Книга: φ – Число Бога. Золотое сечение – формула мироздания
Назад: Звездное небо над нами и плиточный пол у нас под ногами
Дальше: Золотое путешествие по Уолл-стрит

Фракталы

Модель квазикристаллов Стейнхардта-Джуна обладает одним интересным свойством: она создает дальний порядок из взаимодействий соседних элементов, однако полностью периодический кристалл при этом не получается. Невероятно, но факт: в общем и целом это же свойство мы обнаруживаем у чисел Фибоначчи. Рассмотрим простой алгоритм, позволяющий создать последовательность, получившую название золотой последовательности. Начнем с числа 1, затем заменим 1 на 10. Теперь будем заменять все 1 на 10, а все 0 на 1. Тогда у нас получатся следующие этапы:

1

10

101

10110

10110101

1011010110110

101101011011010110101



И так далее. Очевидно, что мы начали с «ближнего» правила (простое превращение 0 в 1 и 1 в 10), а получили непериодический «дальний порядок». Обратите внимание, что количество цифр 1 в каждой строчке составляет 1, 1, 2, 3, 5, 8. ., то есть числа Фибоначчи, как и количество цифр 0, начиная со второй строчки. Более того, отношение числа единиц к числу 0 по мере удлинения последовательности становится все ближе к φ. Далее, изучение рис. 27 показывает, что если обозначить новорожденную пару крольчат 0, а взрослую пару 1, то количество пар кроликов будет в точности повторять только что приведенную последовательность. Однако неожиданные свойства золотой последовательности этим не исчерпываются. Если начать с 1 (в первой строчке), за которым следует 10 (вторая строчка) и попросту приписывать к каждой строчке непосредственно предшествующую, тоже получится цельная последовательность. То есть четвертая строчка 10110 получается, если приписать вторую – 10 – к третьей – 101, и т. д.

Вспомним, что самоподобие означает симметрию при любом масштабе. Логарифмическая спираль обладает самоподобием, поскольку, как ее ни увеличивай, выглядит всегда одинаково, как и череда вписанных друг в друга правильных пятиугольников и пентаграмм на рис. 10. Каждый раз, когда вы приходите в парикмахерскую, вы видите бесконечную череду собственных самоподобных отражений в двух параллельных зеркалах.

Так вот, золотая последовательность тоже самоподобна при любом масштабе. Возьмем последовательность

1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1…

И посмотрим на нее в лупу – конечно, не в буквальном смысле слова. Начнем слева и каждый раз, когда нам встретится 1, будем помечать группу из трех символов, а когда нам встретится 0 – группу из двух символов, только так, чтобы группы не перекрывались. Например, первая цифра у нас 1, поэтому мы отметим группу из первых трех символов – 101 (см. ниже). Вторая цифра в ряду у нас 0, поэтому мы отметим группу из двух символов 10, следующую за первой группой 101. Третья цифра – 1, значит, отмечаем три цифры 101, которые следуют за 10, и т. д. Теперь размеченная последовательность выглядит так:





101 10 101 101 10 101…

А теперь оставим первые две цифры из каждой группы по три и первую – из каждой группы по две (то, что мы оставляем, подчеркнуто):







И взглянем на получившуюся последовательность из оставшихся цифр:

1 0 1 1 0 1 0 1 1 0…

Как видите, она идентична золотой последовательности.

Можно проделать и другое упражнение по увеличению золотой последовательности путем подчеркивания той или иной закономерной подпоследовательности. Скажем, в качестве подпоследовательности выберем 10 и будем подчеркивать это сочетание цифр в золотой последовательности везде, где оно встретится:









Если теперь мы будем обращаться с каждым сочетанием 10 как с единым символом и обозначим количество мест, на которые надо сдвинуть каждое сочетание 10, чтобы перекрыть его со следующим 10, то получим последовательность 2122121… (первое 10 надо сдвинуть на два места, чтобы оно наложилось на следующее, третье – на одно место и так далее). Если теперь в получившейся последовательности заменить каждую цифру 2 цифрой 1 и каждую 1 – нулем, мы снова получим золотую последовательность. В общем, если взять любую закономерность в пределах золотой последовательности, мы обнаружим, что та же закономерность присутствует в последовательности и при ином масштабе.

