Книга: Происхождение жизни. От туманности до клетки
Назад: Глава 7. Получение нуклеотидов из продуктов атмосферной фотохимии
Дальше: Глава 9. Механизмы копирования РНК и начало РНК-мира
ГЛАВА 8

Происхождение хиральной чистоты

Живое вещество, в отличие от неживого, обладает хиральной чистотой: все белки состоят из левых аминокислот, а ДНК и РНК построены на правой рибозе. В опыте Миллера и других экспериментах по абиогенному синтезу левые и правые изомеры сахаров и аминокислот образуются в равных пропорциях. Если пытаться строить белки и нуклеиновые кислоты из такой смеси, то обычно получается случайное чередование левых и правых звеньев. Такие ДНК не могут свернуться в двойную спираль, а белки — в определенную устойчивую форму и потому не могут работать ферментами. Чтобы жизнь могла возникнуть, нужны какие-то механизмы, которые отделяют левые изомеры от правых. Поиск таких механизмов уводит нас очень далеко от биохимии.

Хиральная асимметрия в космосе

Изучая метеориты, ученые узнали, что хиральная асимметрия — небольшое преобладание одного изомера — возникла еще до появления планеты Земля. В богатых органикой метеоритах из группы углистых хондритов содержатся различные аминокислоты, причем левых изомеров обычно на 1–5% больше, чем правых. Скептики объявили этот результат следствием загрязнения метеоритов земными бактериями уже после падения, а сторонники гипотезы панспермии решили, что в метеорите сохранились остатки космических микробов. Однако подробное изучение метеоритных аминокислот показало, что они возникли без участия любых организмов. Избыток левых изомеров наиболее заметен в тех метеоритных аминокислотах, которые вообще не встречаются в живых клетках, например в изовалине. «Белковые» аминокислоты из тех же метеоритов — аланин, валин, пролин — имеют почти равное содержание обоих изомеров. Изотопный состав метеоритных аминокислот точно такой же, как у сажи, карбонатов, карбидов и других углеродсодержащих веществ в том же метеорите, а живые организмы всегда обеднены тяжелым углеродом-13 по сравнению с неживой средой. Так что какие-то космические факторы могут приводить к небольшому преобладанию левых аминокислот.

Что это за факторы? Хиральность молекул проявляет себя при взаимодействии либо с другими хиральными молекулами, либо с поляризованным светом. Луи Пастер смог разделить смесь кристаллов винной кислоты, сортируя их пинцетом. В поляризованном свете кристаллы одного изомера были темными, а другого — светлыми.

Что такое поляризация света и какая она бывает? Видимый свет, наряду с радиоволнами, тепловым, ультрафиолетовым, рентгеновским и гамма-излучением, является электромагнитной волной, т.е. колебаниями электрического и магнитного поля, распространяющимися от источника на неограниченное расстояние. И электрические, и магнитные колебания направлены поперек хода луча, под прямым углом к нему и друг к другу. Обычный свет, например от Солнца, свечи или лампы накаливания, представляет собой смесь электромагнитных колебаний во всех возможных направлениях. Такой свет называется неполяризованным. Если в луче света все колебания происходят в одной плоскости, то это линейная поляризация (рис. 8.1). Свет с линейной поляризацией можно получить, пропуская неполяризованный свет через поляризационный фильтр. Кроме того, линейная поляризация может возникать при отражении света. Отраженный от горизонтальных поверхностей солнечный свет приобретает вертикальную поляризацию, по­этому поляризационные фильтры, пропускающие только свет с горизонтальной поляризацией, используются в солнцезащитных очках и фотообъективах для устранения бликов.

Бывает и более сложная поляризация, называемая круговой или спиральной. В этом случае плоскость, в которой колеблется электрическое поле, не постоянна вдоль пути луча, а вращается вокруг него. Свет со спиральной поляризацией излучается, например, при движении заряженных частиц в сильном магнитном поле (циклотронное излучение). Природным источником такого излучения являются солнечные пятна.

При прохождении линейно поляризованного света через раствор одного оптического изомера вещества его плоскость поляризации поворачивается (рис. 8.2). Левый изомер поворачивает плоскость поляризации влево, правый — вправо на точно такой же угол. Это свойство хиральных молекул и было названо оптической активностью, и из-за него левые и правые изомеры называются оптическими.

