История создания И.П. Павловым учения о высшей нервной деятельности широко известна. Повторять ее здесь подробно нет необходимости. В лабораториях Павлова занимались изучением пищеварения. Разработанная им методика создания фистул позволяла изучать особенности секреции основных пищеварительных желез, возникающей под воздействием различных пищевых веществ. В стройную систему пищеварительных реакций не укладывалось только одно явление, получившее название психической секреции. Оно состояло в том, что выделение пищеварительных соков, особенно слюны, возникало у собаки еще до того, как ей в рот попадала пища, лишь под влиянием ее запаха, вида, бренчания кормушки, из которой обычно кормили животное, или шагов служителя, идущего забрать собаку в виварий, где ее уже ждал обед. Позже Павлов назвал психическую секрецию условным рефлексом. Секреция слюны на запах или вид пищи представляет собой натуральный условный рефлекс, так как эти раздражители являются естественными признаками пищи, а на бренчание миски и шаги служителя – искусственный условный рефлекс, так как связь этих раздражителей с пищей случайна.
Как известно, на основе изучения слюнных условных рефлексов И.П. Павлов осуществил в естествознании настоящий переворот, создав физиологию головного мозга. Он не располагал еще возможностью непосредственного изучения функций мозга, что привело к попытке лишь на основе анализа внешних воздействий и ответных реакций животных судить об интимных механизмах его работы. Приходится лишь удивляться гениальности нашего великого соотечественника, создавшего на столь скудной основе рабочие гипотезы, которые обеспечили на протяжении десятков лет весьма продуктивное развитие физиологических исследований. И их значение вряд ли будет исчерпано в ближайшем обозримом будущем.
До сих пор секреты возникновения временных связей не разгаданы. По существующим представлениям механизм условного рефлекса формируется благодаря образованию в мозгу вре́менной связи между структурами, ответственными за восприятие условного раздражителя, и центром безусловного рефлекса или его представительством в коре головного мозга. Замыкание временной связи объясняют проторением пути, который возбудительный процесс прокладывает между нервными центрами (примерно так же, как весенний ручеек промывает себе дорогу в толще слежавшегося за зиму снега).
Нужно сказать, что с момента создания Павловым учения о высшей нервной деятельности физиология мозга сделала гигантские шаги. Нейрофизиологи научились вживлять в мозг электроды и записывать биоэлектрические реакции как от отдельных нейронов, так и от целых «ансамблей» нервных клеток. Исследованы физиология и биохимия отдельных частей нейрона, выяснены многие интимные стороны его деятельности. Несмотря на явные успехи физиологии, основные представления о механизмах образования условного рефлекса по существу не получили ни экспериментального подтверждения, ни дальнейшего существенного развития.
В известной степени умозрительный подход павловской школы к интерпретации нейрофизиологических механизмов, непонимание большинством биологов того, что сложные психические функции могут строиться из отдельных, более элементарных звеньев, и вообще недоверие к возможности познания механизмов работы мозга, а также неудачный перевод на европейские языки термина «условный рефлекс» надолго задержали признание условнорефлекторной теории. Западноевропейские и американские физиологи восприняли описанное Павловым явление как элементарный механический акт, вроде отдергивания руки при прикосновении к горячему, и поэтому не могли представить, как из отдельных условных рефлексов строятся сложные поведенческие акты и все поведение в целом. Между тем почти в самых первых публикациях павловской школы термин «условный рефлекс» использовали как синоним условнорефлекторной реакции. При этом нужно помнить (и сами исследователи это отлично понимали), что слюнный условный рефлекс, чаще всего являвшийся объектом изучения, представляет собой лишь один из компонентов общей пищевой или оборонительной реакции. Условный рефлекс, по Павлову, – целостная реакция животного, требующая для своего осуществления участия многих нейронных объединений сложноорганизованного мозга, тогда как по представлениям нейрофизиологии рефлекс – достаточно элементарный механический акт, осуществляемый любым отделом центральной нервной системы.
Выработка условных рефлексов, поскольку она требует определенного структурного совершенства нервной системы, происходит лишь у животных, обладающих достаточно развитым мозгом. Есть основания предполагать, что среди беспозвоночных их образование возможно начиная с высших кольчатых червей, а у позвоночных – с акул и скатов. У высших моллюсков, ракообразных и насекомых, а в ряду позвоночных уже с костистых рыб условные рефлексы становятся основным видом индивидуально приобретаемых поведенческих реакций.
Условные рефлексы существенно отличаются от описанных выше индивидуально вырабатываемых приспособительных реакций. У большинства животных они могут быть образованы на любой раздражитель, для восприятия которого организм имеет соответствующие рецепторы. Выработка условных рефлексов происходит при сочетании индифферентного и безусловного раздражителей при обязательном предшествовании первого. Для млекопитающих продолжительность предшествования индифферентного раздражителя, еще способная обеспечить возникновение условного рефлекса, 100 мс, а оптимальная – 400–600 мс. Главное отличительное свойство условных рефлексов – способность к угашению и самопроизвольному восстановлению через несколько минут или часов после угашения. Самовосстановление условного рефлекса бывает столь полным, что трудно поверить, будто еще час-два назад условный раздражитель не вызывал никакой реакции. Таким образом, условные рефлексы обладают высокой стабильностью, а у высших животных они способны сохраняться всю жизнь, если, конечно, не возникнет серьезных причин для их полного устранения.
Изучение поведения – сложная задача. Подчас чрезвычайно трудно квалифицировать наблюдаемые реакции.
Сама по себе простота или кажущаяся сложность поведенческого акта не может служить критерием для отнесения его ни к условным рефлексам, ни к приспособительным реакциям низшего ранга. Иногда неопытные исследователи ошибочно называют выработанную реакцию простейших, кишечнополостных и плоских червей условным рефлексом. Вот один из примеров подобных ошибок. Эксперименты проводили на планариях. Во время опыта животных помещали на маленький круглый ярко освещенный манеж, на который отбрасывалась кольцеобразная тень. Планарии не любят слишком яркого света и стараются от него спрятаться. Когда животные на периферии манежа пересекали кольцо тени, свет автоматически выключался, и планарии могли отдохнуть в темноте. Поведение этих планарии сравнивали с поведением контрольных животных, которых ничему не обучали. Они свободно ползали по манежу, а свет время от времени ненадолго выключался независимо от того, где в этот момент находились животные. Было обнаружено, что первые планарии гораздо чаще контрольных пересекали кольцеобразную тень. Создавалось впечатление, что они научились «выключать» свет, а исследователи ошибочно сочли, что у планарии образовался условный рефлекс.
Ошибка возникла потому, что эксперимент вел автомат. Это он «дрессировал» планарии, выключал свет и считал, сколько раз они пересекали тень. Сообщить о поведении животных что-нибудь еще он, естественно, не мог. Между тем планарии, использовавшиеся в данном эксперименте, отличались тем, что их реакции на любой раздражитель, в том числе и на свет, прекращались тотчас же, как только он переставал действовать. Если обучавшееся животное, пересекая тень, выключало свет, оно где-то тут же и замирало. Когда свет загорался вновь, у планарии было много шансов опять наткнуться на тень. Таким образом, однажды оказавшись в районе тени, они по нескольку раз подряд выключали свет, но делали это совершенно случайно, и об их обучении не могло быть и речи. Животные контрольной группы в момент выключения света чаще находились вдали от кольцевой тени, и, когда он снова зажигался, у них по-прежнему было мало шансов достичь этого района манежа.
Основное в условнорефлекторной деятельности – принцип сигнальности. Условный раздражитель «сигнализирует» о предстоящем начале действия безусловного раздражителя, о наступлении тех или иных событий, подготавливая организм к ним, вызывая в нем все те реакции, которые обычно возникают при действии соответствующего безусловного раздражителя. Выработка условных рефлексов – приобретение животным элементарных знаний об окружающей его среде, о существующих в ней закономерностях. Условный рефлекс обеспечивает высокую степень обобщения: условный раздражитель как бы обобщается с безусловным и может теперь вызывать все те реакции, которые раньше вызывал только безусловный раздражитель. Бренчание миски, из которой обычно кормят собаку, или звонок, вслед за которым всегда следует мясо, обобщаются с пищей, вызывая секрецию слюны и другие проявления пищевой реакции. Следовательно, в условном раздражителе качества или свойства объектов внешнего мира превращаются в их признаки. В то же время условный рефлекс обеспечивает высокую степень отвлечения от действительности. Ведь звуковой условный пищевой раздражитель (звонок или бренчание миски, вызывающие пищевую реакцию) – лишь звуковые сигналы, а не сама пища. Таким образом, условный рефлекс, имеющий несомненно физиологическую природу, представляет собой одновременно и психическое явление, элементарный психический акт. Поэтому, изучая условнорефлекторную деятельность, исследователи в то же время познают и психологию подопытных объектов.
Условные рефлексы являются обширным классом реакций. Существует множество принципов их классификации: по модальности условного раздражителя (зрительные, звуковые, обонятельные, кожные и т. д.), по характеру ответной реакции животного (двигательные или секреторные), по ее биологическому смыслу (пищевые, оборонительные, половые), по способу образования (условные рефлексы первого, второго, третьего и высших порядков, имитационные условные рефлексы и др.), по временным характеристикам образуемых условных рефлексов (наличные и следовые); кроме того, имеются условные рефлексы, вырабатываемые на простые раздражители и на различные виды комплексных раздражителей, натуральные – на естественные признаки предметов (например, на запах пищи) и искусственные – на случайные ее признаки (например, бренчание миски), классические, инструментальные и др.
Познакомимся с некоторыми из перечисленных выше видов условных рефлексов; начнем с классических. К ним относятся слюнные условные рефлексы, так детально изученные в лабораториях Павлова, за что их и назвали классическими. Их особенность в том, что они точно воспроизводят эффект, вызываемый безусловным раздражителем. Если пища, используемая в качестве безусловного раздражителя, вызывает обильное выделение слюны, то и условный пищевой рефлекс, образуемый на основе этого подкрепления, тоже будет выражаться в слюнотечении. Раз электрический ток вызывает отдергивание лапы, то таким же будет выработанный с его помощью оборонительный условный рефлекс.
Иначе обстоит дело при образовании инструментальных условных рефлексов. Здесь условнорефлекторная реакция не является копией безусловнорефлекторной, возникающей в результате действия подкрепляющего раздражителя. На том же пищевом подкреплении может быть выработан инструментальный условный рефлекс: нажим лапой на педаль у собак, клевание красного диска у голубей или прыжок на полку для кошек. Бихевиористы часто использовали «проблемные» ящики. Помещенное туда животное должно было осуществить определенное действие, чтобы открыть запор и получить свободу или доступ к пище. Бихевиористы считали, что инструментальные условные рефлексы настолько отличаются от классических, что результаты их образования не стоит даже и сравнивать. Предполагалось, что инструментальные рефлексы являются реакциями более высокого ранга, чем классические, и потому их можно использовать в качестве критерия уровня развития высшей нервной деятельности. Однако дальнейшие исследования дают основание считать, что эти рефлексы в ряду беспозвоночных могут быть выработаны начиная с кольчатых червей, а у позвоночных – с костистых рыб.
В формировании условных рефлексов важное значение имеет способность перенимать опыт путем подражания своим товарищам по стае и даже животным другого вида. Условные рефлексы, образовавшиеся у животного не путем непосредственного воздействия на него условных и безусловных раздражителей, а лишь в результате наблюдения за тем, как реагируют на них другие животные, называют имитационными. Методика их образования предельно проста. В экспериментальное помещение приводят двух собак. Одну из них привязывают и на ее глазах у второй обычным путем вырабатывают какой-нибудь рефлекс. Если теперь собак поменять местами, то станет ясно, что условный рефлекс образовался и у «зрителя».