Предметы, обладающие таким же свойством, например, русские куклы матрешки, которые вставляются друг в дружку, называются фракталы. Слово «фрактал» (от латинского fractus, что значит «разбитый, фрагментированный») пустил в обращение Бенуа Мандельброт – знаменитый французский и американский математик, родившийся в Польше, и это центральное понятие геометрии природы и теории крайне нерегулярных систем, известных как хаотизированные.

Геометрия фракталов – блестящая попытка описать формы и предметы реального мира. Если оглядеться вокруг, станет понятно, что лишь немногие формы описываются простыми евклидовыми фигурами вроде прямых, окружностей, сфер и кубов. Есть бородатый математический анекдот о физике, который хотел разбогатеть, делая ставки на скачках, а для этого – вывести уравнение движения коня. После долгих трудов он и впрямь составил уравнение движения сферического коня в вакууме. К сожалению, настоящие скакуны отнюдь не сферические, и облака, цветная капуста и человеческие легкие – тоже. Подобным же образом реки, молнии и дренажные системы проходят не по прямой, однако напоминают ветви деревьев и кровеносную систему человека. Рассмотрим, к примеру, фантастически сложные разветвления на картине «Могила великана в снегу» немецкого художника-романтика Каспара Давида Фридриха (1774–1840) (рис. 111, хранится в Галерее новых мастеров в Дрездене).

Колоссальный мыслительный скачок, который проделал Мандельброт, когда сформулировал геометрию фракталов, состоял в основном в том, что ученый обнаружил, что все эти затейливые зигзаги – не помеха математическому описанию морфологии, а главная ее характеристика.





Рис. 111





Первым открытием Мандельброта была важность самоподобия – того факта, что многие природные формы представляют собой бесконечную последовательность мотивов, повторяющих сами себя внутри других таких же мотивов на разных масштабах. Великолепный пример проявления этого качества – раковина наутилуса (рис. 4), как, впрочем, и самая обычная цветная капуста: если отламывать от кочана соцветия, а от них – кусочки все меньше и меньше, они до какого-то предела все равно будут точным подобием целого кочана. Сфотографируйте камешек, отколовшийся от скалы, и вам, возможно, не удастся отличить снимок от фотографии целого утеса. Этим свойством обладает и непрерывная дробь, если ее напечатать (рис. 112): увеличьте еле видные циферки, и вы обнаружите всю ту же непрерывную дробь. Однако во всех этих случаях увеличение масштаба не сглаживает некоторых шероховатостей. Более того, неправильность характерна для любого масштаба.





Рис. 112





Тогда Мандельброт задался вопросом: как определить измерения предмета, обладающего подобной фрактальной структурой? В мире евклидовой геометрии у любого предмета есть измерения, которые можно выразить целыми числами. У точки число измерений – нуль, у прямой – одно, у плоских фигур вроде треугольников и пятиугольников – два, у объемных тел вроде сфер и платоновых многогранников – три. А фрактальные кривые вроде молнии, с другой стороны, так агрессивно изгибаются туда-сюда, что попадают куда-то между одним и двумя измерениями. Если след молнии относительно гладкий, можно представить себе, что число фрактальных измерений близко к единице, если же он очень извилистый, следует ожидать числа измерений, близкого к двум. Все эти размышления вылились в вопрос, сделавшийся в наши дни знаменитым: «Какова длина побережья Британии?» Мандельброт дал на это неожиданный ответ: длина береговой линии, оказывается, зависит от длины линейки, которую возьмет измеряющий. Представьте себе, что вы начинаете со спутниковой карты Британии со стороной в один фут. Измеряете длину побережья, умножаете на нужный коэффициент, исходя из заданного масштаба карты. При таком методе, разумеется, пропадут всякие мелкие извивы береговой линии, которых на карте не видно. Теперь представьте себе, что вы вооружаетесь палкой метровой длины и начинаете долгое путешествие вдоль берегов Британии, тщательно измеряя береговую линию метр за метром. Результат, несомненно, будет гораздо больше прежнего, поскольку вам удастся зафиксировать куда более мелкие извивы и повороты. Однако вы наверняка заметите, что на более мелких участках вы все равно упустите какие-то подробности. Дело в том, что чем меньше будет наша линейка, тем больше окажется результат измерений, потому что всегда оказывается, что при уменьшении масштаба выявляется подструктура. Из этого следует, что, если имеешь дело с фракталами, нуждается в пересмотре даже концепция длины как средства передачи расстояния. Контуры береговой линии при увеличении не становятся прямыми, изгибы присутствуют при любом масштабе, и общая ее длина возрастает бесконечно – по крайней мере, пока мы не дойдем до атомов.





