Книга: Пламенный насос. Естественная история сердца
Назад: 2 Размер имеет значение II
Дальше: 4 Насекомые, гидронасосы, жирафы и Мотра

3
Голубая кровь и плохие суши

Я другой. У меня другое телосложение, у меня другой мозг, другое сердце.
Чарли Шин
Если у вас белая кость и голубая кровь, не обольщайтесь – вы просто костлявый осьминог.
Автор неизвестен
Полосу выложенных веером гранитных камней и бетона на Монумент-Бич прорезал новый причал, появившийся примерно в 30 метрах от своего старого, но вполне исправного на вид двойника.
– А местные сопротивлялись постройке этой штуки?
Вопрос исходил от моего давнего друга, биолога, изучающего беспозвоночных, Лесли Несбитта Ситтлоу, и был адресован Дэну Гибсону, подтянутому 75-летнему нейробиологу из Океанографического института Вудс-Хоул, расположенного в соседнем городе Фалмут, штат Массачусетс. Я и Лесли встретились с Гибсоном минут за пять до того, примчавшись из Грейт-Бэй, штат Нью-Гэмпшир, еще одной прибрежной зоны, где мы раскатывали во время исследовательской экспедиции по Новой Англии.
В данный момент Гибсон что-то искал в песке.
– Я живу в паре миль отсюда, – ответил он. – И когда я услышал что-то о новом причале, его уже построили.
Вернувшись к своему занятию, Гибсон указал на небольшое углубление в песке в форме полумесяца. Пластиковым совочком он начал осторожно снимать тонкие слои песка, пока не достиг глубины около 12 сантиметров. Потом он улыбнулся нам и сунул руку в дыру. Поковырявшись немного указательным пальцем, ученый извлек скопление крошечных голубовато-серых шариков.
Яйца принадлежали Limulus polyphemus, одному из четырех сохранившихся видов мечехвостов. Эти купола с когтями на брюхе – привычное зрелище на побережье от полуострова Юкатан до штата Мэн поздней весной и ранним летом, когда они совершают ежегодное паломничество из более глубоких вод на прибрежные отмели. Самки следуют за приливами, и, притаившись, откладывают яйца в ямки, которые они выцарапывают в песке. Гибсон рассказал, что мечехвосты очень разборчивы в выборе мест, где они откладывают яйца, поскольку гнезда должны быть покрыты водой во время прилива, а во время отлива – высыхать и согреваться солнцем. Из вчерашних наблюдений в Грейт-Бэй мы узнали, что самцы мечехвостов на 20–30 % меньше самок и что они собираются в стаи, похожие на скопления жестких касок. Самцы теснят друг друга, пытаясь взобраться на самку и закрепить пару похожих на булавы отростков на ее панцире. Расположившись таким образом, самец получает наилучшую возможность поместить молочно-белую сперму на яйцеклетки размером с грецкий орех в нижней части тела самки. В конце концов во время одного из приливов она отложит от двух до пяти кладок, содержащих в общей сложности до четырех тысяч яиц, после чего все отправятся обратно в более глубокие воды, предположительно чтобы дождаться следующего любовного ажиотажа, вызванного приливом. Гибсон рассказал, что к концу сезона самка мечехвоста откладывает около 80 тысяч яиц.

 

 