В прошлом умение подражать рассматривали как показатель высокого уровня развития. Однако способность к образованию имитационных условных рефлексов связана не с уровнем развития мозга, а со степенью совершенства анализаторных систем, в первую очередь зрительного анализатора, со стадным образом жизни, с характером семейных отношений. У многих рыб (карасей, трески, сайды, пикши) имитационные рефлексы, пищевые и оборонительные образуются лучше, чем у крыс. У собак они легче поддаются действию внешнего тормоза, чем у павианов; зато у последних на основе подражания возможно угашение условных рефлексов. Особенно хорошо развито подражание у молодых животных. Детеныши макак лапундер способны образовывать на основе подражания пищевые условные рефлексы и длительное время их сохранять, ни разу не получая подкрепления. Можно обнаружить существенные различия лишь в отношении сложности и количества одновременно вырабатываемых имитационных условных рефлексов. Видимо, только у человекообразных обезьян на основе подражания возможны образование цепей условных рефлексов, состоящих из 8–10 движений, переделка положительных реакций в отрицательные, а отрицательных – в положительные, дифференцирование близких раздражителей при одновременном и последовательном их предъявлении.
Среди натуральных условных рефлексов в особую группу выделяют так называемое запечатление – импринтинг. Рефлекторные акты, осуществляемые животными на основе информации, усвоенной путем запечатления, обычно являются фрагментами инстинктивных реакций, поэтому необходимость их образования генетически запрограммирована. Они видоспецифичны, и их образование почти так же обязательно, как и наличие самих инстинктов. А если по какой-либо причине запечатление не произойдет, животное будет «психически» настолько неполноценным, что окажется неспособным существовать в привычной для данного вида среде обитания, не сможет жить в сообществе себе подобных, вступить в половой контакт или воспитать потомство.
Чаще всего запечатление вырабатывается быстро, бывает прочным и, если результат импринтинга может использоваться в разные возрастные периоды, сохраняется на всю жизнь. Обычно запечатление осуществляется в раннем детстве и может произойти только в течение специального чувствительного периода, а, если этот период будет упущен, в более поздние сроки оно уже не осуществится. Информация, зафиксированная путем запечатления, может понадобиться немедленно. Птенцам выводковых птиц, например, необходимо срочно запомнить, как выглядят их родители. В этом случае чувствительный период короток. У кряковых уток готовность к импринтингу достигает максимума к 13–16 часам жизни; вот почему мать в день вылупления держит утят в гнезде: малыши, еще не запечатлевшие ее, могли бы легко отстать и потеряться. Чаще запечатленная информация становится необходимой только через несколько месяцев или лет. Еще в детстве животные узнают, как должен выглядеть или пахнуть их будущий супруг или супруга, а юная кукушка должна запомнить, как выглядят яйца в гнездах, где она будет оставлять подкидышей. Половое запечатление не формируется столь стремительно. У собак чувствительный период падает на возраст от 3 до 10 недель. Если щенка до прозрения отобрать от матери и в течение 14 недель держать в полной изоляции от других собак, он в дальнейшем не проявит желания вступить в контакт с сородичами, а его поведение перестанет быть нормальным.
Натуральные условные рефлексы гораздо легче вырабатываются, чем угашаются, а результат запечатления вообще необратим. Впечатляющий эксперимент проведен на зебровой и бенгальской амадинах. Яйца зебровой амадины подкладывали в гнезда бенгальских. Став взрослыми, самцы таких подкидышей полностью игнорировали самок своего вида и пытались ухаживать только за самками бенгальских амадин. Самца можно вернуть в среду сородичей. В этом случае он способен вступить в брак с самкой зебровой амадины и стать счастливым отцом, но это ничего в его жизни не изменит. Если теперь ему предложить на выбор самок обеих видов, его симпатии по-прежнему окажутся на стороне бенгальских амадин.
Вот почему в зоопарках многие ценные животные, выращенные и воспитанные людьми, не дают потомства.
Не следует думать, что импринтинг доступен лишь молодым животным. Материнское запечатление – важное условие сохранения семьи и воспитания детей. Его чувствительный период бывает особенно короток. Если козу не допустить к козленку в течение часа после окота, она его не примет, но достаточно всего 5-минутного контакта, чтобы запечатление произошло. Такие бурные темпы импринтинга необходимы лишь для животных, чьи детеныши сразу после рождения в состоянии следовать за матерью, которые не обзаводятся собственным домом или держатся большими стадами.
Материнское запечатление хорошо развито у оленей, антилоп, верблюдов, коз, баранов. У овцы, не имевшей контакта со своим ягненком в первые сутки после окота, не будет молока. Материнское запечатление позволяет матерям стадных животных не путать своих детей. Когда у нас на Севере наступает ранняя весна, в африканских саваннах происходит массовый отел в стадах антилоп гну. Новорожденные телята – лакомая и легкая добыча для любого хищника. Компания охотящихся львов, леопард или охотник может распугать многотысячное стадо антилоп. В суматохе бегства малышам нетрудно отстать и потеряться. Когда все успокоится, телята с отчаянным мычанием бродят по степи в поисках своих матерей. Если им не везет, отчаявшиеся малыши уже через несколько часов начинают приставать к любой самке, но их попытки всегда безрезультатны. Антилопа, потерявшая своего теленка, не усыновит чужого детеныша и даже не покормит его молоком.
Материнское запечатление хорошо развито и у морских котиков. Новорожденные первые дни находятся при матерях, но жить в гареме для них опасно. Во время драк старых самцов в бурлящем водовороте тел их затаптывают насмерть. Поэтому в стороне от гаремов возникают «детские сады», куда регулярно заглядывают матери, давно запечатлевшие малышей. Они по запаху безошибочно узнают своего ребенка и кормят только его. Вскоре самки начинают регулярно на 6–8 суток отлучаться в море, уплывая на кормежку. Маленькие котики не в состоянии запомнить образ своей матери и не могут отличить ее от других самок, зато они способны запечатлеть место, где появились на свет. Переварив за 5–7 суток полученную от матери дозу молока и проголодавшись, малыш отправляется на то место лежбища, где он родился, и с жалобным криком бродит там в поисках матери. Самка, вернувшись с кормежки, тоже направляется именно туда. Разыскивая своего ребенка, мать время от времени подает призывный крик. На него немедленно отзываются все находящиеся поблизости голодные детеныши. Это облегчает поиск. К тому моменту, когда матери начинают покидать лежбище, у малышей заканчивается становление голоса, а у матерей – его запечатление. Ответные вопли чужих детенышей самку не трогают. Лишь голоса некоторых малышей ей кажутся знакомыми, и она к ним слегка принюхивается, но тут же отвергает навязчивого ребенка. Наконец, отыскав по голосу своего отпрыска, мать его тщательно обнюхивает (запах все-таки главный отличительный признак) и, убедившись, что путаницы не произошло, кормит, отгоняя остальных голодных детенышей.
Материнское запечатление развито и у птиц. Оно особенно необходимо в тех случаях, когда птенцы, как и юные котики, воспитываются в «детских яслях». Родители императорских и королевских пингвинов запечатлевают голос своего отпрыска и, навещая его в яслях, кормят. На подачку чужому малышу семейные птицы ни в коем случае не расщедрятся. Только потеряв собственного отпрыска, бездетный пингвин способен «усыновить» сироту. Пингвины-холостяки, которым по возрасту еще рано обзаводиться семьей, весьма активно выражают желание стать «опекунами». Эта деятельность в птичьей колонии не преследуется, а малышам все равно, лишь бы их кормили. У них запечатление родителей не происходит, оно им и ни к чему. Детям не под силу самим разыскивать родителей, и они не должны покидать свои ясли. А осиротевшим малышам импринтинг мешал бы вступить в контакт с добровольными воспитателями или приемными родителями, и их участь была бы плачевной.
Обычай коллективного воспитания детей под присмотром старых бездетных птиц принят у фламинго. Птенцы на 3–4-е сутки жизни покидают гнездо. Днем родители улетают за 50–70 км от дома, чтобы покормиться, а дети под присмотром «няньки» или, скорее, «пастуха» отправляются на прогулку. К вечеру, еще до возвращения старших, нянька гонит их на ночлег. Там скапливаются птенцы всей колонии, до полумиллиона как две капли воды похожие друг на друга. В этом море пушистых сероватых тел родители умеют разыскать своих детей и кормят только их.
И еще один пример материнского и детского запечатления – чайки. Птенцам, развивающимся медленно, все раннее детство проводящим в гнезде, и их родителям нет необходимости запоминать друг друга. Беспомощные малыши уйти из гнезда не в состоянии, да и посторонние дети не могут оказаться в чужом доме. Другое дело птенцы, живущие в колониях и рано проявляющие активность. Малыши американской грязной чайки уже к 4-м суткам жизни запечатлевают голоса своих родителей. Это позволяет им с 5-х суток отлучаться с гнездового участка или совсем покинуть его. Теперь они уже не боятся потеряться.
Взрослые чайки, обзаведясь потомством, первое время не очень приглядываются к своим детям. Они отлично помнят, где находится их гнездо, и уверены, что всегда застанут птенцов дома. Однако о возрасте своих детей они имеют достаточно точное представление. Если 5-суточных птенцов одного гнезда заменить птенцами такого же возраста из другой семьи, ни дети, ни родители не заметят подмены. Но 6-суточных малышей заменить только что вылупившимися птенчиками не удается: взрослые чайки их заклюют или просто выбросят вон. Они сразу обнаружат, что это чужие дети, так как их собственные были гораздо старше.
Нет смысла запечатлевать совсем маленьких птенцов. Дети растут и быстро меняются. Если на 5–6-е сутки после появления собственных детей на гнездовой участок грязной чайки забредет какой-нибудь птенец, хозяева по его поведению догадаются, что он чужой. На территории соседей чужак будет чувствовать себя неуверенно, станет приседать при появлении взрослых чаек. Такое поведение выдает пришельца. Держись он иначе, хозяева участка никогда бы и не догадались, что это не их ребенок. Только с 7-х суток родители по внешнему виду и походке начинают узнавать детей.
В более тесных колониях крачек с красивым названием «черные морские ласточки» птенцы чаще забредают в чужие владения. Родителям невольно приходится торопиться: у них запечатление детей происходит на 5-е сутки. Хохлатые ласточки живут еще скученнее, и родители запоминают детей уже на 2-е сутки их жизни, а королевские ласточки запечатлевают даже свои яйца и легко отличают их от яиц соседей. Зато глупая крачка, гнездящаяся на деревьях, узнает своих детей только на 14–20-е сутки (недаром ее называют глупой), а пингвины Адели – на 21-е. Именно в этот период их птенцы покидают гнезда. Хочется подчеркнуть, что способность выделять голос своих родителей, узнавать по запаху или внешнему виду детей среди многих тысяч очень похожих голосов или совершенно одинаковых малышей – достаточно трудная задача. Только особая обостренная чувствительность в определенные моменты жизни делает запечатление возможным.
В изучение запечатления первый крупный вклад внес К. Лоренц. Он рассматривал импринтинг как форму «супериндивидуального условного рефлекса», имея в виду модель полового запечатления и то, что рефлекс вырабатывается не на конкретную особь, с которой контактирует запечатлевающее животное, а на всех животных данного вида. С точки зрения теории условных рефлексов, это обстоятельство не вызывает никакого недоумения. Здесь несомненно имеет место хорошо известное явление обобщения условного раздражителя, которое возникает практически при выработке любого условного рефлекса. Несостоятельны возражения против условнорефлекторной природы импринтинга, так как он якобы развивается без подкрепления. На самом деле всегда удается обнаружить безусловнорефлекторную основу запечатления, выполняющую роль подкрепления. Голодом, жаждой, страхом и половым возбуждением далеко не исчерпывается круг причин для возникновения безусловнорефлекторных реакций, которые способны стать основой для образования самых различных условных рефлексов. Если движущийся объект вызывает у птенцов безусловнорефлекторную реакцию следования, то какое есть основание отказать ей в способности служить подкреплением при запечатлении?
В ходе изучения импринтинга первоначально сложилось впечатление, что он свойствен лишь высокоразвитым животным, однако существенно уступающим по интеллекту высшим млекопитающим. Это оказалось верным лишь отчасти. Развитие способности к запечатлению действительно требует достаточно высокого уровня развития центральной нервной системы. Однако значение импринтинга не падает и на высшем уровне филогенетической эволюции. Видимо, развитие у детей речи, происходящее чрезвычайно быстро и требующее усвоения огромного количества информации, осуществляется благодаря предуготованному механизму. Для овладения речью существует критический период: первые шесть лет жизни. Если он будет упущен, ребенок никогда не научится говорить.