Рис. 113





Прекрасный пример такой ситуации – линия, которую можно считать очертаниями берегов некоей воображаемой страны. Снежинка Коха – кривая, которую первым описал в 1904 году шведский математик Нильс Хельге фон Кох (1870–1924) (рис. 113). Начертим равносторонний треугольник со стороной в один дюйм. Теперь в середине каждой стороны достроим треугольники поменьше – со стороной в одну треть дюйма. В результате на этом этапе у нас получится звезда Давида. Обратите внимание, что периметр первоначального треугольника составлял три дюйма, а теперь он состоит из двенадцати сегментов по трети дюйма каждый, так что общая его длина равняется уже четырем дюймам. Теперь будем последовательно повторять эту процедуру – на каждой стороне треугольника будем достраивать новый с длиной стороны в одну треть предыдущей. Каждый раз длина периметра будет возрастать с коэффициентом 4/3, и так до бесконечности, несмотря на то что линия ограничивает замкнутое пространство конечной площади (можно доказать, что площадь стремится к 8/5 площади первоначального треугольника).

Открытие фракталов заставило задуматься, сколько же у них измерений. Фрактальное измерение – это мера «сморщенности» фрактала, то есть того, насколько быстро увеличиваются длина, площадь или объем, если измерять их на непрерывно уменьшающемся масштабе. Например, интуитивно мы чувствуем, что кривая Коха (рис. 113, внизу) занимает больше пространства, чем одномерная линия, но меньше, чем двухмерный квадрат. Но разве так бывает, чтобы у чего-то было дробное измерение? Ведь между 1 и 2 нет никаких целых чисел. Поэтому Мандельброт принял концепцию, выдвинутую в 1919 году немецким математиком Феликсом Хаусдорфом (1868–1942) – концепцию дробных измерений, которая на первый взгляд не укладывается в голове. Хотя поначалу подобная идея вызывает некоторую оторопь, оказалось, что именно дробные измерения – прекрасный инструмент, позволяющий охарактеризовать степень неправильности, или фрактальной размерности, предметов. Чтобы получить умопостижимое определение фрактального измерения или измерения самоподобия, удобно воспользоваться в качестве точек отсчета знакомыми целочисленными измерениями – 0, 1, 2 и 3. Идея в том, чтобы разобраться, сколько мелких объектов составляют крупный при любом количестве измерений. Например, если разделить одномерный отрезок пополам, то получим два сегмента (коэффициент сокращения = 1/2). Если разделить двумерный квадрат на «подквадраты» с половинной длиной стороны (коэффициент сокращения опять же = 1/2), то получим 4 = 22 квадрата. Если же мы возьмем длину стороны в 1/3 первоначальной (f = 1/3), квадратов станет 9 = 32. Если же мы поступим также с трехмерным кубом, то деление ребра пополам (f = 1/2) даст нам 8 = 23 кубиков, а ребро в 1/3 первоначального – 27 = 33 кубиков (рис. 114). Если изучить все эти примеры, обнаружим, что между количеством «субобъектов» n, коэффициентом сокращения длины f и измерением D есть определенная взаимосвязь. И вот какая: = (1/f) D. (Другую форму записи этого соотношения я привожу в Приложении 7.) Если применить эту формулу к снежинке Коха, получится фрактальное измерение, равное примерно 1,2619.