Эти брачные стаи ежегодно привлекают толпы любопытных на пляжи по всему атлантическому побережью, но мы с Лесли оказались там, чтобы исследовать сердечно-сосудистую систему мечехвоста, особенно его сердце и уникальные свойства крови. И вместо того, чтобы наблюдать оргии мечехвостов, мы думали о главной угрозе выживанию этих древних существ, связанной с теми же аспектами их биологии, которые привлекли нас в прибрежный Массачусетс.
Продемонстрировав свою находку, Дэн Гибсон осторожно вернул кладку в яму. После этого, отпечатав в коре головного мозга изображение крошечных сфер, мы с Лесли взяли собственные совочки и получили инструкции, как искать другие гнезда. Осмотрев широкий бетонный пандус, уходивший на мелководье метров на тридцать или больше, мы быстро решили отправиться на поиски более песчаного места. Я обнаружил, что самый длинный участок Монумент-Бич примыкает к большой стоянке. Было около полудня, и сейчас на ней расположилось с дюжину машин, в которых сидели люди, заехавшие перекусить или покурить, любуясь на океан.
Чего мы с Лесли не увидели на пляже, так это гнезд мечехвостов – по крайней мере, их было не так уж много, и ни одного не оказалось там, где нам предложили искать: на пляже рядом со старым причалом.
Когда через несколько минут мы встретились с Гибсоном, он выглядел расстроенным. Он рассказал, что строители покрыли 45 метров основного места нереста камнями размером с софтбол и бетоном и мечехвостам стало намного труднее достичь некогда предпочтительного места гнездования.
– Край берега у старого причала был спокойным местом, куда мечехвосты могли подойти и отложить яйца, тогда как остальная часть этого пляжа сильнее открыта волнам. Мечехвосты, выбравшиеся с глубины, обычно плывут параллельно береговой линии, пока не обнаружат идеальное место, – сказал Гибсон. – Теперь единственный для них способ найти этот старый участок пляжа – приблизиться к нему вплотную. Но, раз мечехвосты движутся вдоль берега, они наткнутся на новый причал.
Мечехвосты известны своей жизнестойкостью. Их ископаемая летопись началась примерно за 200 миллионов лет до первого динозавра и длится уже 445 миллионов лет. Мечехвосты – единственные выжившие из некогда разнообразного таксона членистоногих, в который входят и трилобиты, возможно, самые известные из древних беспозвоночных. Вам пришлось бы нелегко, если вас попросили бы припомнить группу животных, которая просуществовала так же долго, как мечехвосты. Из-за этого их обычно и называют живыми ископаемыми.
Поэтому очень тревожно звучат пессимистичные прогнозы исследователей мечехвостов, таких как Гибсон. К сожалению, положить конец впечатляющему рекорду долголетия угрожает не только разрушение среды обитания, но и некоторые другие факторы, в том числе связанные с уникальной сердечно-сосудистой системой мечехвоста.
Яйца мечехвоста и миниатюрные личинки, которые появляются из них примерно через две недели после оплодотворения – важный источник пищи для рыб и перелетных птиц, таких как исчезающий исландский песочник (Calidris canutus), коренастый представитель семейства бекасовых. В результате подавляющее большинство яиц и личинок мечехвостов никогда не переживут те примерно 10 лет, которые нужны, чтобы они выросли в сексуально активных взрослых особей. На самом деле – так считает эксперт по мечехвостам Джон Танакреди – лишь (примерно) одна личинка из трех миллионов доживает до зрелого возраста.
Когда европейцы пришли в Новый Свет, они обнаружили, что коренные американцы используют мечехвостов в пищу, для удобрений, а также делают из них мотыги и наконечники рыболовных копий9. Поселенцы, образовавшие колонии на Восточном побережье, добывали мечехвостов в количествах, которые сегодня кажутся невероятными. Например, в 1856 году на участке пляжа в Нью-Джерси длиной два километра собрали более миллиона мечехвостов. Такая истощающая популяцию добыча продолжалась и в XX веке, когда рабочие укладывали мечехвостов, ожидающих транспортировки на заводы по производству удобрений, в стены высотой по грудь, которые тянулись по всему берегу.
Эта индустрия, сосредоточенная вдоль залива Делавэр и прибрежного Нью-Джерси, окончательно рухнула в 1960-х годах из-за сокращения популяции мечехвостов и растущей популярности альтернативных форм удобрений. К сожалению, массовый сбор мечехвостов на этом не закончился. Где-то около 1860 года американские ловцы угрей обнаружили, что нарезанные мечехвосты – отличная приманка для ловушек на этих рыб, особенно гигантских самок, полных икры. И в середине XX века добыча мечехвостов все еще была в разгаре, когда некоторые ловцы угрей переключились на альтернативный источник дохода – крупных хищных морских моллюсков, родственников известных нам улиток. Проблема заключалась в том, что эти моллюски тоже обожали рубленых мечехвостов, и поэтому их популяция снова оказались под угрозой, когда ловцы моллюсков начали искать приманку для своих снастей10.
Сегодня многие ловцы угрей и моллюсков по-прежнему считают мечехвостов приманкой и индустрия наживки продолжает сокращать их популяцию примерно на 700 тысяч особей в год. Но, в то время как американский промысел мечехвостов полностью регулируется (по крайней мере, теоретически), растут проблемы с браконьерами и неспособностью чиновников контролировать количество добытых животных11.
В Азии три оставшихся вида мечехвостов находятся под еще более серьезной угрозой исчезновения, и причины этого простираются дальше желания заполучить угря на обед. В таких местах, как Таиланд и Малайзия, яйца мечехвоста считаются афродизиаком, и поэтому существуют рестораны, где их икра – основной пункт меню.
Но употребление этой икры – обычно отваренной или жаренной на гриле – создает несколько проблем. Во-первых, съев икру мечехвоста, люди иногда умирают. Эта смерть далеко не приятна и почти наверняка связана с важной особенностью нашей собственной кровеносной системы.
Тетродотоксин – смертельный нервно-паралитический агент – по меньшей мере на порядок (то есть в десять раз) более смертоносен, чем яд паука черная вдова. Хотя его дурная слава в основном пошла, возможно, от самого опасного экзотического блюда – рыбы фугу (плохо приготовленной), причиной нескольких вспышек отравления тетродотоксином стала икра мечехвоста. Тетродотоксин чрезвычайно опасен, потому что, всосавшись из кишечника, он накапливается в мышечной и нервной тканях. Хотя точный способ его проникновения в нервную систему до сих пор неизвестен, его летальность, по крайней мере частично, обусловлена способностью обходить защитную блокаду клеток, составляющих гематоэнцефалический барьер (ГЭБ)12.

