7. Однородность и изотропия Вселенной
Рис. Д4. Расслоение пространства-времени на пространственные сечения
Приведём более строгие, чем в главе 6, определения однородности и изотропии. Почему это важно? Эти понятия определяются на данный момент времени, а космологическое пространство меняется со временем. В теории Ньютона в этом нет проблемы, поскольку понятие времени абсолютно. В СТО тоже нет больших проблем, определившись с выбором какой-либо инерциальной системы отсчёта, наблюдатель также имеет единое время. А в ОТО, да ещё в переменном по времени решении, ситуация сложнее. Поясним это на примере того же решения Фридмана: ds2 = c2dt2 — a2(t)dl2. Здесь каждому значению времени соответствует пространство со своим значением масштабного фактора a(t). Пространство–время как бы распадается на слои — пространства, сложенные «стопочкой». Ход времени определяется переходом от одного слоя (пространственного сечения) к другому, а каждый слой отвечает своему единственному моменту времени, На рис. Д4 такое расслоение произвольного пространства–времени изображено символически, каждый слой — это 3–мерное пространство в данный момент времени. Для вселенной Фридмана каждое такое 3–мерное пространство и однородно, и изотропно. Но это про из о шло потому, что для поиска решений Фридман специально выбрал такую удобную систему координат именно с этим определением времени. На самом деле можно выбрать другую систему координат, для которой сечения одновременности уже не будут ни однородными, ни изотропными. В неоднородной же Вселенной подобрать однородные пространственные сечения вообще невозможно.
Теперь можно дать строгое определение: Вселенная однородна, если через каждую мировую точку (событие) проходит пространственное сечение однородности. В каждой точке на таком сечении плотность ρ, давление р и кривизна пространства должны быть одинаковы.
Теперь определим изотропию Вселенной. Рост масштабного фактора означает и расширение материи, заполняющей Вселенную. На каждую частицу расширяющегося вещества можно мысленно «посадить» сопутствующего наблюдателя. Вселенная изотропна если, каждый сопутствующий наблюдатель не может отличить одно направление от другого.
Если Вселенная изотропна, то она автоматически однородна. Действительно, если это не так, то будут какие-то её части с разной плотностью, давлением и т. п. Но тогда, найдутся выделенные направления к областям с разными характеристиками, а это нарушение изотропии. А вот однородная Вселенная может быть анизотропной. Но для всех сопутствующих наблюдателей эта анизотропия будет одинаковой. Таких моделей Вселенной существуют целые семейства, они до сих пор активно исследуются, Поскольку изотропия Вселенной подтверждена с определённой точностью, то модели с меньшей величиной анизотропии имеют право на жизнь.
В качестве наглядного и простого примера рассмотрим однородную, но анизотропную космологическую модель, предложенную американским математиком Эдвардом Казнером (1878–1955) в 1922 году. Эта вселенная, в отличие не выдумано, а является решением уравнений Эйнштейна. Параметры р1, p2, p3 удовлетворяют двум соотношениям р1+ p2 + p3 = 1 и р12+ p22 + p32 = 1. Отсюда следует, что все числа не могут быть равными одновременно, мало того, одно из них всегда отрицательно. Исключение составляют два вырожденных случая.
от фридмановской, без материи, хотя её можно заполнить веществом, но «пробным», так что оно не влияет на геометрию. Решение Казнера, метрика которого имеет вид
Поскольку модель пустая, то пространство характеризуется только значениями кривизны в каждой точке. Эти значения определяются только моментом времени и одинаковы во всех точках пространства, так как метрические коэффициенты не зависят от пространственных координат, то есть пространство однородно. Из ограничений на параметры можно сделать вывод, что эта вселенная расширяется. Действительно, элемент объёма dV = tр1+p2+p3dxdydz = tdxdydz увеличивается пропорционально времени. Однако увеличивается такая вселенная довольно странно — по двум координатам расширяется (тем, которым соответствуют положительные параметры), а по третьей — сжимается (ей соответствует отрицательный параметр), Очевидно, что это анизотропное поведение.
Казнеровский режим расширения, конечно, не соответствует современному расширению — слишком очевидна его анизотропия, которая не наблюдается. Однако, вблизи сингулярности t = 0, которая имеет место, так же, как и во фридмановском сценарии, решение Казнера представляется интересным космологам. Оказывается, при приближении к сингулярности возникает осциллирующий режим Казнера, когда отрицательный параметр начинает переходить от одного пространственного измерения к другому с возрастающей частотой. Это даёт дополнительные возможности «подобраться» к пониманию физики космологической сингулярности. Связь с вселенной Фридмана, в которой мы живём, в одном из вариантов осуществляется следующим образом. Анизотропная часть модели Казнера трактуется как эффективная материя, которая с расширением распадается с образованием обычной материи. Если и остаётся анизотропия, то она не наблюдается из-за слабости эффекта.