Наверное, многих не устроит такая упрощённая классификация противоречий: в понятии или в суждении. Тогда можно предложить парадоксальную классификацию! Нет такой области, где нет противоречий, поэтому можно классифицировать, называя противоречие по имени области из которой оно взято. Например, административное противоречие, организационное противоречие, физическое противоречие, математическое противоречие, химическое противоречие, техническое, экономическое, биологическое, эстетическое и т. д.
И каждое противоречие ждет, что кто-то его разрешит. Что значит «разрешит»? Это значит, найдётся такое решение проблемы, в котором противоречивые стороны как бы исчезнут, «скроются с глаз долой», вроде как в случае с утюгом.
Но, можно биться об заклад, найдется немало читателей, которые захотят поспорить. А как же непротиворечивость арифметики или математического анализа? Увы, и в них есть противоречия.
Конечно, на сегодня эти дисциплины сформулированы с такой тщательностью, что нам остается довольствоваться лишь противоречием в понятиях!
Так понятие числа внутренне противоречиво, поскольку всякое число одновременно является обозначением, как количества, так и номера единицы в ряду чисел. Например, число «пять»: это и пять единиц и пятая единица в ряду целых чисел, то есть и одно, и многое. А в математическом анализе главное противоречие упрятано в понятии бесконечно малой величины, которая всё время стремится к нулю, но никогда его не достигает, причем это стремление происходит вне времени, что само по себе совершенно непонятно.
Здесь, по опыту фактического автора этого раздела С. В. Ёлкина, «…читатели должны разделиться на примерно две равные группы. Одни могут принять такую позицию, а другие нет. С этим противоречием, противоречием во взглядах на противоречие, пока поделать ничего нельзя. Честно признаюсь, несмотря на весь мой опыт, я его разрешить не могу, и никто не может, вот уже несколько тысяч лет».
Но есть одно предложение – набраться терпения! Даже тот, кто с нами не согласен, всё равно приобретёт ценный опыт.
ВОПРОС № 5
Иван Грозный во время подготовки взятия Казани принял решение построить вблизи города опорную крепость. Он купил на берегу Волги в месте впадения в неё Свияги участок земли «не больше, чем можно охватить воловьей шкурой». Физическое противоречие: участок маленький, так как шкура мала, участок должен быть большим, чтобы можно было построить крепость. Как бы Вы решили эту задачу?
ВОПРОС № 6
В 1867 году был выдан патент на железобетон. Какое физическое противоречие разрешило данное изобретение?
Теперь снова обратимся к классику отечественного изобретательства Г. С. Альтшуллеру: «Техническое противоречие: „Одно свойство системы противоречит другому её свойству“. Или: „Улучшение одной части системы приводит к ухудшению другой её части“. Иногда, как мы видели, конфликтуют не части системы, а система и подсистема или система и надсистема. Но суть во всех случаях едина: выигрыш в чем-то одном приводит к проигрышу в другом. Например, повышение надежности приводит к увеличению веса. Сформулировать техническое противоречие – значит перейти от ситуации к задаче. Поэтому правильный переход от административного противоречия к техническому – это существенный сдвиг в решении задачи» (Альтшуллер, Селюцкий, 1980, С. 47).
ВОПРОС № 7
Если без изменения сельскохозяйственных орудий увеличить скорость обработки почвы в 1,5–2 раза, например, увеличив мощность двигателя трактора, то резко увеличится производительность труда. Что ухудшится?
Естественный язык не только средство формулировки парадоксов и противоречий, оказывается, он сам наполнен парадоксами и противоречиями. Да и как может быть иначе, если корень противоречия гнездится в понятии?
Изящный логический парадокс сформулирован в 1908 году немецким математиком Куртом Греллингом. Разберём определение автологичного (самоприменимого) имени прилагательного. Большинство прилагательных не обладает качеством, которое оно обозначает. Скажем, слово «красный» само по себе не имеет красного цвета, слово «ароматный» не пахнет. Зато прилагательное «русский» – действительно русского языкового корня, «трёхсложный» – трёхсложно, «абстрактный» – абстрактно и т. д.
Каждое из этих прилагательных, по терминологии Греллинга, автологично, то есть имеет силу применительно к самому себе, обладая тем же качеством, которым оно наделяет другие понятия. Иное дело – гетерологичные, то есть несамоприменимые прилагательные. Скажем слово «бесконечный» имеет конечные размеры, «конкретный» – по смыслу абстрактно. Парадокс Греллинга возникает из вопроса: к какому классу отнести прилагательное «несамоприменимый»?
Самоприменимо оно или же нет? Допустим, что прилагательное «несамоприменимый» несамоприменимо. Тогда оно (согласно приведенному определению Греллинга) самоприменимо! А раз оно самоприменимо, то на каком же основании оно названо нами «несамоприменимым»?! (Ивин, 1998).
На этом, пожалуй, завершим поверхностное знакомство с парадоксами и противоречиями, ибо даже при всей поверхностности оно может занять целую книгу. А у нас другие цели – активизация инженерно-технического мышления по всем фронтам.