 

 

ГЭБ частично регулируется клетками звездчатой формы – астроцитами. Астроциты – это один из нескольких видов глиальных клеток (или нейроглии), которые поддерживают, защищают и восстанавливают суперзвезды нервной системы – нейроны. Помимо других функций, астроциты окружают капилляры мозга. Как и в остальном организме, эти сосуды снабжают ткани кислородом и питательными веществами, унося с собой отходы жизнедеятельности и углекислый газ. Однако в мозге астроциты ограничивают это движение туда-сюда, пропуская в нервную ткань из крошечных сосудов лишь немногие вещества (например, кислород, глюкозу и спирт). Что касается того, как это работает: у астроцитов есть отростки, конечные периваскулярные ножки, они плотно окружают капилляры, создавая барьер, покрывающий их стенки. Обычно это хорошо, так как они предотвращают выход из кровеносной системы вредных веществ и бактерий, способных нанести ущерб нежным нервным тканям мозга.
К сожалению, гематоэнцефалический барьер мешает и полезным веществам, например антибиотикам, покинуть кровь и попасть в мозг, что объясняет, почему любая инфекция мозга может угрожать жизни.
«Существенное препятствие для лечения нейродегенеративных заболеваний в настоящее время – неспособность большинства лекарств преодолеть гематоэнцефалический барьер»13, – пишет Келли Макнэгни, профессор кафедры медицинской генетики Университета Британской Колумбии.
Кроме астроцитов существуют и другие элементы гемато-энцефалического барьера. Например, «плотные контакты» – «швы» между соседними клетками внутренней оболочки кровеносных сосудов. Если эти швы ослабнут, последствия могут быть разрушительными. Исследования показали вероятную связь между бактерией, ассоциированной с заболеванием пародонта, и развитием болезни Альцгеймера14. Некоторые ученые полагают, что Porphyromonas gingivalis обходит ГЭБ и вторгается в мозговую ткань, возможно проскальзывая через щели в плотных контактах или пробираясь автостопом внутри белых кровяных телец, роль которых требует, чтобы они выходили из кровеносной системы. Эксперименты на мышах показали, что, оказавшись внутри мозга, P. gingivalis выделяют токсичные вещества гингипаины, которые нарушают функционирование основных белков, повреждая нейроны и усугубляя проявления болезни Альцгеймера. Эта инфекция также вызывает накопление двух характерных белков, амилоида и тау-белка, которые исторически считались признаками заболевания, хотя сейчас растет подозрение, что эти липкие агрегаты, или бляшки, – на самом деле проявления защитных механизмов против P. gingivalis, а не причина болезни Альцгеймера сами по себе15. Это исследование потенциально может стать переломным, поскольку болезнь Альцгеймера – шестая среди ведущих причин смерти в США, она убивает больше людей, чем рак молочной железы и рак простаты вместе взятые.
Тетродотоксин – одно из веществ, способных проникнуть через гематоэнцефалический барьер, и люди, поедающие яйца мечехвоста, должны знать, что появление этого вещества в икре непредсказуемо. Считается, что мечехвосты заглатывают определенные бактерии, которые производят нейротоксин, потребляя загрязненных моллюсков или разложившуюся материю. Симптомы отравления тетродотоксином обычно начинаются с легкого онемения губ и языка – не уникальные ощущения при употреблении острой тайской пищи. Покалывание и онемение лица может стать для посетителей ресторана первым звоночком, показывающим, что что-то пошло ужасно не так. Настоящее веселье начинается быстро: головная боль, понос, боль в животе и рвота. По мере того как тетродотоксин распространяется по телу, становится трудно ходить, поскольку химическое вещество начинает блокировать нервные импульсы, вызывающие сокращения произвольных мышц конечностей. Тетродотоксин также может прерывать распространение электрических сигналов по миокарду, толстому слою сердечной мышцы. Как мы разберем позже, эта электрическая система, ответственная за координированное сокращение и расслабление сердца, – и есть само сердцебиение.
В конце концов примерно 7 % павших жертвой отравления тетродотоксином умирают, судя по историям болезни, в полном сознании и, скорее всего, прекрасно понимая, что съесть роллы «Калифорния» недельной давности или даже палочки для еды было бы лучшей идеей, чем съесть икру мечехвоста или рыбу фугу, ставшие их последней пищей 16.
Но кроме перспективы стать едой или оказаться переработанными на удобрения или наживку мечехвосты сталкиваются еще с одной уникальной угрозой своему выживанию.