Способность обучаться, образовывать условные рефлексы часто используют для определения уровня развития психических способностей. Был период, когда условный рефлекс рассматривали как реакцию достаточно высокого порядка. У исследователей не было уверенности, что его можно выработать у низших позвоночных животных. Считали необходимым экспериментально доказать возможность его образования даже у птиц, хотя всем, безусловно, хорошо известна способность кур бежать сломя голову на традиционное «цып-цып-цып».
Отсутствие адекватных методик для выработки условных рефлексов у низших позвоночных и опыта в проведении подобных исследований мешало получению надежных результатов. Казалось естественным, что выработка условного рефлекса у низших животных должна протекать с некоторым трудом. Появились сообщения, что для образования двигательно-оборонительных условных рефлексов у рыб требуются десятки сочетаний и тем не менее рефлексы не становятся прочными. Еще хуже обстояло дело в отношении амфибий: для них долго не могли придумать подходящую методику. Это отчасти объяснялось тем, что за сравнительно-физиологические исследования нередко брались люди, не имеющие достаточно ясных представлений об инстинктивных и безусловнорефлекторных реакциях подопытных животных. На основании их работ складывалось впечатление, что скорость выработки условных рефлексов (количество сочетаний, необходимое для их образования), их стабильность и продолжительность сохранения должны стать надежным критерием для установления уровня развития центральной нервной системы.
Постепенное накопление фактического материала показало полную несостоятельность подобных предположений. Условные рефлексы являются универсальной, а следовательно, жизненно необходимой формой индивидуального приспособления. Они в равной мере важны как для муравья, так и для гориллы; поэтому скорость их формирования у животных разного уровня развития практически одинакова и ее нельзя использовать для оценки уровня развития интеллекта, так как она зависит не от особенностей мозга отдельных видов животных, а от адекватности методики образования условных рефлексов и используемых раздражителей, от адаптации животных к условиям эксперимента, типа высшей нервной деятельности и прочих индивидуальных свойств центральной нервной системы. Нетрудно убедиться в справедливости данного положения. У любой собаки условнорефлекторная реакция подъема передней лапы выработается быстрее, чем задней. Разница заметно усилится, если условный рефлекс образовать на действие укрепленной на передней конечности касалки – прибора для тактильного раздражения локального участка кожи.
Зависимость скорости образования условных рефлексов от условий эксперимента широко известна. При использовании адекватной методики и применении в качестве подкрепления раздражителя, имеющего высокое биологическое значение, условный рефлекс у любых позвоночных животных может быть выработан после 1–2 сочетаний. Разница между высшими и низшими позвоночными животными не столько в скорости образования условных рефлексов, сколько в расширении условий, при которых он может быть образован. Это обстоятельство накладывает дополнительные ограничения при проведении сравнительно-физиологических исследований: для получения сопоставимых результатов условные рефлексы следует вырабатывать с применением наиболее адекватных условий для данного вида животных, и нельзя пользоваться единой методикой при изучении разных видов, тем более представителей различных классов животных.
Неадекватность методики, незначительные и на первый взгляд не обращающие на себя внимание ее нюансы могут не только затруднить формирование условных рефлексов, но и сделать их образование вообще невозможным. Так, попытка выработки у детей 2–4 лет слюнного пищевого условного рефлекса на обонятельный раздражитель вызывала существенные затруднения, пока экспериментаторы не догадались ввести пахучее вещество в лимонный сироп, использовавшийся в качестве подкрепления. Пространственное разобщение условного и безусловного раздражителей при выработке пищевых условных рефлексов, оказывается, может стать серьезным препятствием для их образования. В другом исследовании у детей до года не удалось сформировать двигательные условные рефлексы. Причина неудачи заключалась в использовании одноминутных интервалов между отдельными сочетаниями раздражителей. Известно, что в различные периоды после воздействия раздражителя возбудимость мозга по отношению к нему меняется. В упомянутом выше исследовании действие условного раздражителя каждый раз падало на рефрактерный период – состояние наименьшей возбудимости мозга, что затрудняло выработку условного рефлекса.
Скорость становления сложных условных рефлексов, их систем, а главное – длина цепи двигательных условных рефлексов, которую можно образовать у данного животного, в известной мере отражают уровень совершенства функций центральной нервной системы. У черепах с большим трудом после проведения десятков сочетаний удается выработать трехчленную условнорефлекторную цепь, т. е. последовательное выполнение трех условнорефлекторных двигательных реакций. У голубей при значительно меньшем числе сочетаний возникают достаточно прочные цепи из 8–9 движений. Цепные условные рефлексы млекопитающих могут включать еще большее число звеньев.
От уровня развития мозга зависит способность к формированию комбинационных условных рефлексов. У животных вырабатывают ряд двигательных условных рефлексов на простые раздражители, а потом испытывают действие цепи, скомбинированной из них, в произвольном порядке. Собаки и низшие обезьяны в этом случае осуществляют в заданной последовательности всю цепь рефлекторных актов и только потом идут к кормушке за вознаграждением. Для осуществления комбинационных условных рефлексов животные должны иметь достаточно развитую краткосрочную память, чтобы запомнить очередность условных раздражителей. Для оценки степени совершенства условнорефлекторной деятельности учитывают количество условнорефлекторных актов, воспроизводимых подопытным животным, и степень правильности соблюдения их последовательности. Использование комбинаций из условнорефлекторных реакций является важнейшей закономерностью высшей нервной деятельности, особенно на высших уровнях филогенеза у человекообразных обезьян и человека.
Способность к формированию комбинационных условнорефлекторных реакций возникает на определенном уровне филогенеза. Если у золотых карасей выработать на два комплексных раздражителя два условных рефлекса, а затем предложить рыбам сформированный из них более сложный цепной комплекс, то они отвечают только одной условнорефлекторной реакцией, соответствующей первой части нового комплекса, повторяют ее несколько раз подряд и во время действия второй части комплекса, и после его завершения. Иная картина наблюдается у голубей и кроликов. Эти животные адекватно реагируют даже на многократно чередующееся повторение отдельных комплексных раздражителей при любых последовательностях их применения. Оказалось, что они способны отвечать соответствующими реакциями на семикратное чередование, но при дальнейшем увеличении числа условных раздражителей начинают совершать ошибки или перестают на них реагировать.
Известным образом отражает уровень развития мозга способность к образованию условных рефлексов второго и высших порядков. У рыб условный рефлекс третьего порядка получить не удается; у рептилий если они и возникают, то явно с большим трудом; у обезьян же можно выработать условный рефлекс двадцатого порядка, и, надо думать, это для них не предел.
Количественный показатель чаще других используют в качестве критерия уровня совершенства мозга. Удивительно привлекательна вера в неверную, но такую обычную и понятную природу количественных различий межвидовых особенностей обучения. Действительно, изменения в работе мозга, достигая определенного количественного уровня, придают его деятельности новые качества. Однако пока эти новые качества не выявлены, количественные оценки мало что объясняют в эволюции мозга, тем более что мы не всегда умеем нащупать информативные характеристики. Только обнаруживая появление новых механизмов мозговой деятельности, мы действительно приближаемся к пониманию эволюции нервной системы. В павловских лабораториях с некоторым удивлением был встречен факт выработки условного рефлекса при частичном подкреплении условных сигналов. Сейчас хорошо известно, что условный рефлекс может быть образован при подкреплении только каждого второго, третьего, четвертого или только десятого применения условного раздражителя. Рефлекс вырабатывается легче, если подкрепленные и оставленные без подкрепления условные раздражители следуют в случайном порядке. Образованные таким образом двигательно-пищевые условные рефлексы бывают прочнее, постояннее и с большим трудом, чем обычно, угашаются. У исследователей невольно возникло предположение, что условные рефлексы с частичным подкреплением должны вырабатываться только у высокоразвитых животных, а минимальная частота подкрепления, при которой они еще образуются, может стать хорошим количественным критерием уровня развития мозга. К сожалению, эти предположения не подтвердились.
Возможность образования условных рефлексов при различной вероятности подкрепления не означает, что для животных совершенно безразлично, насколько часто его реакции оказываются адекватными объективно существующим условиям окружающей среды. Если в экспериментальном помещении находятся две автоматические кормушки и действие звонка сопровождается появлением корма то в одной, то в другой, собаки реагируют на данную ситуацию в полном соответствии с вероятностью появления корма в каждой из кормушек. В этих случаях у животных вырабатывается один из двух типов реакций: или вероятностное соответствие, когда собаки чаще бегают к той кормушке, где вероятность получить корм велика, или максимизация, когда они посещают только ту кормушку, где корм оказывается чаще.
Способность животных оценивать вероятностную структуру среды тоже пытались использовать в качестве критерия для определения уровня развития психических способностей. Действительно, вероятностное соответствие – более примитивный способ отражения вероятностной структуры среды. Поведение типа максимизация появляется лишь у млекопитающих. Однако у дельфинов, животных явно высокоразвитых, при решении аналогичной задачи обнаружено вероятностное безразличие: выбрав место подкрепления, они не меняют его, даже когда вероятность получения пищи становится столь низкой, что подход к месту подкрепления вообще теряет всякий смысл. Вот что значит количественный показатель! Причина вероятностного безразличия неясна. Возможно, уровень пищевой мотивации (пищевой потребности) у существ, имеющих 3-месячный запас жира, несколько иной, чем у животных, которые лучше знакомы с чувством голода. Не исключено, что строгие правила коллективной охоты приучили дельфинов не проявлять особого внимания к персональному благополучию. Во всяком случае, обвинить их в неспособности осуществлять анализ вероятностной структуры среды было бы несправедливо. Вероятность болевых воздействий животные учитывают весьма скрупулезно.
Поскольку скорость образования простых условных рефлексов и другие количественные показатели не позволяют оценить уровень развития мозга, были подвергнуты изучению более сложные реакции, в том числе условные рефлексы на обобщенные признаки раздражителей. Наиболее изученной формой таких реакций является условный рефлекс на отношение раздражителей. В этом случае рефлекс вырабатывается не на конкретный стимул, не на непосредственные признаки этого раздражителя: его величину, силу, громкость, массу (вес), освещенность, продолжительность действия или частоту предъявления. Здесь значимый признак – отношение одного раздражителя к другому по его величине, силе, громкости и т. д.
При выработке условных рефлексов на отношение раздражителей животным одновременно или последовательно предъявляются два стимула, различающихся между собой лишь по одному какому-то признаку. Если из двух фигур подкрепляется меньшая, она и становится условным раздражителем. Однако если теперь в паре с ней предъявить фигуру еще меньшего размера, то животное будет реагировать положительной реакцией на самую маленькую фигуру, а не на ту, предъявление которой ранее систематически подкреплялось. Следовательно, сигнальным признаком здесь служит не конкретная величина фигур, а соотношение их размеров.
Оценка отношения раздражителей друг к другу – один из видов элементарных абстракций. Считалось, что способность к образованию условных рефлексов на отношение раздражителей – достижение высших стадий филогенетической эволюции животных. Вопреки ожиданию оказалось, что такие условные рефлексы одинаково легко возникают у костистых рыб, рептилий, птиц, низших и высших млекопитающих и их механизм довольно прост. В этом нет ничего удивительного. Такие понятия, как «больше» и «меньше», доступны «пониманию» простейших технических устройств. Чашечные весы четко реагируют опусканием вниз чаши с более тяжелым грузом. Почему не допустить существование в мозгу таких же простых механизмов для сравнения раздражителей по присущим им важнейшим признакам? Аналогичным образом нельзя использовать в качестве критерия уровня филогенетического развития мозга способность к образованию временных связей на движение, на прекращение движения или действия раздражителя, реакцию активного воздействия на сигнал и многие другие виды условных рефлексов.
