Книга: История о нас. Как мы стали людьми? Путеводитель по эволюции человека
Назад: Инвазия
Дальше: Говорим сейчас

Легко и без запинки

Есть один ген, о котором стоит рассказать подробнее. Он многое может сообщить об истории нашего вида, об эволюции, о том, как мы рассуждаем об эволюции, – по той причине, что этот ген чрезвычайно важен для нашей способности говорить. Эта история началась в 1990-х гг. в Лондоне, в больнице Грейт-Ормонд-стрит. Членов одной семьи (условно названной KE) обследовали в связи с редкой формой вербальной апраксии: многие представители семьи испытывали трудности в сложении звуков в слоги, слогов в слова, слов в предложения. Эти симптомы проявлялись у 15 человек в трех поколениях, ярче всего у детей, которые, например, произносили «bu» вместо «blue» или «boon» вместо «spoon». Углубленные исследования показали, что эти люди испытывали трудности не только при артикуляции, но и в целом при выполнении некоторых специфических движений лица и рта. Когда какое-то нарушение просматривается в нескольких поколениях, мы составляем семейное дерево и помечаем на нем носителей этого порока развития. Можно предположить, что случайное перемешивание генов при формировании сперматозоидов и яйцеклеток не приводит к вымыванию этого повреждения из генома и оно сохраняется у некоторых представителей семьи. Характер наследования в семье KE указывает на то, что причиной дефекта является один-единственный ген. Сейчас ситуация в генетических исследованиях усложнилась невероятным образом, но в тот период развития клинической генетики большинство идентифицированных заболеваний действительно были связаны с единственным генетическим дефектом. Это, в частности, касается таких заболеваний, как кистозный фиброз, болезнь Хантингтона или гемофилия. В те времена для охоты на дефектный ген исследователи использовали подобные семейные деревья, и в 1998 г. Саймон Фишер с коллегами выявили единственную причину речевых проблем у представителей семьи KE. Этот ген получил название FOXP2 и стал символом генетики и эволюции.

Ген FOXP2 кодирует транскрипционный фактор. Транскрипционные факторы – это белки, функция которых заключается в связывании с очень специфическими последовательностями ДНК (например, как описанный выше энхансер HACNS1). Таким образом, один ген может контролировать активность второго гена, второй – третьего и т. д., и этот сложный каскад позволяет активировать специфические клетки и ткани в развивающемся эмбрионе. Все гены в геноме важны, но какие-то важнее остальных, и к этой группе как раз относятся транскрипционные факторы. За то время, пока эмбрион находится в матке, он из единственной клетки превращается в существо из триллионов клеток разного типа, организованных в виде специфических тканей со специфическими функциями. Транскрипционные факторы играют в этом процессе важнейшую роль. Они выполняют функцию контролеров или бригадиров, налаживающих важные строительные работы, например определяют, какая часть бесформенного сгустка клеток станет головой, а какая – хвостом. Когда ориентиры расставлены, к делу подключаются другие транскрипционные факторы, определяющие более тонкие детали: «мозг будет здесь», «в этой части мозга располагаются глаза», «в этой части глаза находится сетчатка», «в этой части сетчатки сгруппированы фоторецепторные клетки», «эти фоторецепторные клетки будут палочками». По мере развития эмбриона происходит все большая детализация и дифференцировка тканей, достигающих зрелого состояния. Ген FOXP2 относится к числу генов, которые функционируют в середине этой общей схемы развития эмбриона, и его функция заключается в стимуляции роста большого числа клеток. Его активность обнаруживается в отдельных участках по всему мозгу, он направляет рост различных нейронов, включая нейроны моторных цепей, базальных ганглиев, таламуса и мозжечка.

Поиск участка функционирования гена – лишь один инструмент в арсенале генетиков. Кроме того, можно выделить соответствующий белок и посмотреть, с чем он взаимодействует, – отправиться на своеобразную «молекулярную рыбалку». Если удить на FOXP2, оказывается, что на него клюют многие, но одна из «рыбок» дает повод для интересных рассуждений: это короткая последовательность ДНК, названная CNTNAP2, которая также связана с речевыми нарушениями.

