он пытался найти способ добычи золота из морской воды, чтобы Германия смогла выплачивать контрибуции. Правда, он довольно быстро пришел к выводу, что это экономически невыгодно. Мало кто помнит, что Фрицу Габеру принадлежит не одно печальное научное открытие. Он сыграл ключевую роль в развитии химического оружия во время Первой мировой войны, несмотря на запрет Гаагской конвенцией (1907 г.), ратифицированной Германией. В 1920-х гг. ученые, работавшие в его институте, создали отравляющее вещество «Циклон Б» на основе синильной кислоты, нанесенной на пористый инертный носитель. Его использовали как инсектицид, в особенности как фумигант в виде гранул. Также «Циклон Б» применялся для уничтожения узников в газовых камерах Освенцима и других концентрационных лагерей.

Фриц Габер защищал химическое оружие от обвинений в негуманности, и нацисты быстро оценили его способности, предложив ему дополнительное финансирование. Но вскоре Габер получил предписание уволить из штата своей лаборатории всех евреев. В ответ он послал письмо, в котором написал: «…за 40-летнюю службу я подбирал своих сотрудников по их интеллектуальному развитию и характеру, а не на основании происхождения их бабушек, и я не желаю в последние годы моей жизни изменять этому принципу». В 1933 г. он решил переехать в Англию, но там не прижился. Эрнест Резерфорд361 демонстративно отказался пожать ему руку. Год спустя Габер умер по дороге в Палестину362, но производство инсектицида «Циклон Б» продолжало расти в условиях военного времени.

Процесс Габера–Боша — основа нашего сегодняшнего благополучия

Но за главное изобретение Фрица Габера, сделавшее его в 1918 г. Нобелевским лауреатом, мы должны быть ему благодарны. Это процесс синтеза аммиака Габера–Боша, при котором атмосферный азот «связывается», превращая воздух в… деньги363. В этом процессе недеятельный азот из атмосферы превращается в полезный аммиак в присутствии катализатора. Затем путем соединения аммиака с кислородом при температуре 800°С получают азотную кислоту. Синтез аммиака из атмосферного азота не ограничен исходным сырьем, и с этой точки зрения предприятия могут располагаться там же, где расположены потребители, способные обеспечить платежеспособный спрос. Речь идет о производствах, которым синтез необходим для производства удобрений, позволяющих повысить урожайность в сельском хозяйстве, или предприятиях, производящих порох.

Важным свойством процесса Габера – Боша является его безотходность. Реакция образования аммиака из водорода и азота равновесная и экзотермическая, поэтому при высоких температурах, которые необходимы для достижения приемлемой скорости реакции, теоретический выход составляет 100%! Результат этого процесса для человечества трудно переоценить. Технология производства азотных удобрений, которое вначале осуществлялось только в развитых странах так называемого «золотого миллиарда», стала широко применяться в развивающемся мире. Там рост начался в 1950-х гг., когда в течение десятилетия мировое производство аммония удвоилось. К 1975 г. этот показатель увеличился уже в четыре раза, и после короткого спада, который пришелся на начало 1980 г., производство возросло до 130 млн т к концу XX в.

Парадокс — одно изобретение Фрица Габера погубило больше людей, чем две американские ядерные бомбы, а другое стало одной из главных инноваций в истории человечества, и ему обязаны жизнью от двух до трех миллиардов человек на Земле!

Вклад Ричарда Никсона в рост и становление Китая

Особое значение использование азотных удобрений имеет для Китая. Благодаря им население Китая стало столь многочисленным. Основная пища в Китае не мясная, а растительная — 80% всех калорий приходят в организм с растительной пищей только благодаря азотным удобрениям. По крайней мере 600–700 млн человек в Китае сегодня живут только благодаря этой технологии.

В феврале 1972 г. президент США Ричард Никсон прилетел в Китай, где удостоился личной аудиенции тогдашнего лидера Поднебесной Мао Цзэдуна. Международная телевизионная аудитория с удивлением наблюдала, как Никсон, ярый антикоммунист, аплодировал китайскому балету, сюжет которого был «коммунистической пропагандой»364. Из китайско-американского совместного коммюнике по окончании недельного визита Никсона в Китай стало ясно, что совместное противостояние Советскому Союзу стало той основой, что свела вместе эти две стороны. В 1973 г. Китай и США открыли «офисы связи» (фактически центры обмена разведданными о передвижении советских войск) в столицах своих государств. Хотя Никсон вскоре после Уотергейтского скандала покинул свой пост, дело по сближению двух стран продолжили его преемники.

Визит Никсона и нормализация отношений с Китаем позволили решить главную китайскую проблему — накормить народ. Это в настоящее время Китай в основном сам обеспечивает себя продуктами питания. А в 70-е гг. прошлого века страна вплотную подошла к границе, за которой мог начаться массовый голод. С 1952 по 1957 г. общая площадь под сельскохозяйственными культурами сначала выросла на 11%, а впоследствии несколько сократилась из-за интенсивного использования сельскохозяйственных угодий и получения с них нескольких урожаев в год.

После визита американского президента была сделана ставка на азотные удобрения. В 1970-е гг. Китай закупил за рубежом, прежде всего в США, более десятка современных химических заводов по производству мочевины. Эти заводы уже к 1992 г. поставляли почти 16 млн т азотных удобрений в год, что превратило Китай в крупнейшего производителя этого основного элемента питания растений. Средняя урожайность зерновых культур в период с 1950 по 1997 г. в Китае существенно возросла: пшеницы — в пять раз, кукурузы — почти в четыре раза, риса — в три раза. Это повышение урожайности произошло в основном после 1975 г. в связи с доступностью азотных удобрений. Если в конце 1990-х гг. в США применяли около 50 кг азота на гектар, то в Китае в настоящее время вносится более 240 кг удобрений на 1 га посевной площади. В пяти провинциях с наиболее интенсивным развитием культивации с населением, равным США, зафиксировано предельное значение — 300 кг на гектар! Теперь азотные удобрения обеспечивают около 60% питательности зерновых культур в Китае, а более 80% белка в стране получают из зерновых культур. Приблизительно половина всего азота в продуктах питания в Китае неорганического происхождения — из удобрений.

Для обеспечения дальнейшего роста численности населения Китаю нужно зерно, а значит, необходимо наращивать производство азотных удобрений. В итоге на орошение в условиях ограниченности земельных угодий может не хватать воды. Есть смысл прислушаться к прогнозам зарубежных специалистов, утверждающих, что ежегодная потребность Китая в импортном зерне может составить от 55 млн до 175 млн т.