Перечисленные примеры не следует понимать как доказательство того, что условные рефлексы по мере филогенетического развития организмов не претерпели абсолютно никакой модификации. Вопрос этот исследован еще недостаточно, поэтому рассмотрим лишь один пример. Еще И.П. Павлов высказал предположение, позже подтвержденное экспериментально, что при образовании условного рефлекса помимо временной связи между корковыми представительствами условного раздражителя и безусловного рефлекса, получившей наименование прямой, или поступательной, временной связи, возникает и обратная – от представительства безусловного рефлекса к представительству условного раздражителя. Характер обратных связей зависит от уровня филогенетического развития организмов. У пластиножаберных и костистых рыб, у амфибий и рептилий они, по-видимому, не образуются. Возникновение обратных связей возможно лишь у млекопитающих, причем эти связи могут иметь черты суммационного рефлекса или доминанты, т. е. обладать свойствами низших форм индивидуально вырабатываемых реакций. Во всяком случае, по скорости образования и прочности у хищных и приматов обратные связи значительно совершеннее, чем у грызунов.
Таким образом, структура условного рефлекса в филогенезе позвоночных претерпевает серьезные изменения, обогащаясь обратной связью, видимо совершенствующейся по мере развития млекопитающих. На основе обратных связей у животных появляется способность к «активной» деятельности, выражающаяся в том, что животное само, без внешних побуждений, осуществляет двигательную, пищевую или оборонительную реакцию в направлении условного сигнала: шимпанзе стучит пальцем по окошечку, в котором обычно вспыхивает лампочка; голубь клюет, кролик толкает носом, а собака лижет лампочку, свет которой сигнализирует о появлении пищи. Такого рода активность, объясняющаяся передачей возбуждения с пищевого центра на центры двигательных рефлексов, не зарегистрирована у низших позвоночных. Предполагается, что эти двигательные реакции, являющиеся одним из видов произвольных движений, представляют собой попытку животного вызвать действие условного раздражителя. И, по-видимому, они стали достоянием лишь высших уровней эволюции.
Образование условных рефлексов возможно лишь у животных, обладающих определенным уровнем развития мозга при наличии в нем структур, осуществляющих интегративно-корреляционные функции. У высших кольчатых червей – полихет и у высших насекомых такими отделами, по-видимому, являются грибовидные тела – высший ассоциативный центр их мозга. В ряду позвоночных животных функция образования условных рефлексов постепенно переходит от более древних к более молодым, интенсивно развивающимся отделам мозга. У пластиножаберных и костистых рыб конечный мозг – орган, из которого впоследствии развиваются большие полушария, еще не принимает участия в их образовании. А у высших млекопитающих замыкательную функцию узурпирует именно кора больших полушарий. Это не значит, что конечный мозг рыб не участвует в организации их поведения. У акул-нянек после его удаления нарушается способность различать горизонтальные и вертикальные полосы, у карповых рыб – цвета, а у макроподов – фигуры. Лишенные переднего мозга рыбы плохо ориентируются в привычной обстановке, а у совместно живущих рыб нарушается стайное поведение.
Новая кора – главное, но все же не единственное место замыкания временных связей. У кроликов, кошек, собак и даже у низших обезьян ее экстирпация не приводит к полному выпадению замыкательной функции. У животных с удаленной корой вырабатываются пищевые и оборонительные условные рефлексы на различные звуки и свет, а также образуются грубые дифференцировки. Условные рефлексы декортицированных животных легко поддаются угашению, если условный раздражитель предъявляется животному без последующего подкрепления, и способны к самовосстановлению, т. е. обладают основными свойствами условных рефлексов. Неясно лишь, вырабатываются ли в подкорковых отделах мозга условные рефлексы и у нормальных животных, или это оказывается возможным лишь после того, как они освободятся от ига и контроля коры полушарий мозга. Однако чаще у декортицированных животных вырабатываются реакции, которые условными рефлексами назвать нельзя, так как по своим свойствам они стоят гораздо ближе к реакциям, возникающим на основе стойкой доминанты или даже сенсибилизации.
Еще меньше страдает способность к образованию условных рефлексов при частичном повреждении коры. После удаления у высших животных слуховых, зрительных, кожных и других анализаторных зон условные рефлексы на соответствующие раздражители полностью не исчезают. Утрачивается лишь способность к тонкому анализу, дифференцированию сложных раздражителей, к предметному зрению.
Мы познакомились с некоторыми видами условных рефлексов. Это лишь небольшая часть того обширного набора, которым оперируют животные. Многие виды условных рефлексов мы, видимо, еще не знаем. Но и того, что сейчас известно, достаточно, чтобы утверждать, что в основе подавляющего числа поведенческих актов лежат различные виды условных рефлексов. Они являются тем строительным материалом, теми кирпичиками, из которых на фундаменте безусловных рефлексов возводятся здания общего поведения животных. Из них строятся простенькие, бедные крохотные «домики» психики примитивных животных, где отчетливо виден каждый кирпич кладки и легко получить достаточно полное представление, что она собой представляет, и роскошные «дворцы» мыслительной деятельности высших существ, где за штукатуркой, мраморной облицовкой и позолотой не виден строительный материал стен, хотя при желании до него все-таки можно докопаться. Как бы ни было пышно, красиво и ярко здание, основа его все те же кирпичики – обычные условные рефлексы.
Для организма чрезвычайно важно не только своевременно ответить наиболее адекватной реакцией на любое воздействие внешней среды, на каждый ее сигнал, но и иметь возможность в нужный момент остановить, прервать эту реакцию. В основе любой реакции организма лежит возбуждение его отдельных клеток или тканей, в первую очередь нервной системы. Выше об этом уже говорилось. Значит, чтобы прекратить реакцию, необходимо устранить возбуждение, возникшее в железе, мышце или в нервной системе. Это явление получило название торможения.
Первые сведения о торможении принадлежат немецким физиологам братьям Веберам. Изучая работу сердца, они приложили электрод к стволу блуждающего нерва, идущего к сердцу, и, к своему удивлению, вместо усиления работы обнаружили его остановку. Веберам не поверили. Нет, не тому, что, раздражая блуждающий нерв, удается вызвать остановку сердца. Опыт совсем несложен, и его мог повторить любой физиолог. В те годы считалось аксиоматичной истиной, что деятельность всех органов тела стимулируется соответствующими нервами. В существование торможения просто не поверили. Торможение физиологическими концепциями не предусматривалось. Электрическое раздражение нерва казалось слишком грубым вмешательством в деликатную систему управления сердечной деятельностью и, естественно, должно было вызвать остановку сердца. Прошло несколько лет, прежде чем идея Веберов о тормозных влияниях нервной системы стала брать верх над сомнениями.
Старший из братьев, Э. Вебер, профессор Лейпцигского университета, оказался прозорливым ученым. Он не только сумел дать правильную оценку необычным реакциям сердца, но и высказал догадку об обыденности и большом значении торможения в деятельности нервной системы. Однако представления о торможении были настолько непривычны, что никто из физиологов не брался проверить их. Торможение казалось противоестественным явлением. Ведь, когда возникала необходимость прекратить действие электрического тока, никто не пытался его подавлять, просто прерывали электрическую цепь. А нерв своей «электродинамической деятельностью» так напоминал обычный электрический проводник, что идея выключателя напрашивалась сама собой. Лишь 20 лет спустя отец русской физиологии, как позже стали называть И.М. Сеченова, серией блестящих экспериментов доказал, что в нервной системе наряду с возбуждением существует еще и тормозный процесс, что любая ткань или орган способны прекратить свою деятельность не только пассивно, в результате отсутствия раздражения, но и активно, за счет тормозящего, приостанавливающего влияния со стороны нервной системы.
Между прочим, физиологи середины прошлого столетия, носившиеся с идеей выключателя, были не так уж и далеки от истины. Пока открыты два клеточных механизма торможения. Первый, видимо более распространенный, состоит в том, что тормозный нейрон, действуя через свои тормозные синапсы, вызывает деполяризацию другого нейрона, препятствуя развитию в нем возбуждения. Второй тип клеточного торможения напоминает работу выключателя. Сама клетка, деятельность которой тормозится, не подвергается никаким непосредственным воздействиям. Тормозные влияния прикладываются к подходящему к ней аксону, прерывая распространение по нему нервных импульсов. Оставшись без внешних возбуждающих воздействий, такой нейрон прекращает свою деятельность.
По своему происхождению безусловное торможение делится на внешнее и запредельное. Под внешним, или индукционным, торможением подразумевается срочное прекращение текущей рефлекторной деятельности организма под воздействием новых раздражителей, вызывающих какой-либо рефлекторный акт, в том числе и ориентировочную реакцию. Ввиду того что причина торможения находится вне центров заторможенного рефлекса, ему и было присвоено наименование внешнего. Протекает оно по типу конкурентных взаимоотношений между нервными структурами различных рефлекторных реакций и потому получило название сопряженного или индукционного торможения. Значение внешнего торможения – в экстренной приостановке текущей деятельности организма и создании необходимых условий для осуществления более важной в данный момент реакции, вызванной новым раздражителем.
Некоторые центры головного и спинного мозга всегда находятся в реципрокных отношениях. Если один из пары таких центров возбужден, его партнер всегда оказывается заторможенным. Так организована деятельность двигательных центров спинного мозга. Когда возбуждены центры сгибателей, центры разгибателей заторможены, и наоборот. В подобных же антагонистических отношениях могут оказаться любые центры нервной системы, однако способность одного центра затормозить другой не всегда обоюдная. Болевое раздражение легко затормозит чесательный рефлекс, а чесательный рефлекс может подавить только совсем слабое болевое ощущение.
Вторая разновидность внешнего торможения – постоянное тормозное влияние «сверху», угнетающее воздействие нервных центров более высоких уровней нервной системы на нервные центры, лежащие ниже. Когда хирургическим путем удаляются высшие этажи мозга, возникает реакция высвобождения, сильное возбуждение определенных центров без видимых внешних причин. При перерезке мозгового ствола по границе между верхними и нижними двухолмиями у животных возникает децеребрационная ригидность – резкое напряжение мышц-разгибателей. В этом случае конечности и хвост у животного выпрямлены, а голова приподнята и несколько закинута назад. Отдельные части тела так прочно фиксированы относительно туловища, что собаку можно положить на бок, на спину, поставить, как табуретку, на негнущиеся ноги – и она сохранит свою странную позу. Децеребрационная ригидность возникает благодаря резкому повышению возбуждения центров разгибателей вследствие возбуждающих влияний, поступающих сюда из мышц. Если перерезать чувствительные нервы, ригидность ослабнет или полностью исчезнет. У нормальных животных она не возникает, так как вышестоящие отделы мозга притормаживают центры разгибателей, не позволяя возбуждению достигать высокого уровня.
Третья разновидность внешнего торможения развивается так же, как реципрокное, но не между центрами, а между нервными клетками. Во всех отделах мозга встречаются клеточные ансамбли, в которых возбуждение одних клеток влечет за собой торможение других. Этот вид торможения называют латеральным, так как оно возникает по краям возбужденных участков. Подобное торможение, видимо, самое распространенное. Его значение состоит в обострении по закону контраста восприятия в сенсорных областях мозга, в способности «командных» центров формировать более четкие команды, осуществлять более строгую координацию любой деятельности организма.
Второй тип врожденного торможения, названный запредельным, или охранительным, возникает у высших позвоночных под влиянием сильных раздражителей либо в результате одновременного действия нескольких раздражителей умеренной интенсивности, способных возбудить соответствующие кортикальные структуры выше присущего им предела работоспособности, перевозбудить их. В отличие от внешнего торможения оно не всегда развивается при первом же воздействии сильного раздражителя, а может потребовать для своего возникновения повторных его применений. Биологическая роль этого вида торможения заключается в защите корковых нейронов (потому оно и названо охранительным) от вредного действия раздражителей значительной силы или большой продолжительности, способных вызвать их полное истощение и гибель.