Рис. 114





Кстати, и побережье Британии обладает фрактальным измерением, равным примерно 1,26. Поэтому фракталы служат моделями реальных береговых линий. Первопроходец теории хаоса Митчелл Фейгенбаум из Рокфеллеровского университета в Нью-Йорке опирался на этот факт, когда участвовал в издании атласа издательства «Хаммонд» в 1992 году («Hammond Atlas of the World), построенного по революционно новому принципу. Предоставив основную часть работы компьютерам и по возможности не вмешиваясь в нее, Фейгенбаум изучил спутниковые данные о фрактальной струкутре побережий, чтобы определить, какие точки на береговых линиях играют самую важную роль. Результатом стала, в частности, новая карта Южной Америки, точная на 98 % по сравнению с привычными 95 % из старых атласов.

Главное свойство многих естественных фракталов, от деревьев до кристаллов, – ветвистость. Изучим сильно упрощенную модель этого вездесущего явления. Начнем с ветки единичной длины, которая разделяется на две ветки длиной 1/2, расходящиеся под углом в 120 градусов (рис. 115). Затем каждая ветка разделяется подобным же образом, и процесс продолжается бесконечно.





Рис. 115





Если бы вместо коэффициента сокращения длины 1/2 мы выбрали число чуть больше, ну, скажем, 0,6, расстояние между ветками несколько сократилось бы и рано или поздно ветки начали бы накладываться друг на друга. Очевидно, имело бы смысл поискать, какой коэффициент сокращения обеспечит во многих системах (скажем, в дренажной системе или в кровеносной системе человека) такую конфигурацию, чтобы ветки только касались друг друга и начинали перекрываться, как на рис. 116. Как ни странно, а может быть, теперь уже и не странно, оказалось, что такой коэффициент в точности равен 1/φ = 0,618…! (Краткое доказательство см. в Приложении 8). Это называется золотое дерево, и его фрактальное измерение, как выяснилось, примерно равно 1,4404. У золотого дерева и подобных фракталов, составленных из простых линий, структура после нескольких разветвлений становится такой мелкой, что невооруженным глазом ее не разглядеть. Отчасти эту проблему можно решить, если вместо линий использовать двумерные геометрические фигуры вроде «лодочек» (рис. 117). Можно на каждом этапе прибегать к помощи копировальной машины с функцией уменьшения изображения, чтобы получать «лодочки», сокращенные с коэффициентом 1/φ. Результат – золотое дерево из «лодочек» – показан на рис. 118.





Рис. 116





Рис. 117





Можно строить фракталы не только из линий, но и из простых плоских фигур вроде треугольников и квадратов. Например, начнем с равностороннего треугольника со стороной единичной длины и к каждому его углу достроим новый треугольник с длиной стороны 1/2. На каждом свободном угле треугольников второго поколения достроим треугольник со стороной 1/4 и так далее (рис. 119). Опять же можно задаться вопросом, при каком коэффициенте уменьшения три ветви начнут соприкасаться, как на рис. 120, и ответ снова получится равным 1/φ. В точности то же самое произойдет, если построить похожий фрактал на основе квадрата (рис. 121) – перекрывание начинается при коэффициенте сокращения 1/φ = 0,618… (рис. 122).





Рис. 118





Рис. 119





Рис. 120





Рис. 121





Рис. 122





Более того, все незакрашенные белые прямоугольники на последнем рисунке – это золотые прямоугольники. Таким образом, мы обнаруживаем, что хотя в евклидовой геометрии золотое сечение выводится из правильного пятиугольника, в геометрии фракталов оно связано даже с более простыми фигурами вроде квадратов и равносторонних треугольников. Свыкнувшись с этой концепцией, вы поймете, что мир вокруг битком набит фракталами. В терминах фрактальной геометрии можно описать самые разные предметы – от контуров леса на фоне неба до системы кровеносных сосудов в почке. Если окажется верной одна из моделей Вселенной, которая называется хаотической теорией инфляции, значит, фрактальные закономерности характерны для Вселенной в целом. Объясню суть этой концепции в самых общих чертах. Теория космической инфляции, которую выдвинул Алан Гут, предполагает, что когда нашей Вселенной была всего доля секунды от роду, наше пространство практически мгновенно раздулось до пределов, далеко превосходящих возможности наших телескопов. Движущая сила, стоявшая за этим колоссальным расширением, – весьма необычное состояние материи под названием «ложный вакуум». Эту ситуацию можно уподобить мячу, лежащему на вершине пологого холма, как на рис. 123. Дело в том, что пока Вселенная оставалась в состоянии ложного вакуума, то есть мяч лежал на вершине холма, она расширялась очень быстро, вдвое увеличиваясь в размерах за крошечную долю секунды. Стремительное расширение прекратилось, лишь когда мяч скатился с холма в низкоэнергетическую «канаву» у подножия (которая символически отражает тот факт, что ложный вакуум распался).