Экологические последствия применения азотных удобрений в Китае

Похоже, что Китай попал в хорошо известную со времен Римской империи ловушку прогресса. Крен в сторону азотных удобрений в Китае365 привел к значительному увеличению выбросов в атмосферу закиси азота — одного из наиболее «сильных» газов, ответственных за развитие парникового эффекта.

Производство азотных удобрений в Китае росло с 1949 до 1990 г. и сопровождалось повышением урожайности зерновых растений вследствие постоянного повышения уровня связывания азота. Но с начала 1990-х гг. уровень почвенного связывания азота и урожайность снижались, хотя удобрений с каждым годом использовалось все больше и больше. Если в 1990 г. использование удобрений позволяло повысить урожайность в среднем на 53%, то в настоящий момент (при использовании большого количества удобрений) этот показатель составляет лишь 49%. Это значит, что в Китае значительная часть удобрений расходуется впустую и вместо того, чтобы увеличивать рост биомассы, увеличивает лишь атмосферную эмиссию закиси азота. Использование азотных удобрений во многих регионах Китая возможно снизить на 60% без серьезного снижения урожайности сельскохозяйственных культур. Но китайские фермеры366продолжают наращивать использование химических удобрений, пытаясь увеличить показатели урожайности. Согласно исследованию Института земель и удобрений, общее количество химических удобрений, которые сейчас используются в Китае, увеличилось с 1980 г. на 225%, тогда как урожайность повысилась всего на 40%. Эксперты предупреждают о негативных последствиях таких действий. На 1 га земли в Китае сейчас приходится 240 кг азотных удобрений. Это 151%, 159% и 329% от количества удобрений соответственно во Франции, Германии и США, а уровень урожайности в Китае на 10–30% меньше, чем в этих странах. Исследователи из Института прикладной экологии Китайской академии наук в Пекине пришли к выводу, что причиной загрязнения пяти больших озер в Китае на 35–97% является чрезмерная поставка питательных веществ в водоемы и наличие там большого количества органических веществ367.

Согласно статистике министерства сельского хозяйства Китая, более 40% сельскохозяйственных земель непригодны для использования из-за эрозии почвы, истощения земли, щелочности или кислотности почвы. Общая площадь загрязненных земель составляет 10 млн га. Низкий уровень урожайности зафиксирован на 67% площади пахотных земель.

Вот что пишет уже неоднократно упоминавшийся на этих страницах американский эволюционный биолог и физиолог Джаред Даймонд в своей книге «Коллапс» (Даймонд, 2008, глав 12):

«Качество воды в Китае продолжает ухудшаться из-за стока промышленных и городских отходов, а также попадания в воду сельскохозяйственных и аквакультурных удобрений, пестицидов и навоза, что приводит к эвтрофикации (ухудшению качества воды из-за избыточного поступления в водоем так называемых "биогенных элементов"). Около 75% озер Китая и почти все прибрежные воды морей загрязнены. Число "красных потоков" в китайских морях — цветущего планктона, токсины которого ядовиты для рыб и других обитателей океана, — увеличивается примерно до сотни за год по сравнению со всего лишь одним за каждые пять лет в 1960-е гг. Китай является одной из стран, больше всего страдающих от эрозии. Качество и плодородность почв, как и их количество, снизились частично из-за длительного использования удобрений, а также из-за вызванного пестицидами резкого уменьшения численности обновляющих почву дождевых червей. Это послужило причиной 50%-ного снижения площади пахотных земель предположительно высокого качества. Засоление почв поразило 9% земель Китая, это произошло главным образом из-за некачественной конструкции и плохого управления системами орошения в засушливых районах. Опустыниванием, вызванным чрезмерными стравливаниями пастбищ и мелиорацией земли для сельского хозяйства, поражено более четверти всего Китая и разрушено около 15% территории Северного Китая».

Однако беды Китая — не только его беды. Жители Хабаровска, например, очень хорошо знакомы с таким явлением, как «желтый» снег368, а экологические катастрофы на Амуре уже стали привычными. Как справедливо замечает Джаред Даймонд, «Китай не перестанет стремиться к уровню жизни развитых стран, но у планеты просто не хватит ресурсов, чтобы поддерживать такой уровень жизни для всех сразу — и для Китая, и для других стран третьего мира, и для уже существующих развитых стран» (Даймонд, 2008). А ведь на очереди еще и Индия, где всегда были проблемы с водой, а из 20 городов мира с самым загрязненным воздухом 13 городов находится в Индии369.

Получается, что мы отчаянно нуждаемся в предпринимателях новой волны уровня Эдисона, Теслы, Форда, которые смогут придать технологиям «закрытый цикл», позволив «Большому очистительному баку» (природе) немного передохнуть. Благодаря организационному гению лидеров технической революции (Эдисона, Теслы, Форда) и многих других великих менеджеров начала века фирма как организационный феномен вошла в процесс накопления общественного богатства и стала частью финансового мира. Созданные биржи начали в невиданных ранее масштабах оперировать «портфелями» фирм, производными от которых стали индексы, рейтинги, новые информационные бизнесы. Изобретатели и ученые не мыслили более конвейер собственных изобретений без возможности коммерциализации своего «волшебства», часть которого стала жизненно необходимой нам. Любая достаточно развитая технология неотличима от волшебства, но, как утверждал Терри Пратчетт, «в девяти случаях из десяти волшебство — это всего лишь знание некоего факта, неизвестного остальным» (Пратчетт, 2011). Осталось совсем немного — убрать мусор за волшебниками.

https://bookmate.com/a/4/d/T3rEBGDH/contents/OEBPS/eFt7Nkkg.jpg

Экспорт знаний из Европы в США в XIX–XX вв. происходил отчасти по экономическим причинам, а отчасти из-за нестабильности, вызванной наполеоновскими войнами в Европе. Возникший мировой спрос на хлопок привел к тому, что США стремительно нарастили тоннаж торгового флота. Паровоз и другие «паровые инновации» стали катализатором раздела американского общества на Юг и Север, война которых была войной двух техноплатформ. С началом войны между ними резко возрос спрос на инновации во всех областях. Технологии переработки мазута, нефти, железной руды, хлопка получили дополнительное развитие как потенциальный источник экспортной выручки для борьбы с соперником, но главный спрос на инновации возник в новой области — электротехнике. Телеграф не столько поменял ход военных действий, сколько ускорил американские бизнес-циклы, ведь информация стала ресурсом, который передавался теперь по проводам и мгновенно! Стали невозможны такие спекуляции, как та, что реализовал Натан Ротшильд после битвы при Ватерлоо, имея преимущество в скорости получения информации.