В эволюционном плане безусловное торможение систематически не изучалось. У низших беспозвоночных животных описаны реакции, возникающие при первом действии раздражителя или развивающиеся в ответ на его повторные применения и по характеру противоположные сенсибилизации. Эти реакции, без сомнения, имеют защитный характер и внешне напоминают проявление запредельного торможения. У амеб, ланцетников и других примитивных животных они в процессе развития обычно проходят очень короткую стадию повышенной возбудимости. Механизм защитных реакций, развивающихся у организмов, не успевших обзавестись нервной системой, или там, где она примитивна, еще неизвестен.
Никто из исследователей не задумывается над тем, какой процесс в эволюции возник раньше: возбуждение или торможение. Здесь все ясно: без возбуждения существование торможения было бы бессмысленным, ибо нечего было бы тормозить. Другое дело индивидуально вырабатываемые реакции. Нет достаточных оснований, чтобы решить, способность к выработке каких реакций появилась в эволюции раньше: тормозных или возбудительных. Неизвестно, чему легче научиться: отвечать определенной реакцией на раздражитель, который ее раньше не вызывал, или не отвечать на него обычной реакцией. Большинство исследователей считают, что выработать привычку не реагировать на какой-то раздражитель легче, чем научиться делать что-то новое, хотя сколько-нибудь веских доводов в пользу такого предположения нет. Такая безапелляционность кажется странной. Процесс повышения и снижения возбудимости последовательно развертывается в последействии любого разражителя. Это звенья одной цепи, и друг без друга они не бывают. Так что вопрос о первенстве, на наш взгляд, беспредметен.
Самая элементарная индивидуально вырабатываемая реакция снижения возбудимости называется привыканием. Она возникает при многократном систематическом повторении определенного раздражителя, не грозящего организму существенными последствиями, и заключается в постепенном достаточно устойчивом ослаблении самой реакции или уменьшении частоты появления вплоть до полного ее исчезновения. Иными словами, животное «обучается» не реагировать на раздражитель, не причиняющий ему вреда, и привыкание становится как бы «отрицательным обучением».
Методически выработка привыкания происходит несколько проще, чем образование реакций типа сенсибилизации. Видимо, поэтому оно изучено значительно лучше реакций, возникающих на основе суммации возбуждения. Способность к выработке привыкания обнаружена у самых примитивных организмов. Из одноклеточных существ для подобных исследований чаще всего используют разноресничную инфузорию спиростомум амбигуум. Это колосс в микромире. Инфузория достигает в длину 2 мм и хорошо видна невооруженным глазом. При небольшом увеличении спиростомумы выглядят белесыми червячками, активно ползающими по поверхности стекла или любого другого субстрата.
Если к поверхности крохотного аквариума, где находится эти инфузории, прикоснуться кончиком карандаша, вызвав колебание пленки поверхностного натяжения, а вслед за ней и толщи воды, все находящиеся там спиростомумы мгновенно, как по команде, прекратят движение и съежатся в комочек. Испуг от неожиданного вторжения в их маленький мир скоро пройдет, тела инфузорий вытянутся, и они, как ни в чем не бывало, продолжат свое движение. Притрагиваясь раз за разом к поверхности аквариума, удается приучить его обитателей меньше бояться безобидного воздействия. Скоро инфузории перестанут полностью сжиматься и будут быстрее возобновлять обычное движение. Проявив настойчивость, можно приучить спиростомумов совершенно не обращать внимание на сотрясение воды, не сжиматься в комочек и не прекращать движения.
Безусловно, в лаборатории инфузорий «дрессируют», не прибегая к помощи карандаша. Их приучают к легкой вибрации аквариума, создаваемой специальным приборчиком. Если включать вибрацию с интервалами в 7 с, то уже через 1–10 минут станет заметно, что инфузории не так сильно боятся ее. Продолжая тренировку, можно через 13–47 минут добиться полного привыкания.
У простейших привыкание весьма недолговечно и не поддается тренировке. Если через час после выработки у инфузорий привыкания проверить его сохранность, то окажется, что спиростомумы полностью отвыкли от вибрации и снова реагируют на нее обычной оборонительной реакцией. Чтобы они привыкли опять, потребуется столько же предъявлений раздражителя, сколько было сделано первый раз. Сравнение шести последовательных сеансов тренировки привыкания, проведенных с часовым интервалом, не обнаруживает какого-либо ускорения его восстановления к концу опыта. У инфузории стеннор память значительно лучше. Эта крупная сидячая инфузория, напоминающая крохотную воронку, способна 3–6 часов помнить о том, что слабого механического раздражения бояться не нужно.
Кроме вибрации у спиростомумов удалось выработать привыкание к прикосновению и электрическому воздействию. И в этих случаях «привычка» не бояться внезапного действия раздражителя сохранялась 30–50 минут, и при попытке ее восстановить облегчающего влияния предыдущей тренировки не было заметно. Привыкание вырабатывается лишь у «молодых» сытых инфузорий, лучше всего в возрасте 45–55 часов после последнего деления, а позже, к 105 часам, когда большое ядро (макронуклеус) инфузорий приступит к реорганизации, привыкание уже не возникает.
Легко вырабатывается привыкание у кишечнополостных. Стебельчатая гидра, как и инфузории, пугается вибрации. Однако память у нее надежнее: через час после выработки еще удается обнаружить привыкание, но через сутки никаких следов от него не остается. Голодная гидра хватает любой объект, коснувшийся ее щупалец, и даже может заглотить несъедобную добычу. Поймав первый раз крохотную кварцевую песчинку, гидра под ее тяжестью валится на бок. В таком положении животное находится довольно долго. В лупу видно, с каким трудом она вытаскивает щупальца из-под придавившей их песчинки. Когда ей, наконец, удается освободиться от добычи и принять нормальную позу, можно кинуть новую песчинку. Гидра непременно соблазнится и схватит очередное подношение. Животное долго будет «охотиться» на несъедобный кварц, но время освобождения от него станет постепенно сокращаться, а 25–35-ю песчинку животное уже не станет удерживать. Это не усталость. Наткнувшуюся на нее дафнию гидра непременно поймает и отправит по назначению. Привыкание к песчинке сохраняется от 40 минут до нескольких часов. Даже через сутки можно еще обнаружить следы привыкания: второй раз научить гидру не трогать несъедобную добычу оказывается легче.
У планарий, предпочитающих держаться в затемненных местах, удалось выработать привыкание к свету, но животное, прошедшее начальный «курс» обучения, не кажется поумневшим. И все же плоские черви способнее, чем одноклеточные и кишечнополостные животные. Предъявляя им слабые раздражители, которых они и так не пугаются, у них можно образовать привыкание к более сильным.
Полихеты вырабатывают привыкание по отношению к сотрясению, вибрации, движущейся тени, уменьшению и увеличению освещенности, электрическому току и другим раздражителям. Живут они в неглубоких норках, которые самостоятельно роют в илистом дне мелководных морских заливов. Эти морские кольчецы – хищники. Бо́льшую часть дня они проводят, высунувшись «по пояс» из своего жилища, и при появлении добычи всегда готовы на нее наброситься. При прикосновении к голове червя, при вибрации, при прохождении над ним тени червь быстро прячется в норку, но уже через минуту вновь выглянет наружу. Если какой-то из этих раздражителей многократно повторять, то через некоторое время полихета перестает обращать на него внимание. Скорость выработки привыкания зависит от природы раздражителей, их силы и величины интервалов между их применениями. Привыкание к вспышкам света, следующим с интервалом 30 с, возникает после 40 применений раздражителя, а при интервале в 5 минут – лишь после 80. У полихет, как и у планарий, развитие привыкания к одному раздражителю не ускоряет выработки к другому.
У морского брюхоногого моллюска аплизии (морского зайца) легко возникает привыкание к механическому раздражению мантии, в результате чего снижается интенсивность или полностью прекращается осуществление защитного рефлекса – втягивания сифона и жабры. Нужно всего 10–15 применений раздражителя, предъявляемых с интервалом от 10 с до 3 минут, чтобы защитный рефлекс уменьшился на 70 %. Восстановление рефлекса после достижения полного привыкания требует от 30 минут до нескольких часов покоя. Интересно отметить, что в первые 10–20 минут рефлекс восстанавливается на 75–85 %, а сильное механическое воздействие области головы немедленно и полно устраняет привыкание, иногда вызывая даже экзальтацию рефлекса.
Если обычного речного рака чем-нибудь напугать, он делает резкий удар хвостом под себя, отчего его тело получает поступательное движение назад и немного вверх, и рак стремительно уплывает. Достаточно всего 5–10 раз вызвать рефлекс убегания, чтобы он исчез без предварительного ослабления. Через 2–6 часов покоя рефлекс самопроизвольно восстановится.
У членистоногих удается выработать привыкание к стимулам, вызывающим пищевую и половую реакции. Орган вкуса комнатных мух находится и на ротовых органах, и на лапках. Это очень удобно: сядет муха на какой-нибудь заинтересовавший ее предмет, и сразу ясно, съедобен он или нет. Оказавшись на краю лужицы сахарного сиропа и убедившись, что она сладкая, муха, не мешкая, начинает утолять голод. Однако ее можно приучить не делать подобных попыток, если не давать возможности пригубить лакомство. Привыкание к запаху меда удалось выработать у желтолихорадочного египетского комара, а у клопа гладыша – подавление охотничье-пищевой реакции на подвижную дичь. У богомолов привыкание образуется к живым и мертвым мухам, а также к их моделям, после чего хищники уже не пытаются их хватать. Привыкания к половому феромону самки у самцов бабочки трихоплюсиани можно добиться в течение нескольких минут.
Скорость привыкания зависит от многих причин и может колебаться в широких пределах. Очень большую роль играет раздражитель, на который оно вырабатывается. Богомол уже через 2–3 минуты перестает осуществлять охотничьи реакции в направлении модели мухи, отгороженной от него стеклом, а на живую муху – только через 4–5 часов. Привыкание сохраняется у богомолов в течение 6 суток. Они отлично запоминают муху, которой их дразнили, и при замене ее другой реакция привыкания частично нарушается.
Привыкание возникает на любых стадиях онтогенеза. Личинки серой мясной мухи обладают отрицательным фототропизмом. Не позволяя ей удаляться от источника света, удается выработать привыкание к световому раздражителю через 8–10 предъявлений его. У куколок мучного хрущака можно добиться привыкания к механическому раздражению брюшного сегмента, однако скорость его возникновения чрезвычайно непостоянна. У одних куколок привыкание развивается уже после двух нанесений раздражителя, а у других для этого требовалось свыше 140 воздействий.
Незначительно изменяя условия опыта, можно резко ускорить или, наоборот, замедлить выработку привыкания. Чаще всего истинные причины различий неизвестны. У гусениц бабочки античной волнянки ярко выражен фототропизм. У насекомых, посаженных на наружную стенку длинной пробирки, дно которой направлено в сторону источника света, уже через 2.5 минуты возникало к нему привыкание, и они, повернув назад, спокойно двигались от света. У гусениц, посаженных внутрь открытой пробирки, привыкание не возникало. Они пытались двигаться к источнику света до полного истощения и погибали от голода.
Далеко не все исследователи, относя изучаемые реакции к привыканию, пользуются четкими критериями. Привыканием называют такие реакции, как угашение рефлекса потирания спины у жаб в ответ на прикосновение к коже, рефлекса клевания у цыплят, тревожного сигнала «чинк», издаваемого зябликом при виде чучела совы, чесательного рефлекса собак и отдергивания конечности у кошки в ответ на раздражение кожи. Считается, что привыкание возникает у любых высокоразвитых организмов, вплоть до человека. По внешнему проявлению реакции привыкания позвоночных похожи на аналогичные реакции беспозвоночных. У зябликов коллективное окрикивание чучела совы после длительного контакта с ним полностью исчезает, но достаточно всего 30 минут перерыва, чтобы реакция восстановилась на 50 %. Интересно, что, как и у аплизии, дальнейший процесс восстановления протекает крайне медленно. Даже через сутки реакция все еще составляет около половины первоначальной величины. По мнению некоторых исследователей, полностью она уже никогда не восстановится.