Любая спираль может быть правой или левой. Соответственно, свет со спиральной поляризацией хирален и по-разному взаимодействует с правыми и левыми хиральными молекулами — один изомер поглощает его сильнее, чем другой. Это явление называется круговым дихроизмом.

Известно, что жесткое ультрафиолетовое излучение разрушает аминокислоты. И вот оказалось, что ультрафиолет с круговой поляризацией разрушает один из изомеров заметно лучше, чем другой. В зависимости от направления поляризации освещения (лево- или правоспиральная) можно получить избыток либо левых, либо правых аминокислот.

Откуда в космосе может взяться поляризованное ультрафио­летовое излучение? В молекулярных облаках, где происходит образование новых звезд, астрономам удалось наблюдать достаточно мощное ультрафиолетовое излучение с круговой поляризацией. Уровень поляризации достигает 17% в туманности Orion (OMC-1) и 23% — в NGC 6334V (Chrysostomou et al., 2000). Его интенсивность вполне достаточна, чтобы за десятки тысяч лет в космической пыли образовался заметный избыток одного из изомеров аминокислот. Поляризация света в этих облаках вызвана рассеиванием на частицах пыли, причем пылинки должны быть вытянутой формы и ориентированы длинной осью в одну сторону. Такая ориентация требует достаточно сильного межзвездного магнитного поля. Наблюдения этих туманностей в инфракрасном диапазоне подтверждают наличие вытянутых пылинок, ориентированных вдоль магнитного поля. Области туманности, где преобладает ультрафио­лет с одной поляризацией, достаточно велики — их размеры превышают 100 астрономических единиц (в четыре раза больше, чем размер Солнечной системы).

Поляризация ультрафиолета за счет рассеивания на пылинках в магнитном поле наблюдается только в облаках, где рождаются массивные звезды. В областях рождения небольших звезд, отличающихся меньшей температурой газа, не наблюдается сколько-нибудь заметного уровня поляризованного ультрафиолета, и, возможно, там метеоритная органика не будет иметь избытка одного оптического изомера.

Все эти фотохимические процессы с участием поляризованного ультрафиолета приводят к образованию небольших областей газопылевого облака, обогащенных аминокислотами одной хиральности. В среднем по Галактике из них будет образовываться примерно поровну звездных систем, обогащенных правыми и левыми аминокислотами, и следовательно, по этой гипотезе жизнь во Вселенной должна быть представлена примерно поровну лево- и правоаминокислотными формами.

Хиральная асимметрия в ядерных процессах

Существует и другая гипотеза о происхождении хиральной асимметрии во Вселенной. Еще в 1957 году при изучении бета-распада радиоактивных элементов (разновидность ядерного распада, при котором один из нейтронов в ядре превращается в протон, испуская быстрый электрон; при этом масса ядра практически не меняется, а заряд увеличивается на единицу) было обнаружено, что в этом процессе существует разница между левым и правым: как правило, распадающееся ядро испускает электрон с левой спиральной поляризацией. Поляризация электронов определяется несколько по-другому, чем поляризация света. Электрон, как и другие элементарные частицы, имеет спин — собственное постоянное магнитное поле. Постоянное магнитное поле порождается электрическим током, текущим по кругу, соответственно, спин подобен вращению электрона вокруг своей оси (само это название происходит от английского spin — кручение). Если электрон движется по прямой, то сложение его спина с движением дает либо левую, либо правую спираль. Поэтому электроны, в отличие от света, могут иметь только спиральную поляризацию.

Причиной бета-распада является слабое взаимодействие — одна из четырех фундаментальных сил. В отличие от трех других — гравитации, электромагнетизма и сильного ядерного взаимодействия — в слабой для получения зеркального отражения системе необходимо заменить частицы на их античастицы. Иначе говоря, бета-распад с испусканием правополяризованных частиц возможен только в мире антивещества, состоящего из антипротонов, антинейтронов и позитронов. Гипотеза Вестера — Ульбрихта, согласно которой хиральная асимметрия живой материи тем или иным способом происходит от асимметрии слабого взаимодействия, была высказана еще в 1959 году, но ее надежного экспериментального подтверждения пришлось ждать долго. Асимметрия слабого взаимодействия работает одинаково во всей Вселенной, и если она определила исходную хиральность космической органики, а затем и жизни, то жизнь на всех планетах должна использовать левые аминокислоты.

