Свойства вещества на поверхности твердого тела не такие, как в его толще. Молекулы поверхностного слоя находятся в особых условиях: им не хватает соседей сверху. Из-за этого меняются свойства целого приповерхностного слоя. В результате в некотором диапазоне температур само кристаллическое тело еще остается твердым, но вблизи границы уже существует квазижидкий приповерхностный слой. Чем ниже температура, чем тоньше этот слой. Но, даже когда его толщина составляет всего одну молекулу, разупорядоченный слой все равно кардинально отличается от упорядоченного кристалла. На рис. 1 на примере льда условно показано, как изменяется поведение поверхности кристалла с ростом температуры от абсолютного нуля и до точки плавления.
Нетрудно догадаться, почему так происходит. Каждая молекула кристалла в среднем занимает определенный узел кристаллической решетки. Но за счет ненулевой температуры она постоянно дрожит вблизи своего идеального положения. Соседние молекулы сдерживают это дрожание; молекула как бы находится в потенциальной яме, которую создают соседние молекулы. Пока температура низкая, энергия молекул мала, а значит, небольшой, много меньше расстояния между молекулами, остается и амплитуда теплового дрожания. При повышении температуры дрожание усиливается, его амплитуда растет, и когда она становится выше определенного порога (примерно 10% от межмолекулярного расстояния), молекула уже не может долго оставаться внутри этой ямы и стремится выскочить из нее. Так, в самом простом виде, начинается плавление.
Рис. 1. Схематичное изображение того, что происходит с поверхностью кристалла льда при повышении температуры от абсолютного нуля до температуры плавления. (A) тепловые колебания не нарушают структуру решетки; (B) в поверхностном слое (верхняя кромка) начинают появляться дефекты, но структура в целом держится; (C) поверхностный слой теряет порядок, начинается предплавление; (D) предплавление простирается все дальше вглубь кристалла, образуется жидкий приповерхностный слой, лед становится скользким; (E) вода. Адаптированное изображение из статьи []
Понятно, что чем слабее сдерживающая потенциальная яма, тем больше амплитуда тепловых колебаний при заданной температуре. Или же, если взглянуть на ситуацию иначе, тем ниже та температура, при которой колебания достигают критического размаха и происходит плавление. Приповерхностные молекулы чувствуют меньше соседей, они находятся в более слабой потенциальной яме, и именно поэтому плавление на поверхности начинается раньше, при более низкой температуре, чем в толще. Это явление получило название «предплавление».
Все, что сказано выше, — пока общие рассуждения. Они наверняка понятны каждому, но не дают ощущения «температурного масштаба» явления. Для этого уже нужно перейти от качественных рассуждений к числам и получить хоть какую-нибудь оценку того, при какой температуре начинается предплавление (то есть оценить, где на шкале температур лежит граница между зонами B и C на рис. 1). Конечно, это явление довольно сложное, и вряд ли в рамках простой задачи мы можем претендовать на что-то близкое к реальности. Но здесь упор делается вовсе не на реалистичность, а именно на минимальную оценку, на первый шаг на пути от общих слов к серьезной физике.
Для этого построим элементарную модель явления. Во-первых, для простоты возьмем обычную кубическую кристаллическую решетку, состоящую из отдельных атомов одного сорта (рис. 2). Во-вторых, будем считать, что каждый атом чувствует потенциальную яму, которая есть просто сумма потенциальных ям, создаваемых для него каждым ближайшим атомом-соседом. В-третьих, опять же для максимальной простоты, будем считать, что потенциальные ямы от всех ближайших соседей одинаковы и сферически симметричны. Мы уже договорились считать, что плавление наступает тогда, когда амплитуда колебаний атомов превышает некоторый фиксированный порог.
Рис. 2. Простейшая модель взаимодействия в кубической кристаллической решетке: каждый выбранный атом взаимодействует только со своими ближайшими соседями (показаны стрелками), а потенциал взаимодействия от каждого соседа создает одинаковый вклад в суммарную потенциальную яму, в которой движется выбранный атом
Найдите, при какой температуре наступит предплавление в поверхностном слое в этой модели, если температура плавления в объеме равна T0. Оцените эту температуру для льда.