Рис. 123





Согласно инфляционной модели, так называемая «наша» Вселенная пребывала в состоянии ложного вакуума очень недолго и все это время расширялась в фантастическом темпе. Затем ложный вакуум распался, и наша Вселенная стала расширяться куда более лениво, что мы и наблюдаем сегодня. Вся энергия и субатомные частицы нашей Вселенной были созданы во время осцилляции, последовавшей за распадом (схематически это отражено в третьей части рис. 123). Однако модель космической инфляции предсказывает также, что темп расширения в состоянии ложного вакуума гораздо стремительнее темпа распада. Следовательно, судьбу области ложного вакуума можно схематически проиллюстрировать рис. 124. Вселенная начинается с участка ложного вакуума. С течением времени какая-то часть этого участка (на рисунке – треть) распадается и порождает «карманную вселенную» вроде нашей. Одновременно участки, остающиеся в состоянии ложного вакуума, продолжают расширяться, и ко времени, которое схематически отражено второй строкой на рис. 124, каждый из них приобретает те же размеры, что и вся система из первой строки (масштаб на рисунке не соблюден из соображений экономии места). Время течет дальше, мы переходим от второй строки к третьей, центральная карманная вселенная продолжает медленно развиваться согласно общепринятой теории Большого Взрыва. Однако каждый из двух оставшихся участков ложного вакуума развивается в точности так же, как и первоначальный участок ложного вакуума: часть его распадается, и возникает карманная вселенная. Каждый участок ложного вакуума расширяется до размеров системы из верхней строчки (рисунок опять же не в масштабе). Таким образом создается бесконечное количество карманных Вселенных – и фрактальный узор: одна и та же последовательность участков ложного вакуума и карманных вселенных повторяется в постоянно уменьшающемся масштабе. Если выяснится, что эта модель и в самом деле отражает эволюцию Вселенной в целом, значит, наша карманная Вселенная – всего лишь одна из бесчисленного множества существующих карманных вселенных.





Рис. 124





В 1990 году профессор Джаспер Мемори из Университета Северной Каролины опубликовал в «Mathematics Magazine» стихотворение под названием «Блейк и фракталы». Вспомнив уже цитировавшиеся строки Блейка «В одном мгновенье видеть вечность, / Огромный мир – в зерне песка, / В единой горсти – бесконечность / И небо – в чашечке цветка», Мемори написал:

 

Вильям Блейк сказал однажды:

Видит он в песчинке каждой

Перспективы бесконечность

И в мгновенье видит вечность.

 

 

Прав был мистик и поэт.

Он предчувствовал предмет,

Обоснованный в работах

И расчетах Мандельброта.

 

 

То, что Блейк обрисовал,

Мы сейчас зовем «фрактал».

Изменения масштаба

Вид его меняют слабо.

 

 

Вглубь фрактала кинув взгляд,

Видим мы ритмичный ряд:

Формы, линии дробя,

Повторяет сам себя.

 

 

Отдаляем взгляд, и снова

Сохраняет он основу,

Свойства прежние хранит,

получает прежний вид.

 

 

Истончаясь в паутину,

Всю сложнейшую картину

И структуры безупречность

Не теряет бесконечность.

 

(Пер. М. Федоровой)

Некоторые современные методы применения золотого сечения, чисел Фибоначчи и фракталов распространяются на области куда более приземленные, чем модель космической инфляции. Более того, многие считают, что эти методы буквально бьют нас по карману.

Назад: Звездное небо над нами и плиточный пол у нас под ногами
Дальше: Золотое путешествие по Уолл-стрит