Как может быть связана асимметрия на уровне элементарных частиц с асимметрией на уровне молекул? Возможны разные механизмы. Первое обнаруженное проявление асимметрии слабого взаимодействия — поляризованные электроны, испускаемые при бета-распаде. Они могут взаимодействовать с хиральными молекулами, но их энергия слишком велика. Поэтому при попадании в молекулу эти быстрые электроны гарантированно разрушают ее, невзирая на хиральность. Однако при их рассеянии в веществе оттуда выбивается множество вторичных электронов меньшей энергии, которые в основном сохраняют исходную поляризацию. Эксперименты с поляризованными электронами небольших энергий показали, что они, подобно поляризованным ультрафиолетовым лучам, избирательно разрушают один из оптических изомеров. В обзоре Ричарда Розенберга, опубликованном в книге «Electronic and Magnetic Properties of Chiral Molecules and Supramolecular Architectures», приводятся результаты ряда экспериментов, в которых достигнут избыток одного изомера до 25%. Причем самое сильное хиральное обогащение происходит, если облучаемое органическое вещество наморожено при низкой температуре на поверхность ферромагнитного материала, например железа. В протопланетном диске ранней Солнечной системы было много быстро распадающихся бета-радиоактивных изотопов, таких как 26Al и 60Fe, а также достаточно ферромагнитных пылинок самородного железа и его оксидов. Вторичные электроны от распада этих изотопов вполне могли привести к преобладанию левых аминокислот в веществе метеоритов.

Помимо бета-распада слабое взаимодействие существует между электронами и ядрами всех атомов и молекул в каждый момент времени. Энергия слабого взаимодействия входит в энергию покоя молекулы и отличается у двух оптических изомеров. Для свободных аминокислот эта разница ничтожно мала (менее 1011 кДж/моль) и никак не может влиять на химические реакции, характерные изменения энергии в которых в тысячу миллиардов раз больше. Однако эта разница сильно зависит от массы центрального атома хиральной молекулы — пропорционально шестой степени! Поэтому в комплексах аминокислот с тяжелыми металлами разница энергии покоя, вносимая слабым взаимодействием, теоретически может быть достаточно большой, чтобы проявляться в химических реакциях. Кроме того, вклад энергии слабого взаимодействия может быть гораздо заметнее не в обычных химических реакциях, а в более низкоэнергетических процессах — образовании кристаллов из раствора и образовании комплексных соединений, или при температуре вблизи абсолютного ноля, когда энергия теплового движения молекул минимальна. Так или иначе, эту разницу удалось экспериментально наблюдать в процессах кристаллизации этилендиаминовых комплексов кобальта и иридия. При медленном упаривании раствора левые изомеры этих комплексов выпадали в осадок быстрее, разница составила 0,02% для комплекса с кобальтом и 1,2% для комплекса с иридием (Szabó-Nagy et al., 1999).

Известен один случай, когда левые и правые аминокислоты ведут себя по-разному в химической реакции с веществом, не имеющим левых и правых изомеров. Это солевой синтез пептидов, который мы упоминали в главе 6: в крепком растворе NaCl или KCl с ионами меди в качестве катализатора аминокислоты самопроизвольно соединяются в короткие пептиды. Избыток соли сдвигает равновесие в сторону синтеза, несмотря на водную среду. Хотя расчетная разница в уровнях энергии между левым и правым изомерами аминокислоты в комплексе с медью недостаточна для заметного влияния на химические реакции, в эксперименте для трех аминокислот — аланина, валина, изолейцина — соединение двух молекул левых изомеров происходит на 10–50% быстрее, чем двух правых. Для других аминокислот такой заметной разницы нет, и непонятно, почему теория не сходится с опытом только для этих трех аминокислот.