Техническая революция имела своего героя. Им стал Томас Эдисон. Благодаря его гению США получили инновации, которые легли в основание стольких новых отраслей, что можно смело говорить о новой индустриальной платформе. Телефон, фонограф, первое электрическое освещение, лампочки и первый конвейер изобретений (лаборатория гения в Мерло-Парке) — все связано исключительно с его именем. С появлением другого гения и конкурента, Николы Теслы, разразилась «война токов». Эта необычайная конкуренция привела к небывалому прогрессу электротехники, где значительный практический вклад в мировую историю внес выходец из России Доливо-Добровольский, создав работающую и поныне схему электродвигателя.

«Электрический мир» привел в движение всю мировую экономику. Вообще тенденция, при которой каждая следующая техноволна захватывает более значительные площади для своей реализации, чем предыдущая, проявляется все ярче. Нашлось новое применение для нефти. Холодильники, аэропланы, автомобили, бензин и открытие Фрица Габера защитили человечество от угрозы голодной смерти. С этого момента человечество начало стремительно богатеть, а природа не менее стремительно терять свою базу для развития — биоразнообразие — вследствие техногенной деятельности людей во всем мире!

 

ГЛАВА 10. НАУЧНО-ТЕХНИЧЕСКАЯ И ИНФОРМАЦИОННАЯ РЕВОЛЮЦИИ. КАК АТОМ, КОСМОС И ТВОРЧЕСКИЙ КЛАСС ВЫДВИНУЛИ ИННОВАЦИИ НА ПЕРВЫЙ ПЛАН

Когда человек родится, он слаб и гибок, когда умирает, он крепок и черств. Когда дерево растет, оно нежно и гибко, а когда оно сухо и жестко, оно умирает. Черствость и сила — спутники смерти, гибкость и слабость выражают свежесть бытия. Поэтому что отвердело, то не победит.

Аркадий и Борис Стругацкие. Киносценарий «Сталкер»

 

https://bookmate.com/a/4/d/T3rEBGDH/contents/OEBPS/VRqBVBGK.jpg

https://bookmate.com/a/4/d/T3rEBGDH/contents/OEBPS/P2stoaau.jpg

Атомная промышленность

Период научно-технической революции (1945–1980) — золотое время для нашей страны и время, когда наука во всем мире превратилась фактически в ведущий фактор производства. Мы можем по праву гордиться тем, что первая в мире атомная электростанция была построена именно нашими соотечественниками в СССР. Она появилась всего лишь десятилетие спустя после Хиросимы. Создание атомной промышленности было связано с другим стратегическим проектом — созданием ядерного оружия370.

Я уверен, что читателям не нужно напоминать о роли Игоря Васильевича Курчатова в становлении нашей атомной промышленности. Его исследовательский центр был создан в Москве в разгар Великой Отечественной войны — в 1943 г., а уже в 1946-м. на реакторе «Ф-1» была осуществлена первая цепная реакция по делению ядер. При этом промышленного реактора в мире на тот момент не существовало.

https://bookmate.com/a/4/d/T3rEBGDH/contents/OEBPS/pagneIrp.jpg

крайне чувствительная тема

«Крайне чувствительной темой» американские дипломаты называют области науки или промышленности, в которых прогресс других стран крайне нежелателен для США.

28 сентября 1942 г. в СССР вышло распоряжение Госкомитета по обороне «Об организации работ по урану»371. В этот день была дана отмашка на создание советской ядерной инфраструктуры. Появилась специальная лаборатория АН СССР, к работе подключался Радиевый институт, Институт физики и математики АН Украинской ССР (тогда там работал Ф. Ф. Ланге372, специалист по центрифугам) и Ленинградский ФТИ (где получили необходимое для исследований количество U-235). Ответственным лицом был назначен академик А. Ф. Иоффе373. Осенью 1942 г. подчиненный Иоффе И. В. Курчатов начинает знакомиться с донесениями советской разведки, посвященными вывезенным из Норвегии 180 кг «тяжелой воды»374. Этих данных оказалось достаточно, чтобы Курчатов сделал вывод об отставании СССР от Великобритании и США в деле разработки ядерного оружия. Он написал записку своему руководителю, где сформулировал главные вопросы, ответы на которые должна была добыть советская разведка.

17 июня 1942 г. глава Национального комитета по оборонным исследованиям США и один из организаторов Манхэттенского проекта доктор Ванневар Буш направил президенту США подробный доклад, где указывал, что создание ядерного оружия вполне возможно. 2 декабря того же года в США под руководством итальянца Ферми впервые осуществили деление ядер урана.

Советской разведке удалось получить доступ к некоторым материалам. В 1943 г. Курчатов сделал для СССР то, о чем участник Манхэттенского проекта Теллер скажет в 1962 г.: «Производство расщепляющихся материалов — самый трудный момент в создании бомбы. Когда страна достигает этого и успешно осуществляет, можно считать, что через несколько месяцев она будет обладать бомбой»375. Его слова полностью подтверждает нашумевшая история, которая случилась уже в наше время.

В 2011 г. в США вышла книга Дэвида Сэнгера «Конфронтация и сокрытие: Тайные войны Обамы и удивительное использование американской мощи» (Sanger, 2013). В книге автор прямо говорит об американо-израильском происхождении компьютерного вируса — цифрового червя Stuxnet, остановившего работу завода по обогащению урана в иранском городе Натанце. Причем ровно в тот момент, про который говорил Теллер. Компьютерный вирус вывел из строя все имеющиеся центрифуги. Согласно плану, хитроумный вирус Stuxnet должен был там и остаться, однако из-за проблем в коде376 он распространился за пределы предприятия.