Птенцы воробьиных птиц выпрашивают пищу у своих родителей, широко раскрывая клювы, вытягивая шеи, а некоторые даже попискивая. Реакцию выпрашивания вызывает любой темный предмет, появившийся над краем гнезда, или простое его сотрясение. Когда пищевая реакция птенца не сопровождается пищей, вырабатывается привыкание. Если она возникла к зрительным раздражителям, то реакцию выпрашивания можно мгновенно восстановить с помощью сотрясения. Подобные примеры, когда привыкание к одному раздражителю не мешает возникновению этой же реакции на другие раздражители, свидетельствуют о том, что оно специфично в отношении стимулов, к которым вырабатывается. Несколько неожиданным оказалось, что и половые реакции подвержены привыканию. Когда готовую к размножению самку крысы подсаживают к долго находившемуся в изоляции самцу, он в первые же час-два совместной жизни спаривается с ней 6–7 раз. Затем наступает пауза. Создается впечатление, что самец в половом отношении сильно истощился. В действительности возникло половое привыкание. Если теперь к нему подсадить новую самку, спаривание возобновляется немедленно. Аналогичным образом проявляется половое привыкание у обезьян. Макаки резусы, впервые оказавшись вместе, спариваются часто и не тратят времени на предварительные ухаживания. В последующие дни спаривания происходят реже, и им всегда предшествует длинный ритуал специальных реакций, смысл которых во взаимной стимуляции половых партнеров. Если теперь к самцу подсадить новую самку, половое возбуждение сразу же восстанавливается, и спаривание происходит без ритуала ухаживания. Необходимость дополнительной стимуляции отпала.
Изучали привыкание и у человека. Оно возникает по отношению к воздействиям, вызывающим мигательный рефлекс, к вспышкам света, наносимым с большими интервалами, и к тому подобным раздражителям. Каждый из нас ежедневно с ним сталкивается. Так, одеваясь утром, мы менее чем за минуту привыкаем к прикосновению одежды и очень быстро перестаем ее замечать. Если одежда новая и непривычная, то привыкание наступает не так легко. Мы привыкаем к тиканью часов, к шуму за окном нашей спальни. Эти раздражители перестают доходить до нашего сознания. Для нас привыкание означает возникновение такого состояния, когда мы легко узнаем раздражители, с которыми постоянно приходится сталкиваться; воспринимая эти раздражители как вполне обыденное явление, мы игнорируем их.
Что же такое привыкание? Чем оно характеризуется? Выработка привыкания возможна при условии строгих требований к силе раздражителей и к самим условиям его образования. Важнее всего правильно выбрать величину воздействия. Желательно, чтобы сила раздражителя была минимальной. К слабым раздражителям привыкание вырабатывается быстро, а при использовании более сильных стимулов вместо привыкания может возникнуть сенсибилизация. Существенное условие выработки – правильно выбранный интервал между отдельными применениями угашаемого раздражителя. Необходимо, чтобы он был больше рефракторного периода (фаза абсолютной невосприимчивости), но не превышал отрезка времени, в течение которого у животного еще сохраняются следы от предыдущего воздействия. Для инфузории спиростомум он должен быть не менее 5 с и не более 1.5–2 минуты.
Реакция привыкания не является утомлением. Не удается обнаружить ни мышечной усталости, ни усталости рецепторных аппаратов – так называемой сенсорной адаптации. После выработки привыкания раздражитель продолжает восприниматься животным. В этом легко убедиться: если его чуть усилить, он тотчас же вызовет реакцию. Полихеты, переставшие прятаться в трубку при прикосновении к их телу, продолжают ощущать прикосновение и пытаются схватить прикасающийся к ним предмет. Прямое изучение электрических реакций сенсорных клеток показало, что привыкание не сопровождается сокращением их функциональной активности. Они, как ни в чем не бывало, продолжают посылать информацию о испытываемых воздействиях по обычным для них каналам связи.
Сходные данные получены и в отношении мышц. Любой раздражитель, кроме того, на который вырабатывалось привыкание, по-прежнему в полном объеме будет вызывать оборонительную или поисковую реакцию животного. Вырабатывая у аплизии привыкание к механическому раздражению мантии, можно видеть, как объем сокращения жабры понемногу уменьшается, пока они, наконец, полностью не прекратятся, а дыхательные сокращения жабры при этом не претерпевают никаких изменений. Значит, дело не в утомлении.
Выработка привыкания не является постепенным снижением возбудимости, а протекает волнообразно, представляя собой двухфазный процесс. Вначале снижение возбудимости развивается очень быстро, хотя на первые применения угашаемого раздражителя может наблюдаться даже некоторое учащение или усиление ответа. Затем идет растянутый заключительный этап, в течение которого дальнейшее снижение эффективности развивается крайне медленно. Аналогичным образом происходит самопроизвольное восстановление «приученного» рефлекса: в начальный период оно развивается быстро, достигая 50–85 %, в дальнейшем растягивается на значительно больший отрезок времени.
Американские теоретики зоопсихологии Р. Томпсон и В. Спенсер подчеркивают девять признаков, характерных для привыкания: возникает после многократного применения раздражителя; развивается тем быстрее, чем чаще применяется раздражитель и чем он слабее; систематическое применение раздражителя после наступления полного привыкания увеличивает срок его сохранения; привыкание к одному раздражителю может распространиться и на другие стимулы; после периода покоя реакция на раздражитель самопроизвольно восстанавливается; привыкание, многократно восстанавливаемое на определенный раздражитель, обнаруживает явление тренируемости; сильный раздражитель, способный вызвать угашенную реакцию, уничтожает привыкание; при повторных применениях сильного раздражителя его эффективность для ликвидации привыкания снижается.
Если вспомнить свойства привыкания в описанных выше примерах, становится очевидным, что оно редко соответствует всем девяти признакам. Например, привыкание у одноклеточных организмов не обнаруживает признаков тренируемости. У одноклеточных, планарий, полихет и аплизий угашение защитного рефлекса на определенный раздражитель не отражается на выработке привыкания к прочим раздражителям, способным вызвать тот же защитный рефлекс. В отличие от более развитых животных у одноклеточных привыкание не растормаживается под воздействием внешних раздражителей. Добившись у инфузорий спиростомум привыкания к вибрации, можно, усилив ее, вновь вызвать один или несколько раз оборонительную реакцию, а затем, вернув силу раздражителя к прежнему уровню, убедиться, что привыкание не нарушилось. Только чрезвычайно сильные раздражители способны разрушить привыкание. Для спиростомум таким раздражителем является пища. Поев вволю, инфузории вновь начинают вздрагивать при малейшей вибрации.
По мере усложнения нервной системы память явно становится надежнее, и сроки сохранения привыкания увеличиваются. У простейших привыкание сохраняется примерно столько же времени, сколько требуется для его выработки, а у высших червей процесс обучения значительно короче того периода, в течение которого животное может пользоваться «плодами просвещения». Привыкание у пиявок, выработанное за полчаса к световому раздражителю, остается более суток. Паука крестовика можно научить не реагировать на вибрацию ловчей паутины. Привыкание длится у него свыше 24 часов и с каждым новым опытом становится прочнее, проявляясь по отношению к раздражителям, сила которых увеличена. Известны примеры и более продолжительного сохранения привыкания.
Привыкание распространено чрезвычайно широко: от примитивных существ до человека включительно. Оно обеспечивает адекватность реакциям организма, устраняя все лишние, необязательные, не приносящие ощутимой пользы, не затрагивая лишь самые необходимые, что позволяет экономить массу энергии. Животное способно притерпеться к любым воздействиям, с которыми ежедневно встречается на своей территории, и не откликаться на них ни ориентировочной, ни оборонительной реакциями, адаптироваться к товарищам по стаду и ограничить свои реакции, возникающие в их присутствии, лишь действительно необходимыми. Короче говоря, не будь привыкания, любое животное было бы похоже на пуганую ворону, которая от каждого куста шарахается. Благодаря привыканию происходит стандартизация общественного поведения любого сообщества животных, что одновременно приводит к обострению восприятия важнейших ключевых стимулов.
Первым ученым, рискнувшим заняться изучением физиологии мозга и сумевшим найти способ для осуществления подобного исследования, был И.П. Павлов. Как известно, в результате упорного труда нашего великого соотечественника и его многочисленных учеников и соратников удалось создать стройное учение о высших функциях головного мозга. В этой титанической работе верными помощниками ученых были собаки – самые надежные экспериментальные животные. Сам Павлов считал (и это была отнюдь не шутка), что половина успеха в исследованиях принадлежит именно им. Не даром в Ленинграде под окнами павловской лаборатории сооружен памятник собаке как дань ученых своим верным помощникам в деле изучения физиологии, и в первую очередь физиологии мозга.
За последние 50 лет в лабораториях ученых получили прописку и стали лабораторными «тружениками» самые разнообразные животные: белые мыши и крысы, морские свинки и золотистые хомячки, аксолотли и шпорцевые лягушки, хорьки, обезьяны, карликовые свиньи. Кто же из них может претендовать на новый монумент, на честь быть увековеченным в бронзе? Если взвесить заслуги в изучении интимных механизмов мозга, то, пожалуй, пора сооружать пьедестал для… морского зайца – морского брюхоногого моллюска, обитающего в дальневосточных морях и больше известного в среде ученых как аплизия. Чем же прославились аплизии? Как смогли эти примитивные существа, даже не имеющие настоящего головного мозга, помочь ученым выведать какие-то его тайны? Чем они лучше собак и как смогли занять их место в физиологических лабораториях?
Учение Павлова о высшей нервной деятельности нередко называют учением об условнорефлекторной деятельности мозга. Действительно, в его лабораториях изучали условные рефлексы как глобальную функцию мозга. Здесь исследовали характер условных рефлексов и условия, при которых они вырабатываются, особенности их сохранения и угашения, участие в их образовании различных областей больших полушарий, использование условных рефлексов в формировании общего поведения и ряд других вопросов. При доброй помощи собак удалось многое узнать о главных функциях мозга. Однако неизвестным осталось самое главное: что происходит в мозгу при осуществлении его важнейших функций – при формировании условного рефлекса.
Мозг собаки и тем более человека устроен чрезвычайно сложно. Пока нет возможности выяснить, как там ведут себя нейронные ансамбли, обеспечивающие замыкание временных связей. Для подобных исследований нужна нервная система попроще. Вот почему выбор пал на аплизию. А первой психической реакцией, чей нейронный механизм удалось расшифровать, стало привыкание – самая простая в ряду индивидуально вырабатываемых реакций организма.
Головной мозг человека содержит около 10¹¹ нервных клеток, имеющих в среднем по 3500 синапсов – соединений с другими клетками. Анализ таких сложных нервных цепей пока недоступен человеческому воображению. В нервной системе аплизии всего 105–106нейронов – тоже достаточно много, чтобы разобраться в их взаимоотношениях. Однако у беспозвоночных животных нейроны рассредоточены по отдельным ганглиям. У морского зайца их девять: четыре пары надглоточных и один подглоточный брюшной, слившийся из двух парных ганглиев, но так полно, что заметить это практически невозможно. В него поступает информация непосредственно с периферии тела и уже в частично обработанном виде от одной из пар головных ганглиев. Брюшной ганглий аплизии, выполняющий важные функции, содержит 2000 нервных клеток, в миллион раз меньше, чем мозг собаки. Это коренным образом меняет дело: здесь уже есть реальная надежда выяснить, в каких взаимоотношениях между собой находятся нейроны и как они себя ведут, когда мы чему-нибудь учим животное.
Изучая строение нервной системы моллюсков, невольно приходишь к мысли, что они созданы природой главным образом для того, чтобы физиологи смогли наконец выяснить, как функционирует мозг. По сравнению с собакой у моллюсков гигантские нейроны. В такую большую клетку удается ввести не один, а 4–5 электродов. У собаки от тела нервной клетки отходит несколько отростков: более крупный аксон и много мелких дендритов. На дендритах, да и на теле нервной клетки масса синапсов, через которые в нейрон поступает информация от соседних нервных клеток, но разобраться в этом хаосе, выяснить, кто из «соседей» и какую передает информацию, совершенно невозможно. У нервной клетки моллюсков всего один отросток – аксон, а синапсов на теле клеток не бывает. Понять, как работает такая клетка, гораздо проще.