Таким образом, мы имеем ген, дефект которого вызывает нарушение речи и который активен в различных участках ткани, связанной с речевой функцией. Многие животные общаются звуками, но по уровню сложности речи мы оторвались от остальных на недосягаемое расстояние. Учитывая, что человек – единственный вид, пользующийся сложным синтаксисом и грамматикой, генетические основы наших речевых способностей часто обозначают как демаркационную линию, отделяющую нас от других животных.

Ген FOXP2 не возник в нашем организме de novo. На самом деле, это очень старый ген, как и многие транскрипционные факторы. Сходные версии имеются у млекопитающих, рептилий, рыб и птиц, многие из которых общаются с помощью звуков. Например, в головном мозге самцов певчих птиц ген FOXP2 активируется, когда они обучаются у других самцов петь песни, чтобы привлекать самок.

Версия белка FOXP2 у шимпанзе отличается от нашей только двумя аминокислотными остатками из 700, но последствия этих различий весьма значительны: мы разговариваем, а они нет. У неандертальцев был такой же ген, как у нас, но другие участки их ДНК могли определять отличия в функционировании этого гена. У мышей, с которыми мы разошлись от последнего общего предка примерно за девять миллионов лет до того, как вымерли динозавры, версия белка Foxp2 отличается от нашей всего на четыре аминокислоты. А при развитии головного мозга мышиный ген Foxp2 активируется точно в тех же местах, что и у нас. Когда у мыши экспериментальным путем удаляли одну копию гена, проявлялись некоторые аномалии, в частности сокращалось количество ультразвуковых сигналов, обычно издаваемых мышатами (если удалить обе копии, мышата умирают через 21 день после рождения).

То, что ген FOXP2 важен для нашей речи, отличается от аналогичного гена у мыши и шимпанзе, а также подвергался положительному отбору у Homo sapiens, указывает на его важнейшее значение для человека. Это также иллюстрирует, что один конкретный ген может быть чрезвычайно важным, но в одиночку он не определяет все различия.

Мы можем анализировать функции тела на самом разном уровне, и генетика работает на уровне ультрамикроанатомии. Если менять масштаб, следующим полезным уровнем разрешения может быть анатомия в реальном размере. Вообще говоря, гены кодируют белки, которые формируют клетки, из которых состоит наше тело. Анатомия существ меняется с возрастом: эмбриология изучает превращение единственной оплодотворенной яйцеклетки в эмбрион, а генетика развития исследует задействованные в этом процессе гены. Мы обычно обсуждаем речевой аппарат взрослых людей, но вряд ли нужно говорить, что дети родятся неразвитыми, и это важно учитывать при изучении речевой функции. Язык как анатомическая структура – это крупная мышца со множеством функций, а не просто часть ротовой полости, снабженная вкусовыми сосочками. Корень языка находится глубоко в гортани и является средоточием большого количества нервов, контролирующих движения и ощущения. Язык новорожденного ребенка почти полностью располагается во рту, так что проходящий через гортань поток воздуха направляется в нос, и младенец может дышать носом, пока сосет молоко. По мере взросления ребенка язык начинает опускаться в гортань, и появляется возможность произносить гласные звуки, такие как «и» и «у».

У нас в глотке есть очень важная косточка в форме подковы, которая называется подъязычной костью. Она расположена под подбородком, так что концы подковы обращены назад, и движется вверх и вниз при глотании. Это очень сложная косточка, о чем можно судить на том основании, что она связана с 12 разными мышцами. У птиц, млекопитающих и рептилий разные варианты подъязычной кости, но наша устроена сложнее других, что отражает сложность анатомической структуры, необходимой для произнесения широкого диапазона звуков, дающихся нам так легко, а также для тонкой настройки мышц лица и гортани. Похоже, что у неандертальцев была такая же сложная подъязычная кость, по крайней мере об этом свидетельствует один образец, обнаруженный в пещере Кебара в Израиле. Общее анатомическое строение неандертальцев отличалось от нашего – не очень сильно, но достаточно, чтобы предполагать, что их подъязычная кость могла выполнять не совсем такую же функцию, как у нас. Но это не мешает думать, что неандертальцы могли разговаривать: их генетическое, неврологическое и анатомическое строение было похоже на наше. Но пока это все, что нам известно.