Химическое усиление превращает небольшую хиральную асимметрию в хиральную чистоту

Так или иначе, чтобы небольшой избыток одного оптического изомера, порожденный астрономическими или квантовыми процессами, превратился в хиральную чистоту аминокислот и нуклеотидов живой материи, необходимы еще два шага. Во-первых, небольшой избыток должен быть усилен; и, во-вторых, хиральная асимметрия должна быть передана от аминокислот к рибозе и нуклеотидам, причем так, чтобы левым аминокислотам соответствовала правая рибоза.

Самый простой механизм усиления избытка одного изомера можно вывести из опытов Пастера с винной кислотой. Как мы помним, изомеры винной кислоты кристаллизуются по отдельности, и образуется смесь «левых» и «правых» кристаллов, так называемый конгломерат. Если же упаривать раствор с «метеоритным» соотношением изомеров 60:40, то преобладающий изомер начнет выпадать в осадок раньше. Вовремя остановив упаривание, можно получить чистые кристаллы одного изомера и равную их смесь в растворе.

Большинство аминокислот ведут себя противоположным образом: при упаривании раствора сначала выпадают рацемические кристаллы (с отношением изомеров точно 1:1), и раствор обогащается тем изомером, которого было больше в исходной смеси. Так, из раствора фенилаланина с отношением изомеров 52:48 удалось в два цикла упаривания получить раствор с долей L-изомера 90% (Breslow, Levine, 2006). Аналогично ведет себя и главный оптически активный промежуточный продукт (и автокатализатор) реакции Бутлерова — глицеральдегид. Его чистые изомеры при комнатной температуре вообще не кристаллизуются, а образуют сироп, который смешивается с водой в любых пропорциях. Смесь изомеров легко образует кристаллы с температурой плавления 145 оС. По­этому при упаривании растворов глицеральдегида с небольшим избытком одного изомера можно получить этот изомер с чистотой до 99,9% (Breslow, 2011). Рибоза, глюкоза и другие пяти- и шестиуглеродные сахара неспособны к такой самоконцентрации оптически активного изомера, но рибоза в составе нуклеозидов (напомню, это сахар плюс азотистое основание; если присоединить к нуклеозиду остаток фосфорной кислоты, получится нуклеотид) способна. Нуклеозиды, подобно аминокислотам, предпочтительно выпадают в осадок в соотношении изомеров 1:1, оставляя в растворе избыточный изомер. Таким образом, они могут накапливаться в растворе в оптически чистой форме (Breslow, Cheng, 2010).

Еще один механизм разделения изомеров аминокислот связан с адсорбцией на кристаллах минералов (Hazen et al., 2001). Некоторые типы кристаллических структур имеют отдельные хиральные грани. Кристалл в целом при этом не хирален, так как зеркальное отражение хиральной грани есть на другой стороне того же кристалла. Самый обычный минерал с такой структурой — кальцит, основная разновидность карбоната кальция. При оседании аминокислот на кристаллы одни грани обогащаются L-изомером, а другие — D-изомером (рис. 8.3). При соединении аминокислот на поверхности такого кристалла будут образовываться пептиды высокой хиральной чистоты даже из раствора с равным содержанием левых и правых аминокислот.

В некоторых условиях можно получить хирально чистые аминокислоты из смеси равных количеств обоих изомеров. Группа испанских химиков под руководством Кристобаля Вьедма (Viedma, 2008) показала, что, если нагреть раствор аспарагиновой кислоты с добавлением салицилового альдегида и уксусной кислоты до 100–130 °С, образуются чистые кристаллы одного оптического изомера. Повторяя опыт много раз, ученые с равной вероятностью получали как правый, так и левый изомер. А добавляя небольшой начальный избыток одного изомера, они всегда в конце опыта получали его в чистом виде. Аспарагиновая кислота — это одна из двух аминокислот, оптические изомеры которых кристаллизуются раздельно. Салициловый альдегид в кислой среде позволяет растворенным изомерам переходить друг в друга, поэтому небольшие случайные отклонения в начале кристаллизации постепенно приводят к полному превращению смеси в чистый L- либо D-изомер (рис. 8.4).