Сам нервный ганглий тоже устроен очень удобно для исследователей: нервные клетки покрывают его снаружи, а их отростки находятся внутри. Если вскрыть моллюска и разглядывать его нервный ганглий через сильную лупу, то можно увидеть практически все нейроны, из которых он состоит. Нервные ганглии примитивных существ имеют удивительную особенность, которая и является главной причиной повышенного к ним интереса: у них набор нейронов любого ганглия заранее предрешен, а каждая нервная клетка имеет определенную форму и занимает свое, заранее предназначенное для нее место. Например, нервная система паразитического червя аскариды содержит всего 162 нейрона. Наблюдая такую упорядоченность строения, нетрудно догадаться, что и функции между нейронами распределены так же строго. Действительно, каждая нервная клетка выполняет вполне определенную работу. Даже по электрическим реакциям видно, что и «электрический почерк» у них индивидуален. Кстати, их электрические реакции вполне могут служить «удостоверением личности», по которому нетрудно опознать нейрон.
У примитивных животных количество нервных клеток закодировано генетически и выдерживается так строго, что его можно рассматривать как видовой признак. 163 нейрона для аскариды – такое же уродство, как шесть пальцев на руке человека. Скрупулезная точность в отношении числа нейронов соблюдается только у червей. У более высокоразвитых беспозвоночных количество нейронов с возрастом постоянно увеличивается, а к старости начинает уменьшаться. Однако с некоторыми клетками, особенно с самыми крупными, ничего подобного обычно не происходит. Топография брюшного ганглия аплизии изучена достаточно полно: составлены карты расположения 60 крупных нейронов и 10 скоплений мелких нервных клеток. Каждая из них получила свое название, вернее номер, и уже изучены функции многих из них.
В строении нервной системы беспозвоночных нет ничего случайного. Не только каждая нервная клетка уникальна, но неповторимы и ее отростки. Даже в тех случаях, когда контактирующие между собой клетки находятся очень далеко друг от друга, располагаясь в различных ганглиях, каждая из них связана с совершенно конкретным нейроном. Эксперименты по регенерации отростков нервных клеток свидетельствуют о том, что связи нейронов предопределены очень строго. Если клетки разобщить, перерезав нервную комиссуру или нервный стволик, то при регенерации нервных волокон связи восстановятся, нервные клетки безошибочно найдут друг друга.
Лет 15 назад аплизиями еще никто серьезно не интересовался. Сейчас их поведение изучено достаточно полно. Выявлено, что брюшной ганглий «заведует» работой внутренних органов, дыханием, кровообращением, выделением и внутренними процессами, связанными с размножением. Кроме того, он «командует» осуществлением защитного оборонительного рефлекса втягивания жабры и сифона. Как уже отмечалось, эта реакция при повторных легких раздражениях мантийного выступа легко поддается привыканию, которое сохраняется довольно долго.
Благодаря простому устройству нервной системы аплизии удалось установить полный перечень нервных клеток, участвующих в осуществлении оборонительной реакции мантийной полости. Оказалось, что защитный рефлекс втягивания жабры возникает в результате возбуждения расположенных в мантийном выступе сенсорных нейронов. Их немного: всего 24. Команду о сокращении жабры формируют три крупных и три мелких мотонейрона. С сенсорными нейронами они связаны непосредственно, а также через два промежуточных возбуждающих и один промежуточной тормозный нейрон. Вот и весь механизм, простой и компактный. Невольно появлялась надежда, что на модели так просто организованного рефлекторного акта нетрудно будет выяснить, какие изменения в работе нейронов, ответственных за осуществление рефлекса, произойдут при выработке привыкания, т. е. можно будет расшифровать механизм обучения, образования самого элементарного психического акта.
Несмотря на кажущуюся простоту нейронной организации оборонительного рефлекса, она оставляла большой простор для различных предположений, так как, рассуждая теоретически, привыкание могло локализоваться в любой из девяти ключевых точек этой нейронной цепи: в рецепторных клетках (сенсорных нейронах); в синапсах между сенсорными и моторными нейронами, а также между возбуждающими промежуточными нейронами и мотонейронами; благодаря воздействию тормозного промежуточного нейрона на сенсорные нейроны, на возбуждающие интернейроны или мотонейроны; в моторных нейронах, в синапсах между мотонейронами и мышцей, а также в мышце.
Как уже отмечалось, ни в рецепторе, ни в мышце привыкание не возникает. Последовательное изучение остальных «подозрительных» точек позволило отмести еще шесть. Выяснилось, что привыкание развивается в синапсе между сенсорным и моторным нейронами, точнее – в синаптических окончаниях сенсорного нейрона. Оно возникает потому, что с каждым новым импульсом сенсорного нейрона в синапсе выделяется все меньшее и меньшее число квантов медиатора. В результате мотонейрон снижает число генерируемых им импульсов, и в конце концов наступает момент, когда он уже не способен вызвать сокращение жаберной мышцы.
В среде зоопсихологов раньше считали, что если не у каждого вида, то во всяком случае у каждого отряда или класса животных привыкание имеет свой специфический механизм. Сейчас есть веские доказательства, что эти предположения не соответствуют действительности. Природа не столь щедра на выдумки, чтобы для каждого своего «чада» все-все придумывать заново. Она консервативна и, однажды найдя удачное решение, проносит его через всю эволюцию. Однако нельзя ожидать, что привыкание у всех без исключения организмов – от одноклеточных до млекопитающих – развивается одинаковым образом, хотя бы потому, что у инфузории нет и не может быть сенсорных нейронов. И вполне естественно, что у всех животных, уже успевших обзавестись нервной системой, привыкание развивается сходным образом.
Оставим сейчас без внимания кишечнополостных и плоских червей. Что происходит у них при выработке привыкания, выяснить пока невозможно. Для электрофизиологов они являются трудным орешком. Несколько проще обстоит дело с ракообразными. У них имеется несколько гигантских нейронов с отходящими от них гигантскими волокнами. При раздражении хвоста импульсы сенсорных нейронов возбуждают гигантские вставочные нейроны. Их всего два. Благодаря тому что эти нервные клетки соединены между собой электрическим синапсом, они функционируют как единый нейрон. Общими усилиями они активируют гигантский мотонейрон и группу мелких мотонейронов, командующих работой мышц при быстром сгибании хвоста. Привыкание возникает вследствие экстренно развившейся неспособности синапсов сенсорных нейронов возбуждать вставочный нейрон.
У раков не удалось проверить все точки, где теоретически могло бы развиться привыкание. Но нет особых оснований ожидать, что их несколько. А то, что привыкание у них развивается внезапно без постепенного снижения реакции, вовсе не свидетельствует о другом механизме привыкания, как полагают некоторые зоопсихологи. Это свойство не привыкания, а устраняемой реакции. Бегство может осуществиться только при достаточно сильном и резком ударе хвоста. Поэтому данная реакция слабой никогда не бывает. Объясняется эта особенность свойством нервной цепи. Гигантские вставочные нейроны работают по закону «все или ничего», т. е. или вызывают реакцию следующего нейрона в полном объеме, или не вызывают ее совсем. К механизму привыкания это не имеет никакого отношения.
У таракана на заднем конце брюшка находится пара придатков – церки. Если обдуть их струей воздуха, насекомое пустится в бегство. Реакция возникает благодаря поступлению информации от рецепторов церок во вставочные нейроны шестого брюшного ганглия, а оттуда – на моторные нейроны грудных ганглиев, управляющих движениями ног. Благодаря тому что в числе вставочных нейронов есть и гигантские, удалось убедиться, что при выработке привыкания они перестают возбуждаться из-за прекращения передачи в синапсе. Можно думать, что аналогичным образом прерывается распространение возбуждения с сенсорных нейронов и на остальные более мелкие вставочные нейроны. Хотя все точки над «и» еще не поставлены, можно все же считать, что механизм привыкания у насекомых такой же, как и у аплизий.
У позвоночных животных к числу наиболее простых реакций, подверженных привыканию, относится реакция отдергивания лапы в ответ на раздражение кожи. У кошки нервный путь этого рефлекса многоступенчат и сложен, поэтому пока не удалось изучить электрофизиологию всех его звеньев. Оказалось возможным лишь выяснить, что во время выработки привыкания мотонейроны начинают получать все меньше возбуждающих воздействий. Хотя прямые наблюдения пока невозможны, косвенные данные позволяют считать, что и у кошки привыкание выражается в падении эффективности синапса между сенсорным и вставочным нейронами. Аналогичный механизм приписывается и угашению ориентировочного рефлекса.
Мы уже знаем, что привыкание можно уничтожить сильным раздражителем. Это явление получило название дегабитуации – устранения привыкания (габитуация – привыкание). Его механизм разгадали не сразу. Привыкание и самопроизвольное восстановление «приученного» рефлекса обычно рассматривают как две стороны одного и того же процесса, и это вполне закономерно. А что такое дегабитуация? Можно ли предположить, что ее механизм аналогичен самопроизвольному восстановлению рефлекса, только развертывается он стремительно, мгновенно уничтожая следы привыкания, как мокрая тряпка стирает написанные мелом слова? Видимо, нет. Этому противоречит ряд наблюдений. Во-первых, сильный раздражитель не только восстанавливает приученный рефлекс, но даже вызывает его увеличение. Во-вторых, стимул, снимающий эффект привыкания, усиливает рефлекторные ответы множества различных рефлексов, т. е. дегабитуация несколько напоминает сенситизацию, действуя как бы по принципу суммации возбуждения.
Среди зарубежных ученых есть убежденные поклонники привыкания. Среди них особенно выделяется Х.Ф. Харлоу. По его представлениям привыкание лежит в основе всех видов обучения, всех форм психической деятельности и является механизмом образования условных рефлексов. Метод рассуждений Харлоу несложен. Автор исходит из того, что каждый раздражитель способен вызывать практически любую реакцию животного, во всяком случае ориентировочную. Чаще всего она имеет окраску оборонительной реакции, а если животное голодно, то пищевой, т. е. животное изначально обладает потенциальной способностью любым образом реагировать на раздражитель. По мнению Харлоу, при формировании условного рефлекса никаких новых связей не образуется, а с помощью привыкания лишь устраняются неадекватные реакции. Аналогичным образом он объясняет выработку дифференцирования простых и сложных раздражителей, ориентировку в пространстве и абстрактное мышление. Трудно согласиться с точкой зрения Харлоу. Если отнести угашение ориентировочного рефлекса к одной из разновидностей привыкания (а для этого есть достаточно веские основания), то придется признать, что образованию любого рефлекса (пожалуй, кроме запечатления) предшествует фаза угашения ориентировочного или другого рефлекса, возникающего на действие будущего условного раздражителя. Этот процесс особенно удобно проследить у низших животных на моделях условных рефлексов, которые требуют для своего образования 10–20 сочетаний и не сразу становятся прочными.
У речного рака, пересаженного из своего «домашнего» аквариума в экспериментальный манеж, где он уже подвергался болевым воздействиям, тотчас же возникает оборонительный рефлекс на обстановку, проявляющийся в принятии крайне характерной позы: рак приподнимает высоко над грунтом головогрудь, раскрывает клешни и широко разводит их в сторону, готовый в любую минуту дать бой. Чтобы выработать у животного реакцию бегства, экспериментатор должен предварительно угасить реакцию принятия боевой позы. Это подавление безусловнорефлекторной оборонительной реакции, видимо, является не чем иным, как тривиальным привыканием. В дальнейшем выработанный условный оборонительный рефлекс будет находиться в реципрокных отношениях с устраненной путем привыкания безусловнорефлекторной оборонительной реакцией. Угашение условного рефлекса вызывает эффект дегабитуации безусловного рефлекса, а дегабитуация безусловнорефлекторной реакции – торможение условного рефлекса. Пример с раками показывает, что привыкание действительно «расчищает» поле деятельности от всего, что могло бы помешать возникновению условного рефлекса, но дальше требуется акт созидательный – образование нового канала связи, его максимальной активации. Здесь привыкание ничем помочь не может. С этим согласны подавляющее большинство исследователей.
