«Волны тут, кванты там!»
В начале 1926 г., приблизительно в то же время, когда Гейзенберг выступал на семинаре в Берлине, другой математический формализм был предложен австрийским теоретиком Эрвином Шредингером в качестве замены «старой» теории квантов Планка – Эйнштейна – Бора. Этот формализм, называемый «волновой механикой», согласно самому Шредингеру, уходил корнями в идеи Луи де Бройля, а также в «короткие, но удивительно прозорливые» заметки, сделанные Эйнштейном (в его письмах и статье 1924 г., обсуждавшейся в предыдущей главе). Эта волновая механика казалась абсолютно отличной от матричной механики Борна – Гейзенберга – Йордана. В одной состояние рассматриваемой физической системы (скажем, электрон, движущийся по орбите вокруг ядра атома водорода) описывалось волновой амплитудой А, непрерывной функцией времени и координат электрона, а другая говорила лишь о дискретных переходах между различными возможными стационарными состояниями атома и описывала их посредством бесконечных таблиц амплитуд переходов anm. Два описания, казалось, были диаметрально противоположны друг другу. Первое давало полностью непрерывную картину (как во времени, так и в конфигурационном пространстве системы), тогда как предметом изучения второго были исключительно дискретные переходы системы. Однако, несмотря на это, Шредингер сумел достаточно быстро показать математическую эквивалентность двух подходов. А именно, он доказал, что знание «волнового уравнения», описывающего распространение непрерывной амплитуды А, позволяет в то же время находить возможные стационарные состояния системы, их квантовые энергии и бесконечные таблицы амплитуд переходов между этими состояниями. Грубо говоря, возможные стационарные состояния были аналогичны ряду состояний чистой вибрации упругого объекта, такого, например, как струна фортепиано, которая может звучать в основном тоне или же в обертоне, соответствующем более высокой гармонике (вторая на октаву выше первой, третья на квинту выше второй и т. д.).
На самом деле, какое-то время казалось, что шредингеровское волновое описание было более полным, нежели дискретное описание Борна – Гейзенберга – Йордана. В частности, шредингеровское описание наводило на мысль, что можно даже просто «выбросить» идею квантовой дискретности (несмотря на то что оно позволяло объяснить многие явления, включая эйнштейновскую теорию атомных переходов) и описывать реальность исключительно с точки зрения непрерывных волн.
Изначально Эйнштейн воспринял формализм Шредингера с удовлетворением и даже некоторым облегчением, поскольку этот подход казался ближе его интуитивным представлениям о реальности, нежели колдовские таблицы умножения, используемые Гейзенбергом и компанией. Однако вскоре он был разочарован. В первую очередь потому, что волновая амплитуда А распространяется уже не в обычном трехмерном пространстве: для системы из двух частиц это было шестимерное пространство, для системы из трех частиц – девятимерное, для четырех – двенадцатимерное и т. д. К тому же в волновой механике возникали большие сложности при описании всевозможных экспериментальных фактов, которые в течение 20 лет подводили Эйнштейна и других исследователей к необходимости введения дискретной структуры в квантовой механике. В августе 1926 г. в письме Паулю Эренфесту Эйнштейн следующим образом подытоживает свои чувства:
«Волны тут, кванты там! Реальность тех и других прочнее камня. Но дьявол свел их вместе (и этот союз так же реален и прекрасен)».
Эту неудовлетворенность в отношении парадоксального поведения природы, проявляющей одновременно волновые и корпускулярные свойства, Эйнштейн сохранял до конца своей жизни. Как мы увидим, то, что убедило большинство ученых, не смогло развеять его сомнений.