Курчатов для нас, русских, — то же, что для американцев Эдисон. Ему удалось собрать команду для организации конвейера изобретений. Разработку промышленного реактора Курчатов поручил Николаю Антоновичу Доллежалю, который был химиком и машиностроителем и не имел отношения к ядерной физике. Устройство реактора было ясно только в общих чертах. Однако, опираясь лишь на общие сведения о сути будущих реакций деления атома, НИИхиммаш и коллектив Доллежаля сумели уже к 1948 г. построить плутониевый завод, а в августе следующего года СССР провел успешные испытания первой атомной бомбы. Создав для страны ядерный меч, Курчатов смог переключиться на задачу создания мирного щита — новой отрасли энергетики, основанной на атомной энергии. По его поручению Доллежаль и Савелий Моисеевич Фейнберг спроектировали реактор для будущей атомной электростанции. Фейнберг делал физические расчеты, хотя по образованию он был инженером-строителем. Физике его обучал в 1944 г., по воспоминаниям двоюродного брата Фейнберга377, сам академик Курчатов. Обучал, как видно, весьма добросовестно, поскольку все сложнейшие расчеты Фейнберг сделал сам. Так, благодаря трем гениальным ученым и энтузиазму их соратников установка, предназначенная для производства оружейного плутония, превратилась в привычный нам сегодня ядерный реактор.

Первую атомную электростанцию было решено строить в Обнинске. Тогда не было ничего: ни теории реакторов (поскольку даже мощность первого реактора была величиной случайной), ни научных кадров, ни в достаточном количестве оборудования, ни жилья, ни асфальта. Был огромный послевоенный энтузиазм.

КПД атомной установки зависел от устройства топливных элементов (твэлов). Процессы, протекавшие в них, были очень сложны. После многочисленных испытаний выбрали твэлы, разработанные Владимиром Малых, с ураново-молибденовым порошком. Все, кто хотя бы поверхностно знаком с устройством твэлов, знают, насколько серьезные требования предъявляются к герметичности швов. В ходе работы над реактором была создана новая, уникальная технология, и в июне 1954 г. станция уже вырабатывала первый ток.

С тех пор существенно усложнились применяемые технологии и степень контроля над ними. С появлением атомной энергетики знания стали играть не только ключевую экономическую роль, но и служить основой безопасности. Однако прогресс даже в этой отрасли, где позиции нашей науки были традиционно сильны, не идет гладко. Кроме того, именно здесь хорошо заметны «наши родовые пятна» — проблемы, характерные для страны.

Освоение космоса

Другой важнейшей отраслью, где мы можем по праву считаться пионерами, стали космические исследования. Космонавтика и сегодня катализатор научной мысли, требующий постоянных инноваций и создающий их. Она вытягивает на себе множество смежных областей экономики. Сами ученые этой индустрии в шутку определяют главную задачу отрасли как поимку бабочки на обратной стороне Луны. Задача сама по себе странная, зато сколько полезных проблем можно решить на пути к ней.

Современная космонавтика невозможна без носителей, способных преодолеть притяжение Земли. И носитель этот только один — ракета. Сама идея, принципиальная конструкция и ее успешная реализация благодаря Константину Эдуардовичу Циолковскому и Сергею Павловичу Королеву стали русским проектом. Появление такой фигуры, как Королев, и его детища — знаменитой ракеты Р-7 — было бы невозможно без предвоенного энтузиазма Страны Советов в отношении перспектив авиации378. Это та же история, что и у американцев в отношении первых автомобилей. Чтобы понять, как реально воплощался этот энтузиазм, достаточно посмотреть на тираж журнала «Математика и физика в средней школе». Первый выпуск его состоялся в 1934 г. Тогда он вышел тиражом 15 000 экземпляров. К 1960 г. его тираж увеличился до 150 000, а к 1986 г. достиг 450 000! Издание выходит и в наши дни, но тираж в 2014 г. составил лишь 10 000. Не в этом ли кроется часть наших нынешних проблем?

Энтузиазм и дерзость первопроходцев позволили СССР в октябре 1957 г. запустить первый спутник. Идее искусственного спутника Земли (ИСЗ) мы обязаны, как и в случае атомного проекта, прежде всего трем выдающимся людям. В 1954 г. Мстислав Всеволодович Келдыш, Сергей Павлович Королев и Михаил Клавдиевич Тихонравов написали письмо в правительство СССР с идеей создания искусственного спутника Земли. Мстислав Келдыш, который, как и Фейнберг у Курчатова, отвечал у Королева за расчеты (особенно велика его роль в успехе советской лунной программы), долгое время был неизвестным на Западе ученым. Его имя и род деятельности в СССР специально не афишировали. Это давало определенные преимущества — он мог свободно выезжать и общаться со своими западными коллегами на научных конференциях. 4 октября 1957 г. СССР произвел успешный запуск первого в мире ИСЗ, а через месяц — второго, в кабине которого находилось живое существо — собака Лайка.

США тут же включились в космическую гонку, но две их первые попытки в 1958 г. закончились неудачно. Третья была успешной. За 1958–1959 гг. из 11 попыток вывести космические аппараты на орбиту удачными были только три.

В СССР в тот период освоение космоса шло успешнее. Однако, если бы не попытки американцев, у человечества в то время не появились бы солнечные батареи, точные данные о состоянии атмосферы, подробные карты Тихого океана и многие другие новации.

Наш же счастливый клевер означал, что ученые были востребованы и мотивированы, финансирование программ космоса имело первоочередное значение, а успехи отрасли становились предметом гордости всего общества.

В 1957 г. СССР выводит первый спутник на орбиту и в 1959 г. осуществляет фотографирование обратной стороны Луны. У американцев не было прямых контактов с советскими учеными. Они следили за нашими успехами «инструментально» — через телескопы и радиоволны. Успехи русских шокировали их, поскольку через средства объективного контроля они стали свидетелями немыслимого. Русские нацелились, а потом попали своей ракетой в ту область на Луне, куда хотели, затем запустили еще несколько ИСЗ с интервалом в месяц. А 12 апреля 1961 г. с расположенного в Казахстане советского космодрома «Байконур» произвели запуск межконтинентальной баллистической ракеты Р-7 с пилотируемым космическим кораблем на борту, внутри которого находился первый космонавт в истории планеты Земля Юрий Алексеевич Гагарин. И этот запуск тоже прошел успешно, подтвердив окончательное первенство СССР.