Говорят, что привычка – вторая натура. Этот афоризм не имеет никакого отношения к явлению, рассмотренному в предыдущем разделе. Привыкание – еще не привычка. Для этого оно слишком непродолжительно. Однако наряду с кратковременным привыканием существует и долговременное, что можно сравнить с суммацией, на смену которой у более развитых животных приходит доминанта, или, как говорят на Западе, долговременная сенситизация. Это уже не мимолетное явление, а настоящая устойчивая привычка.
Хотя история изучения привыкания весьма продолжительна, исследователи лишь совсем недавно заметили, что повторные тренировки, или, иными словами, повторные сеансы выработки привыкания к одному и тому же стимулу, приводят к значительному удлинению времени сохранения выработанной реакции. У знакомого уже нам морского зайца долговременное привыкание возникает чрезвычайно легко: один сеанс, состоящий из 10 тактильных раздражений сифона, вызывает лишь кратковременное (всего на несколько часов) и весьма незначительное ослабление рефлекса втягивания сифона. Если такие сеансы проводить ежедневно, то с каждым днем привыкание будет проявляться все более отчетливо. Уже после четвертого сеанса оно приобретает черты долговременного процесса и теперь сохраняется не в течение часов, а на протяжении дней и недель. Во всяком случае, даже через 3 недель после последнего сеанса оно выражено еще достаточно отчетливо.
Нейрофизиологический анализ долговременного привыкания показал, что оно развивается в том же месте, что и кратковременное, т. е. в синапсе между отростками сенсорных клеток и мотонейронами. Однако более детального анализа происходящих здесь интимных процессов сделать пока не удалось. Может быть, как и при кратковременном привыкании, рефлекс втягивания сифона и жабры ослабевает лишь потому, что в ответ на каждый нервный импульс, добравшийся до синапса, теперь выделяется меньше квантов медиатора, чем до начала тренировки. Однако механизм этих явлений не обязательно идентичен. Уменьшение числа квантов медиатора может быть связано с различными биохимическими процессами. Не исключено, что долговременное привыкание вообще возникает не в окончаниях сенсорных клеток, а по ту сторону синаптической щели, в синаптической мембране мотонейрона. Долговременное привыкание удивительно мало исследовано. И все же можно с уверенностью сказать, что оно должно вырабатываться у подавляющего числа обитателей нашей планеты. Долговременному привыканию подвержены групповая атака зябликов на крупного пернатого хищника, реакция отдергивания лапки у лягушки, холодовое сжатие кожных сосудов и кожно-гальваническая реакция человека.
На многие вопросы, связанные с долговременным привыканием, пока невозможно дать безапелляционные ответы. С эволюционной точки зрения это явление никем не изучалось. Однако вряд ли будет ошибкой сказать, что это более высокая реакция, чем краткосрочное привыкание. Его образование невозможно на донервном уровне у одноклеточных организмов. Повторные сеансы выработки привыкания к вибрации у инфузорий, проведенные как в течение 1 суток, так и с более значительными интервалами, не выявили ни убыстрения его образования, ни увеличения срока сохранения, тогда как у более развитых животных всего четыре тренировки с интервалом от 1.5 ч до 1 суток обеспечивают переход краткосрочного привыкания в долговременное. Не будет неожиданностью, если эта разновидность привыкания окажется недоступной для кишечнополостных и других животных с примитивной нервной системой.
В жизни животных долговременное привыкание выполняет ту же роль, что и кратковременное. Оно позволяет объяснить такие непонятные ранее зоологам явления, как образование противоестественных сообществ животных. Как возникают совместные гнездовья гусей с их злейшим врагом – соколом сапсаном? Почему гуси перестают бояться и не обращают внимания на своего грозного соседа, а он не проявляет по отношению к ним своих охотничьих наклонностей? Видимо, физиологическим механизмом, позволяющим исконным врагам преодолеть «психологический барьер» и мирно уживаться на общей территории, является долговременное привыкание.
Стержнем представлений И.П. Павлова об интимных механизмах деятельности центральной нервной системы является взаимодействие основных нервных процессов – возбуждения и торможения. Любая реакция организма обусловлена возбуждением определенных групп нервных клеток, а ее прекращение – развитием торможения. Кроме врожденных форм торможения в павловских лабораториях были описаны четыре вида внутреннего индивидуально вырабатываемого условного торможения: угасательное, дифференцировочное, запаздывательное и собственно условное, обеспечивающее образование условного тормоза.
В отношении тормозного процесса существует много неясностей. Как мы видели, сам факт прекращения какой-нибудь деятельности ни в коем случае не может подтвердить существование торможения. Примитивные формы индивидуально вырабатываемых негативных реакций – кратковременное и долгосрочное привыкание, устраняя ставшие неадекватными реакции, обходятся без тормозного процесса. Механизм привыкания больше всего напоминает действие рубильника. Нет веских доводов в пользу того, что подавление условных рефлексов, т. е. все виды реакций, которые мы квалифицируем как случаи условного торможения, не осуществляется за счет того же нейронального механизма, что и привыкание.
Сомнения в существовании тормозного процесса родились на Западе. Отечественных исследователей эти проблемы захватили в гораздо меньшей степени. Наибольшую известность получила у нас критика концепций торможения, высказанная учеником и последователем И.П. Павлова – акад. П.К. Анохиным. Он считал, что все виды тормозных реакций можно объяснить, оперируя лишь понятием возбуждения. Тормозный эффект может, например, возникать при столкновении двух самостоятельных возбудительных процессов. По мнению П.К. Анохина, встреча возбудительных процессов должна приводить к их взаимному уничтожению, как происходит при столкновении двух поездов.
В настоящее время еще нельзя высказать обоснованное предположение о механизмах условного торможения. Внешнее сходство процедуры выработки долговременного привыкания и внутреннего торможения, как и самих этих реакций, не дает оснований говорить о тождестве интимных механизмов этих процессов. Серьезное различие между внутренним торможением и привыканием состоит в том, что торможение в отличие от привыкания процесс чрезвычайно специфичный. Правда, специфичным внутреннее торможение становится лишь при упрочении тормозной реакции, что требует значительной тренировки. Однако и в этот период оно не теряет способности к широкой иррадиации как в пространстве, захватывая обширные районы коры больших полушарий, так и во времени, сменяя в порядке индукции возбудительный процесс в ранее занятых им районах мозга. Вместе с тем привыкание в ряде случаев обнаруживает также высокую степень специфичности. Поскольку в настоящее время нет веских оснований для объединения привыкания и внутреннего торможения, будем рассматривать их, как это принято в нашей стране, в качестве двух самостоятельных явлений, относя к привыканию только те процессы, с помощью которых устраняются безусловнорефлекторные реакции, а к внутреннему торможению – те, что приводят к задержке или подавлению условнорефлекторных реакций. В отличие от внешнего торможения, которое может развиться при первом же воздействии раздражителя на организм, для возникновения внутреннего торможения необходима тренировка. Угасательное торможение формируется в том случае, когда условный раздражитель и осуществившийся в ответ на его действие условный рефлекс перестают подкрепляться действием безусловного раздражителя. По этому же принципу вырабатывается дифференцировочное торможение вследствие систематического применения раздражителя, сходного с условным, действие которого никогда не подкрепляется безусловным раздражителем. Запаздывательное торможение развивается за счет того, что подкрепление не следует непосредственно за действием условного раздражителя, а появляется с большим опозданием. Наконец, условный тормоз вырабатывается, если действию условного раздражителя предпосылается применение специального раздражителя и эта комбинация никогда не подкрепляется.
Условное торможение – процесс весьма хрупкий и неустойчивый. Оно легко нарушается под воздействием любых посторонних, главным образом незнакомых животному, раздражителей, в том числе не имеющих для него никакого специального значения и вызывающих лишь ориентировочный рефлекс. Это было замечено еще в ранних работах павловской школы. Невольно напрашивался вывод о некотором отставании развития в филогенезе тормозного процесса по сравнению с возбудительным. Поэтому предполагалось, что животные, стоящие на разных уровнях филогенетического развития, должны серьезно отличаться по способности к выработке тормозных реакций. И действительно, в печати появилось много сообщений, свидетельствующих о том, что угасательное, дифференцировочное и запаздывательное торможения легче формируются и более четко выражены у млекопитающих, чем у птиц или рыб.
В первые десятилетия изучения условных рефлексов в качестве млекопитающих обычно использовали собак, методика исследования которых была разработана во всех тонкостях, а для изучения птиц и особенно рыб предпринимались лишь первые, еще не очень успешные попытки. Позже исследователи сумели убедиться, что первоначальные представления неверны. Тормозные реакции у достаточно примитивных животных вырабатываются без особого труда. Чтобы научить пчел различать запахи или цвета, достаточно всего 2–7 предъявлений дифференцировочного раздражителя – и реакция на него угаснет. Крабы способны дифференцировать сплошной свет от мигающего после 4–12 предъявлений неподкрепляемого раздражителя, а речные раки – после 7–12.
В полной мере это относится и к другим видам внутреннего торможения. Более тщательное изучение угасательного торможения у пчел, крабов, раков, рыб, рептилий, птиц, низших и высших млекопитающих не выявило серьезных различий в скорости его возникновения. Да их и не может быть. Условные рефлексы у всех животных должны одинаково быстро и вырабатываться, и угашаться. Иначе одни животные имели бы слишком большие преимущества по сравнению с другими.
Не удалось обнаружить серьезные различия и в отношении выработки условного тормоза. У шимпанзе и золотых карасей для его образования требуется всего 3–6 сочетаний условного тормоза с условным раздражителем, естественно без последующего подкрепления этой комбинации. Однако условия, при которых формируется условный тормоз в процессе филогенеза, становятся все многообразнее. Условный тормоз возникает только в том случае, если будущий тормозный и условный раздражители применяются совместно, т. е. когда они действуют одновременно, или если начало первого несколько предшествует началу второго, в крайнем случае при наличии между ними небольшого интервала. Для собак он не должен превышать 10 с. У рыб, амфибий и рептилий условный тормоз вырабатывается с большим трудом даже при наличии всего 5-секундного интервала. При более длинных промежутках у этих животных вместо условного тормоза образуется условный рефлекс второго порядка.
У собак условный тормоз не становится строго специфичным. Это значит, что, будучи выработан к одному определенному раздражителю, он в той или иной мере тормозит и другие условные рефлексы. В еще большей степени это справедливо для низших животных. У них условный тормоз, выработанный к одному пищевому условному раздражителю, тормозит действие всех пищевых условных раздражителей, а условный тормоз к оборонительному раздражителю – все оборонительные условные раздражители. Условный тормоз может быть образован и у более примитивных существ: у ракообразных, насекомых и высших моллюсков. Однако у планарий, ланцетников и миног выработать его не удалось. Но у этих животных не образуются и условные рефлексы, а мы уже решили относить к внутреннему торможению лишь такие виды негативных реакций, с помощью которых устраняются условные рефлексы.
В созданной И.П. Павловым концепции о физиологических механизмах работы мозга большое значение имели представления об иррадиации, концентрации и взаимной индукции возбуждения и торможения. Известны два варианта индукции: одновременная, когда достаточно сильный и концентрированный тормозный очаг вызывает в соседних районах развитие возбудительного процесса и наоборот, и последовательная, когда любой из нервных процессов подготавливает почву для замены на противоположный. Несмотря на то что внешние проявления условнорефлекторной деятельности, имитирующие движение нервных процессов в коре больших полушарий, в опытах на собаках развиваются с безупречным постоянством, исследования в этом направлении приостановились еще пару десятилетий назад главным образом из-за того, что прежние представления об этих явлениях не укладываются в рамки современных концепций на природу торможения. В связи с этим не проведено их сравнительно-физиологическое изучение. Создается, однако, впечатление, что скорость иррадиации, концентрации и индукции в филогенезе возрастает. Например, последовательное торможение у рыб длится 120–300 с, у павианов – 10–15, а у шимпанзе – всего 1 с.