Не обольщайтесь!
Люди, не знающие принципа работы модели ИИ, часто испытывают смесь восторга и ужаса, когда слышат, что те умеют предсказывать будущее. Но, перефразируя известный фильм 1992 года «Тихушники», взволнованных можно успокоить: «Не обольщайтесь – он не настолько умен».
Почему? Потому что модель ИИ не умнее суммы своих частей. Проще говоря, вы скармливаете контролируемому алгоритму ИИ данные за некий период времени, к примеру, по заказам в Target, и говорите ему: «Эй, вот это заказали точно беременные, а вон то – не очень». Алгоритм «пережевывает» данные и «выплевывает» модель. Потом вы можете загрузить в эту модель данные о заказах покупателей и спросить: «А вот эта покупательница беременна?», и модель ответит: «Нет, это 26-летний оболтус, живущий у матери в подвале».
Это, конечно, очень помогает, но все же модель – не волшебница. Она просто технично превращает данные о произошедших событиях в формулу или набор правил, которые затем использует для предсказания событий в будущем. Как мы видели на примере «наивного Байеса» в главе 3, эффективной модель делает ее способность вспоминать эти данные и ассоциированные с ними правила принятия решения, а также вероятности и коэффициенты.
Наш неискусственный интеллект занимается этим всю нашу жизнь. К примеру, имея личные данные о моей жизни, мой мозг знает: если я съем огромный бутерброд с потемневшими ростками люцерны, то через несколько часов мне с высокой вероятностью станет плохо. Я взял данные из прошлого (о том, что отравился) и обучил с их помощью свой мозг, так что теперь у меня есть правило, формула, модель – называйте как хотите: темные ростки = гастроэнтерологический кошмар.
В этой главе мы будем применять две разные регрессионные модели, просто чтобы посмотреть, насколько прямолинейным может быть ИИ. Регрессия – бабушка контролируемого предсказательного моделирования. Первые исследования с ее помощью были проведены еще в XIX веке. Она – старушка, но в этом ее сила: у нее была масса времени, чтобы развить во всех областях своего применения математическую точность, которой недостает некоторым новым технологиям ИИ. В противоположность макгайверовскому ощущению от «наивного Байеса» в главе 3, в этой главе вы почувствуете вес статистической точности регрессии, особенно во время исследования достоверности.
Мы будем использовать модели для классификации точно так же, как использовали «наивный Байес» в главе 3. Как вы увидите, задачи, находящиеся прямо под рукой, совсем не похожи на задачу о классификации документа методом «набора слов», с которой мы сталкивались ранее.