Американский ответ состоялся менее чем через месяц после полета Ю. А. Гагарина. 5 мая 1961 г. капитан 3-го ранга Алан Шепард стал первым американским астронавтом. Однако догонять Советский Союз, повторяя его достижения, было не в духе американцев. Требовалось что-то более грандиозное, такое, как лунная программа. В том же году, когда Гагарин произнес свое знаменитое «Поехали!», президент США Кеннеди заявил, что американцы должны в течение десятилетия высадить человека на Луну и благополучно вернуть его на Землю. Целью этого самого крупного проекта на Земле был прежде всего имидж государства. Космические «Аполлоны» потянулись в сторону Луны, подтверждая экономическую и технологическую мощь США.

Русские, конечно, сдаваться не собирались. В 1965 г. космонавт Алексей Архипович Леонов первым вышел в открытое космическое пространство.

Сегодня для нас это обыденность, но не надо забывать, что космонавтика — до сих пор дело отчаянных людей и передовых наций. Ракета несет в себе окислитель для горения, а это значит, что любая неисправность способна привести к катастрофе. В 1967 г. американский экипаж одного из первых «Аполлонов» сгорел за несколько секунд в атмосфере чистого кислорода. Наш полковник Владимир Комаров погиб в новом тогда космическом корабле «Союз-1», хотя сегодня этот аппарат конструкции 1967 г. считается самым надежным. Его надежность подтвердит любой западный астронавт, несмотря на то что в «Союзе» придется согнуться в три погибели, а в американском «шаттле» можно комфортно сидеть. Надежным был уже первый «Союз», но тогда подвела парашютная система, и Комаров погиб от удара о Землю. Эти жертвы были первыми.

Начиная с 80-х гг. прошлого столетия космонавтика в некотором роде «приземляется», начинает играть роль важнейшей отрасли, без которой невозможны исследования природных ресурсов и анализ их состояния. Она обеспечивает контроль за лесными ресурсами в целях оперативного тушения лесных пожаров, поиск нефтяных пятен, пропавших авиалайнеров, контроль за загрязнением воздуха, а в России еще и контроль за незаконным строительством. Небесным оком стали спутники. Эти средства объективного контроля позволили СССР проложить маршрут железнодорожной трассы Байкало-Амурской магистрали, а США — с середины 70-х гг. прошлого столетия улучшить прогнозирование климатических условий для сельского хозяйства. Благодаря искусственным глазам и ушам на небе мы ежесекундно наблюдаем за океанскими просторами, зарождающимися там ураганами и тайфунами, сохраняя жизни десятков тысяч людей. Оцениваем рыбные запасы и направления океанских течений, прокладываем курс судов вдали от айсбергов и ледников. Русская ГЛОНАСС и американская GPS уже означают персональную навигацию, и в военном деле их роль очевидна.

Если вас попросят кратко охарактеризовать прошлое столетие, что вы скажете? Скорее всего, это будут следующие теги: «электричество», «атом», «нефть», «космос» и «телевидение».

Телевидение

Успехи в космической сфере приобрели необычайную популярность еще и потому, что к 1960-м гг. и в СССР, и в США массовое распространение получил новый канал распространения информации — телевидение379. В 1933 г. в США русский эмигрант Владимир Зворыкин продемонстрировал «иконоскоп» — передающую электронную трубку. Принято считать, что именно Зворыкин является отцом электронного телевидения, хотя приблизительно в это же время независимо от него передающую трубку создал и советский ученый С. Катаев.

В 1925 г. шотландскому инженеру Джону Бэрду удалось впервые добиться передачи распознаваемых человеческих лиц380. Первый же электронный телевизор, пригодный для практического применения, был разработан в конце 1936 г. в американской научно-исследовательской лаборатории корпорации RCA381, возглавляемой Зворыкиным. Именно появление телевидения в послевоенный период можно считать третьим революционным достижением в развлекательной индустрии после создания кинематографа в конце XIX в., а также после изобретения синхронного звука в 20–30-х гг. XX в. Систему цветного телевидения Зворыкин разработал еще в 1928 г., но ее реализация стала возможной лишь к 1950 г.

Мало кто помнит, но телевидение в СССР появилось еще в 1938 г. В 1932 г. при разработке очередного пятилетнего плана телевидению было уделено много внимания. 15 ноября 1934 г. впервые состоялась трансляция телевизионной передачи со звуком. В 1938 г. в СССР были введены в эксплуатацию первые опытные телевизионные центры в Москве и Ленинграде, начался серийный выпуск консольных приемников382. После войны дело было продолжено. Если в 1953 г. работали только три телевизионных центра, то в 1960 г. действовали уже 100 мощных телевизионных станций и 170 ретрансляционных станций малой мощности. К концу 1970 г. работало до 300 мощных и около 1000 телевизионных станций малой мощности. Такие темпы развития отрасли сегодня возможны только в Китае. 4 ноября 1967 г. вступила в строй Общесоюзная радиотелевизионная передающая станция Министерства связи СССР. Основным сооружением, в котором располагалась эта организация, стал комплекс в Останкино, а главной достопримечательностью той эпохи — телебашня высотой 540 м. Телевизионный сигнал передавался по всему СССР по кабельным и радиорелейным линиям связи383.

Сегодня первые телевизоры мы воспринимаем как «ящики», поскольку кругом уже плоские LCD-экраны и плазменные панели. А первой электронной базой для приемников были радиолампы, вытесненные полупроводниками384. Затем появились модели на основе микросхем. Интересно, что первая микросхема была, как произведение искусства, выставлена на аукцион385. Сегодня господствуют системы, где вся электронная начинка телевизора заключена в одну-единственную микросхему, а буквально завтра они потребуют уже нового, цифрового телевидения.

Не успев возникнуть, цифровое телевидение уже прошло три этапа развития. На первом этапе выполнялись научно-исследовательские и опытно-конструкторские работы, создавались экспериментальные устройства и системы, а затем принимались международные стандарты386, которые должны поддерживаться всеми организациями, ведущими телевизионное вещание и выпускающими видеопрограммы, и всеми фирмами — производителями аппаратуры. Второй этап развития цифрового телевидения — создание гибридных аналого-цифровых телевизионных систем387 с параметрами, отличающимися от принятых в обычных стандартах телевидения. Необходимость этого этапа связана с проблемой сжатия спектра телевизионных сигналов для обеспечения возможности их передачи по каналам связи с приемлемой полосой частот.