Ген FOXP2 сыграл важную роль как в эволюции человека, так и в эволюции науки. Он был одним из первых охарактеризованных генов, связанных с конкретным неврологическим дефектом, и поэтому на вполне законном основании отнесен к группе генов, которые в большей степени, чем остальные, определяют природу человека. Его восторженно стали называть «геном речи» и даже причиной формирования современного человека. Мы чуть позже поговорим о значении речи для нашего поведения, но сейчас необходимо подчеркнуть, что связь генетики с анатомией и поведением чрезвычайно сложна и пока малоизучена. Мы видим, что ген FOXP2 играет важную роль, но он активен во множестве клеток мозга и, следовательно, оказывает влияние и на другие биологические функции. У представителей семьи KE были и другие проблемы, кроме дефектов речи. Они плохо справлялись с лексическими задачами, такими как разграничение между реальными словами и бессмысленными сочетаниями букв, подчиняющимися общим правилам английского языка. А это уже психолингвистический дефект, что вновь указывает на сложное взаимодействие между моторными и когнитивными функциями.



Самая сложная подъязычная кость





Крупнейший лингвист XX в. Ноам Хомский в романтических красках описал этот скачок – искру, от которой в нас разгорелось пламя языка, тогда как все другие существа могли только хрюкать и жестикулировать. Его временна́я шкала охватывает тысячи поколений, но она подразумевает линейное развитие событий, вызванное единственным триггером.

Эволюция происходит иначе. Современная генетика показывает, что люди перемещались гораздо активнее, чем мы думали раньше, и скрещивались между собой как в Африке, так и за ее пределами, что противоречит идее линейности нашей эволюции. Кроме того, речь – комплексная способность. Физическая возможность говорить, подкрепляемая соответствующим атомическим строением и его нервной регуляцией, неотделима от нервной регуляции речи. Человек – сложная система из множества связанных между собой мелких деталей и шестеренок. Необходимо понять, как развивается мозг и что делают гены в этом процессе. Нервные ткани имеют узкую специализацию и содержат сотни типов клеток, обладающих собственной генетической идентичностью. Клетки разрастаются в нервную ткань и на этом пути перемещаются и обзаводятся аксонами и дендритами, а также синапсами, связывающими их с соседними клетками или с клетками, расположенными на расстоянии нескольких миллиметров или сантиметров (а для нейрона это дальний путь). После вашего рождения ваш мозг на протяжении многих лет, до начала полового созревания, находился в процессе синаптического пруннинга (синаптической обрезки), при этом связи между нейронами были сокращены или усилены, чтобы увеличить эффективность мышления и обучения. Эти процессы контролируются генами при их взаимодействии с внешними сигналами. Важно, что вовлеченные в этот сложный процесс гены с большой вероятностью влияют на развитие многих тканей и таких генов десятки, если не сотни.

Речь – это воспринимаемый на слух результат десятков сложных взаимосвязанных биологических процессов. Ген FOXP2 важен, но не он один. Подъязычная кость с тонкой архитектурой необходима, но недостаточна. Неврологическая база, включающая в себя тонкую настройку движений мышечных волокон гортани, языка, челюстей и рта, а также психологические основы восприятия, абстрактного мышления и описательной способности совершенно необходимы, но их тоже недостаточно. Кроме того, когда мы говорим, мы заставляем перемещаться частицы воздуха, которые воздействуют на наши барабанные перепонки и запускают не менее сложный процесс слухового восприятия. Не будь ушей или воздуха, не было бы речи. Гены – это матрица, мозг – структурная основа, а внешняя среда – канва. Мы разделяем эти составляющие для анализа общей картины, но не стоит думать, что они возникли одновременно.





Более эффективный способ выяснить происхождение речи, да и вообще любых эмерджентных признаков человека, состоит в моделировании отбора и генетического дрейфа, а также в изучении изменяющегося взаимодействия между культурой и генами; например, мутация FOXP2 создала условия для начала развития речи. Мы не знаем, были ли такие же условия у неандертальцев. У нас есть основания предполагать, что были, учитывая сходство их материальной культуры с нашей, их морфологию и наличие такой же, как у нас, версии гена FOXP2, отличающейся от версии шимпанзе. Я подозреваю, что неандертальцы разговаривали, но для прояснения этого вопроса нужен очень тонкий эксперимент, который я пока не в состоянии предложить.

Назад: Инвазия
Дальше: Говорим сейчас