Распознавание изомеров друг другом может происходить не только при образовании кристаллов. В 1996 году коллективом японских химиков была открыта реакция, названная по имени руководителя группы — реакция Соаи (Blackmond, 2010). В ней из двух оптически неактивных веществ (пиримидиновый альдегид и цинкоорганическое соединение) образуется оптически активный пиримидиновый спирт, причем соотношение изомеров далеко от 1:1 и случайно меняется от опыта к опыту (рис. 8.5). Загадочные свойства этой реакции десять лет не удавалось объяснить, но теперь мы знаем, что тут действует три фактора:

В результате небольшой случайный избыток одного изомера продукта будет усилен во много раз, причем чем дольше идет реакция — тем сильнее. К сожалению, реакция Соаи и другие открытые учеными реакции с подобными свойствами не имеют никакого отношения к аминокислотам, нуклеотидам и вообще биохимии, но, возможно, аналогичные реакции с аминокислотами в природе тоже будут найдены.

От аминокислот к сахарам и нуклеотидам

Как от избытка левых аминокислот перейти к избытку правых сахаров? Можно предположить, что аминокислоты могут вмешиваться в реакцию Бутлерова как стереоспецифичные катализаторы. Действительно, так оно и есть. Эксперименты показывают, что добавление L-аминокислот в реакцию Бутлерова приводит к образованию избытка правых сахаров. Для большинства аминокислот этот избыток не превышает 2%, но с глутаминовой кислотой получается 60% D-сахаров, а с пролином — даже 80%! Более того, комплексы глутаминовой кислоты и пролина с ионами цинка, подобно силикатам и фосфатам, останавливают реакцию на стадии пяти- и шести­углеродных сахаров (Kofoed et al., 2005). Метеоритные небелковые аминокислоты, такие как изовалин, тоже очень эффективно передают хиральность сахарам в реакции Бутлерова.

В синтезе нуклеотидов по Сазерленду различные аминокислоты тоже вызывают стереоспецифический синтез нуклеотидов. Более того, достаточно было 1% избытка одного из стереоизомеров аминокислот, чтобы в конце концов получились хирально чистые рибонуклеотиды! Механизм этого процесса не слишком мудреный. Аминокислоты вмешиваются в синтез Сазерленда на стадии реакции 2-аминооксазола с глицеральдегидом, причем образуется тройной продукт (рис. 8.6). Эта реакция стереоспецифична: пара глицеральдегида с аминокислотой одной хиральности реагирует в четыре раза быстрее, чем разнохиральная пара. Таким образом, небольшой избыток L-аминокислоты будет связывать L-глицеральдегид в побочный путь реакции, оставляя для синтеза рибонуклеотидов больше D-изомеров.

Сазерленд ранее показал, что рибоаминооксазолин, подобно винной кислоте в опытах Пастера, способен при упаривании раствора кристаллизоваться в хирально чистые кристаллы уже при соотношении изомеров 60:40. Экспериментально получены такие кристаллы рибоаминооксазолина прямо из реакционных смесей с участием 14 чистых L-аминокислот из 19, содержащихся в белках. Пролин по стереоспецифичности далеко превосходит все остальные аминокислоты.

В завершение можно сказать, что мы так и не знаем, как по­явилась хиральная чистота наших белков и РНК. Но если раньше нам не было известно даже приблизительно, как она могла получиться, то теперь мы знаем сразу несколько реалистичных механизмов, просто не можем выбрать из них тот, который был самым значимым. Изучая земную жизнь и Солнечную систему, мы никогда не сможем поставить точку в этом вопросе — за ответом надо лететь к другим звездам. Если в Галактике примерно поровну представлена лево- и правоаминокислотная жизнь или хотя бы в метеоритной органике разных планетных систем бывает как левый, так и правый уклон, то значит, основы хиральности закладываются в газово-пылевых облаках перед рождением звезд и планет. Если же мы найдем только левоаминокислотную жизнь, то значит, хиральность жизни определяется квантовыми процессами, как предполагали Вестер и Ульбрихт.

Назад: Глава 7. Получение нуклеотидов из продуктов атмосферной фотохимии
Дальше: Глава 9. Механизмы копирования РНК и начало РНК-мира

Анатолий
ну очень надо пенсионеру срочно
Алексей
Перезвоните мне пожалуйста 8(904) 332-62-08 Алексей.