Задача сжатия изображений для хранения и передачи была настолько актуальной, что Международная организация по стандартизации ISO взяла на себя функции координации усилий по ее решению. В ISO была создана рабочая группа JPEG388, которая занимается разработкой методов сжатия неподвижных изображений, а затем рабочая группа MPEG389, занимающаяся методами сжатия движущихся изображений и звукового сопровождения. Эти рабочие группы включают специалистов из разных стран. Результатами деятельности групп являются утверждаемые ISO стандарты. Именно разработки группы MPEG стали основой создания современных систем цифрового телевидения. Уже в 1993 г., как только стало ясно, что за цифровыми телевизионными системами будущее, был принят проект DVB (Digital Video Broadcasting — «Цифровое видеовещание»).

В настоящее время системы цифрового телевидения переживают третий этап — распространение. «Цифра» решает задачу значительного увеличения количества передаваемых программ телевидения обычного разрешения, а значит, это дает быстрый коммерческий эффект. В развитых странах уже поставлен вопрос о полном переходе к цифровому телевидению. В 1999 г. и Госкомсвязи Российской Федерации одобрил «Концепцию внедрения цифровых наземных систем звукового и телевизионного вещания в России». Полный переход на цифровое телевизионное вещание планировали завершить к 2015 г., но, похоже, эти сроки сдвигаются.

Экономика услуг

Из прошлой главы мы помним, что начало века было временем становления капитализма. Это был капитализм производителя, где удачливые предприниматели-одиночки создали промышленные компании и корпорации, которые сегодня являются крупнейшими в мире. XIX в. и период вплоть до 20-х гг. XX в. были временем расцвета счастливого клевера индивидуального капитализма. Его весьма точно описали Адам Смит и Карл Маркс, а также экономисты альтернативной школы (так называемые маржиналисты). Стремление к индивидуальной прибыли было тогда главным мотивом развития общества. По классической экономической теории, несмотря на то что капиталист зарабатывал на максимальной эксплуатации труда (К. Маркс), экономическая система в целом превращала эти индивидуальные стремления в общественное благо (А. Смит).

Но уже после Первой мировой войны экономическая система развитых капиталистических государств постепенно трансформировалась в капитализм потребителя, в котором стали преобладать интересы индивидов-потребителей.

Рост производительности труда положил конец капитализму по Марксу (когда рабочему остается средств только на пропитание), но не избавил общество от постоянно повторяющихся капиталистических кризисов. «Новый курс» Рузвельта был попыткой максимально коллективизировать и опутать государственным контролем частный капитализм с целью побороть безработицу. Возникли отношения, которые целый ряд американских экономистов назвали затем институционализмом. В растущей рыночной экономике происходит передача принятия ключевых решений с индивидуального на коллективный уровень — профсоюзам, сообществам предпринимателей, государству. Во времена кризиса и депрессии эта тенденция выглядела как альтернатива тому обществу, которое довело общество до кризиса. Однако в действительности это был скорее импульсивный шаг, возникший под влиянием «успехов социализма» в СССР. Это был ход, медленно удушающий капитализм390. В 30-е гг. прошлого столетия, во времена поиска и ошибок, взошла звезда Джона Мейнарда Кейнса.

Благодаря господству воззрений Кейнса стала популярной идея о том, что у индивидуальных предпринимателей есть глобальные общие интересы, достижение которых позволяет в том числе лучше достигать целей развития общества. Главный такой интерес — рост совокупного спроса. Именно его должно предлагать обществу государство. Эта простая идея доминировала в экономической политике капитализма вплоть до 80-х гг. ХХ в. Сформировалось представление о капитализме как об обществе потребления, в котором интересы потребителя защищало государство. Казалось, что это было в интересах как работников, так и капиталистов.

С тех пор капитализм серьезно видоизменился, породив макроэкономику — науку, которая должна была сначала выработать теорию, а затем и претворить в жизнь антициклическую противокризисную политику (сдерживать совокупный экономический рост в фазе подъема экономического цикла и стимулировать его в фазе спада). Возникло динамичное общество, в котором росли как прибыли капиталистов, так и доходы работников. Но все имеет свой предел. И за бумом после Второй мировой войны последовал первый мощный кризис 1980-х гг. В этот момент был найден новый источник роста помимо производства материальных благ — производство благ нематериальных. Последние десятилетия XX в. стали периодом расцвета нового счастливого клевера — коллективного капитализма западных стран.

С начала 80-х гг. прошлого века капиталисты начали зарабатывать не на максимальной эксплуатации труда рабочих и на расширении рынков, простимулированных государственными расходами. Экономия, качество, услуги и такие нематериальные блага, как интеллектуальная собственность и бренд, — вот то, что стало создавать стоимость организационным оболочкам под названием «фирма».

В развитых странах экономика товарного производства росла очень медленно или даже стагнировала. В какой-то момент миллионы тонн добытой нефти или выплавленной стали и чугуна теряют свою значимость для страны. Важнее становится доля производства добавленной стоимости и глубина переработки в общем валовом продукте страны. В этот момент информация начинает играть все более важную роль. Сначала она позволяет фирмам экономить. Экономия приводит к сокращению производства в развитых странах и переносу производства в страны с дешевой рабочей силой, с валютой, заниженной по отношению к базовой. Экономят на любых издержках благодаря техническому прогрессу и местные фирмы. Производитель всячески стимулирует потребителя к быстрой смене поколений используемых товаров (автомобилей, бытовой техники, компьютеров)391, к еще более дорогим покупкам — от экологически чистых продуктов до солнечных батарей на крыше домов, от предметов известных брендов до узкоспециализированных товаров, — что существенно расширяет ассортимент392.

Но если производство в развитых странах сокращалось, то откуда же брались доходы людей, чтобы покупать пусть более дешевые, но не бесплатные импортные товары? На Западе ответ был найден — за счет заработка в сфере услуг и нематериальной продукции. В послевоенное время начало формироваться новое общество, которое производило все больше услуг, а не товаров. Доля услуг уже давно перевалила за 50% ВВП развитых стран. Одно слово, но за ним стоят очень разные и специфические отрасли деятельности. Особенность в том, что они могут расти почти бесконечно. Услуги можно «выделить» откуда угодно, хоть из домашней работы. Можно придумать и внедрить новую услугу. Некоторые услуги сложно накапливать, но большинство (в первую очередь финансовые) можно легко импортировать и экспортировать.

Выделение и бережное пестование любых сфер как отдельных отраслей экономики позволило западным странам «углубить финансовую систему своих экономик» (увеличить долю услуг в ВВП). Одной из причин краха стран с плановой экономикой было то, что там просто «проспали» это качественное изменение в капитализме. Более подробно речь об этом пойдет в следующей главе.

К концу 1990-х гг. сфера услуг в ведущих зарубежных странах уже выросла в крупнейший сектор хозяйства. Суммарная доля транспорта, связи, оптовой и розничной торговли, кредитно-финансовых учреждений, страхового бизнеса, бытовых, деловых и социально-культурных услуг достигла 60–70% как в ВВП, так и в общей численности занятых работников. Капиталовложения в новые сферы экономики превысили 50% общего объема инвестиций.

Одна из главных закономерностей того времени — опережающий рост сферы услуг в сравнении с материальным производством. Экономический рост этих лет произошел за счет синтеза научных знаний, нематериальных форм накопления, информационных технологий, а также глобализации хозяйственной деятельности (оказания услуг во всемирном масштабе). Сегодня пятая часть всей мировой торговли приходится на торговлю услугами (рис. 15).

В 1980–1997 гг. торговля услугами еще больше возросла (в три раза), достигнув в 1997 г. $2605 млрд (Николаева, 2006, с. 217). За последние два десятилетия темпы роста экспорта товаров и услуг опережали рост мирового валового продукта. Главный фактор экономии издержек при оказании услуг — это привлечение в сферу услуг внутри страны дешевой миграционной рабочей силы. Более подробно поговорим об этом в следующих главах.

О ценности одной из ключевых услуг — современного управленческого консалтинга — можно спорить бесконечно (Шервуд, 2016). Консалтинг как отдельная отрасль берет начало с McKinsey & Company, которую в 1926 г. основал бывший преподаватель бухгалтерского учета в Чикагском университете Джеймс Маккинзи. Вначале они за деньги консультировали по финансовым и бюджетным вопросам, но приспособиться к процессам, сопровождавшим индустриализацию в США, было непросто. Возник спрос на квалифицированных советников. Сам Маккинзи всегда был убежден, что для дальнейшего процветания даже самой успешной компании необходим консультант. До Маккинзи консультанта звали для решения насущных проблем, а после — для получения информации у экспертов о том, что будет завтра393.

https://bookmate.com/a/4/d/T3rEBGDH/contents/OEBPS/bxveRZua.jpghttps://bookmate.com/a/4/d/T3rEBGDH/contents/OEBPS/iZx9EFTI.jpg

парадокс понятий «нематериальные активы» и «гудвилл»394

Рост ВВП развитых стран за счет продвижения услуг вызвал к жизни парадоксальные и неведомые доселе проблемы — отношение к интеллектуальной собственности и оценку стоимости нематериальных активов. Современными техническими средствами можно произвести любое количество копий объекта интеллектуальной собственности (музыка, фильм, книга, программа). Сами объекты стоят дорого, а материальные носители обходятся в минимальные деньги. Конфликт налицо: законодательство об интеллектуальной собственности — это в чистом виде монополия производителя. В ответ потребители просто «заимствуют» созданные интеллектуальные объекты.

Компенсацию потерь от пиратства производители продуктов на основе интеллектуальной собственности учитывают в цене, а это, в свою очередь, провоцирует дальнейшее увеличение «воровства». Ситуация тупиковая, а со вступлением в эту игру Китая подделывают практически всё. Пиратские партии, движение «за открытый код» среди программистов в пользу бесплатного предоставления объектов интеллектуальной собственности — это современные формы разворачивающейся борьбы. Компании отчаянно нуждаются в инновации — изобретении работоспособной бизнес-модели.

Запутанной остается ситуация с понятием «гудвилл» — показателем деловой репутации фирмы. По своему определению «деловая репутация организации» — это разница между покупной стоимостью организации и стоимостью ее по бухгалтерскому балансу. Проще говоря, это стоимость ее бренда. На деле это всего лишь разница между завышенной оценкой фирмы со стороны биржи и чистой стоимостью принадлежащих ей активов. Сегодня эта стоимость есть, завтра биржевой кризис — и ее нет!

Что же касается России, то ее позиция на мировом рынке услуг такова: она входит в тридцатку стран — участниц международной торговли услугами, но продолжает оставаться нетто-импортером услуг. На Россию приходится 1,4% мирового импорта услуг и 1,0% мирового экспорта.

Рост творческого класса

Рост доли услуг в ВВП развитых государств не мог не привести к серьезным изменениям в социальной сфере и обществе. Появились совершенно немыслимые для человека начала прошлого века новые степени свободы — например, свобода одеваться на работе так, как нравится. Огромными свободами пользуются женщины, национальные и сексуальные меньшинства, практически абсолютной является свобода выбора работы, места жительства, включая и право поменять государство. Это не могло не сказаться на появлении целой прослойки людей — носителей новых культурных (для кого-то антикультурных) ценностей. С легкой руки американского экономиста Ричарда Флориды они получили название «творческий класс». Этот термин Флорида придумал в 2001 г. (Флорида, 2005): «Ядро творческого класса составляют люди, занятые в научной и технической сфере, архитектуре, дизайне, образовании, искусстве, музыке и индустрии развлечений, чья экономическая функция заключается в создании новых идей, новых технологий и нового творческого содержания».

Сразу после Второй мировой войны такие люди составляли лишь 15% населения США, в настоящее время — почти треть. Как утверждает Флорида, именно творческий класс становится сейчас главным источником экономического развития395. Именно этот класс сегодня создает в развитых странах повестку дня, служит образцом для подражания и формирует общественное мнение. В отличие от рабочего и обслуживающего классов, представители творческого класса предпочитают вертикальному продвижению по служебной лестнице горизонтальное перемещение и смену мест работы в пользу наиболее творческой. Для людей данной группы характерной чертой также является ярко выраженное чувство индивидуальности и личной свободы.

Среди профессий, которые имеют представители творческого класса, — люди искусства, артисты и художники, бренд-менеджеры, дизайнеры, ученые и инженеры, PR-специалисты и маркетологи, интеллектуалы, сотрудники медиа — словом, все те, для кого новации и следующие за ними инновации составляют самую суть производства их услуг. Многие из них — это те, кто нуждается в знаниях и даже создает творческие идеи, но не всегда является инноватором. Это еще и врачи, учителя, юристы, финансисты и управленцы. Это участники основанной на знании высокотехнологичной экономики, требующей творческого мышления и способности нешаблонного решения задач.

Флорида обнаружил новую тенденцию: сейчас многие фирмы переезжают в те регионы, где есть творческие специалисты, а не наоборот. Работая с представителями творческого класса, он выяснил, что они движутся не за рабочими местами — их выбор основан на интересах и образе жизни. Такие города («творческие центры» в терминологии Флориды) обеспечивают целостную систему и место обитания, где могут процветать все формы творчества: «Спортивные арены, скоростные магистрали, универмаги и центры туризма и развлечений, напоминающие парки отдыха, для представителей творческого класса не имеют значения или даже воспринимаются ими негативно. Они ищут такие районы, где есть высокоразвитая инфраструктура, поощряются индивидуальные отличия и разнообразие, есть возможность заявить о себе как о творческой личности». Идеология Флориды напоминает потускневший советский тезис о всестороннем развитии личности строителя коммунизма, хотя отличия есть. Основные характеристики «творческой среды» Флорида выражает в концепции «трех Т» экономического развития: технология, талант, толерантность.

https://bookmate.com/a/4/d/T3rEBGDH/contents/OEBPS/YAyA3aok.jpg

важный факт или подлинный творческий класс в россии

По оценке специалистов Фонда эффективной политики, Россия занимает второе после США место в мире по абсолютному числу работников, занятых в творческих профессиях, — около 13 млн человек. Для сравнения: в США их около 38 млн человек, иными словами, 30% всех работающих американцев принадлежат к этому классу (Назарова, 2012). Это население крупных городов, материально обеспеченный и образованный слой общества в возрасте от 20 до 45 лет. После всплеска политической активности в конце 2012 г. в российской прессе под «креативным классом» стали ошибочно (ограничивая это понятие только ими) понимать людей определенных политических взглядов (либеральную оппозицию) и так называемых хипстеров396.

Информационная революция

Появление творческого класса отразилось на обращении с ключевым для нашего времени ресурсом — информацией. Два процесса — социальные изменения в обществе вследствие появления нового класса, а также информационная революция — обеспечили переход общества в новое, более «плотное» информационное состояние путем смены старых технологий коммуникаций. Я бы даже провел аналогию с уплотнением нейронных связей в мозге (рис. 16).

Замена аналоговых и электронно-механических коммуникационных устройств на новые цифровые привела к появлению новых способов синтеза знаний и обработки информации. Это вызвало рост плотности информационной сети при новых способах межличностных коммуникаций, а также широкий и облегченный доступ к накопленным знаниям через Интернет. С этого момента знания и информация становятся не просто критически важными элементами, а главными источниками повышения производительности. Любой процесс производства или создания услуг всегда основан на определенном уровне знаний и на конкретных приемах обработки информации. В своей модели я называю это дизайн-схемой.

https://bookmate.com/a/4/d/T3rEBGDH/contents/OEBPS/XIaruQga.jpg

Прогресс технологий обеспечил очередной рост творческого класса в развитых обществах. Надеюсь, вы заметили, что в модели счастливого клевера я постоянно провожу мысль о том, что инновации всегда концентрируются вокруг социальных процессов, исторически протекающих в сферах производства, приобретения профессионального опыта или распределения власти.

Правда, новые информационные технологии охватывают пространство планеты с различной скоростью. Казалось бы — чисто технологический параметр. Но для огромного количества людей из развивающихся стран он является источником неравенства, создавая риск исключения целых стран из мирового разделения труда из-за невозможности доступа к информационной инфраструктуре. Все потому, что государства, а не отдельные изобретатели, как в начале прошлого века, пытаются стать главным двигателем информационной революции, финансируя исследовательские программы. Вспомните рассуждения о том, на каком уровне конкурируют живые организмы в природе — на уровне гена, особи или популяции. Нечто подобное и здесь.

Конечно, до сих пор большая доля ВВП любой страны и большое число занятых продолжает зависеть от активности внутренней экономики, а не от глобального рынка. Но лидирующие отрасли многих стран уже образуют сектора глобальной экономики без границ (финансы, телекоммуникации, средства массовой информации). Производство во всех странах мира опирается на образованных людей в возрасте 25–50 лет, а значит, при современном уровне развития производительных сил могут высвободиться более трети человеческих ресурсов. Следствием этого факта становится не столько массовая безработица, сколько все возрастающая гибкость, подвижность работы, индивидуализация труда и, наконец, высокосегментированная социальная структура рынка труда.

В свою очередь, это новое, «информационное» общество зависит от новых способов распространения информации. Это дает СМИ, Интернету, блогосфере, разведывательным службам анормальную власть, приводит к ситуации, когда непонятно, кто кого контролирует. Государственные структуры и политические партии исчезают или растворяются, приобретая функции структур, которые нужны, чтобы смягчать социальные противоречия в обществе от негативных последствий очередной инновации.

Россия тоже включена в глобальную экономику и в эти процессы. Образованное население, сильная научная база, огромные запасы природных ресурсов создают условия для организации равного обмена или по крайней мере «диффузии» технологий и инноваций. Об этом подробнее поговорим в следующей главе.

Информационной революции могло бы и не быть, если бы к концу прошлого века не появилась главная технологическая инновация — компьютеры, сеть Интернет в виде Всемирной паутины World Wide Web и многочисленных программ, необходимых людям для общения и совершения транзакций.

Назад: Прокатный стан и бесшовные трубы
Дальше: Компьютеры

лотов.жж.рф
Все прежние земные философии и религии брели во тьме, ощупью и наугад, от редкого прозрения одного гения - к редкому прозрению другого гения. Любая планетарно-звездная цивилизация 0: либо погибнет; 1: либо будет существовать вечно. Ничего не изменится, пока у нас не будет более сильной концепции, чем Библейская и не будет более сильной генерации людей, чем еврейская. Итак, нам, как воздух, нужна Новая парадигма мировоззрения с критерием истины, и, поэтому, свободная от лжи, манипуляций и всех религий, чтобы противостоять мировой финансовой мафии, действующей по лекалам Второзакония и Чисел, — парадигма.жж.рф Можно придумать парадигму получше? Можно — Структура реальности — мультиверс. Структура мировоззрения — метатеория.. Это будет уже пятая итерация парадигмы. Нам нужна Новая парадигма мировоззрения, чтобы мы все почувствовали себя неотъемлемыми частями Единого Целого и, через него, почувствовали в себе силу, единство и энергию перемен к лучшему — Вечному Будущему. Мессия — критическая масса просветленных людей, которые и преобразуют этот мир, осознав исторический выбор развития Земной цивилизации.