 

Американский мечехвост Limulus polyphemus и три его индотихоокеанских родственника, хоть и называются в английском языке крабами, на самом деле вовсе не крабы. Однако, как и настоящие крабы, они – членистоногие, представители чрезвычайно разнообразного типа животных, который включает насекомых, пауков и ракообразных с одной общей чертой – сочлененными экзоскелетами. И – что критически важно для мечехвоста – у них у всех открытая система кровообращения. Она значительно отличается от замкнутых систем кровообращения, обнаруженных у синих китов, людей и примерно 50 тысяч других видов млекопитающих, рыб, амфибий, рептилий и птиц. Как мы вскоре увидим, некоторые беспозвоночные, например дождевые черви, осьминоги и кальмары также имеют замкнутые системы кровообращения, хотя они сильно отличаются от тех, которые встречаются у существ, отягощенных позвоночником.
В замкнутых системах кровообращения кровь покидает сердце через крупные артерии, которые разветвляются на ряд все более мелких артерий и еще более мелких артериол. Артериолы проходят через органы и мышечную ткань и тоже разделяются на еще более мелкие сосуды, капилляры. Эти крошечные трубки составляют примерно 80 % общей длины кровеносной системы, и именно в плотных сетях под названием капиллярные русла происходит обмен веществ между кровью и телом. Как уже упоминалось ранее, кислород из легких или жабр и питательные вещества, поглощенные пищеварительной системой, проходят через тонкие стенки капилляров и попадают в окружающие ткани. Одновременно продукты обмена веществ, такие как углекислый газ и аммиак, диффундируют в кровь и переносятся обратно к сердцу сначала крошечными венулами, а затем все более крупными венами.
У жаберных позвоночных, таких как рыбы, некоторые саламандры и все личинки земноводных, лишенная кислорода кровь прокачивается через жабры, где углекислый газ диффундирует в окружающую воду, а новая порция кислорода – в кровь. Как вы, не-дышащие водой, возможно, заметили, где-то на пути от рыб к сухопутным видам произошла довольно серьезная модификация дыхательной системы, чтобы обеспечить обмен кислородом и углекислым газом с воздухом, а не с водой. Природа этой модификации? Легкие.
Об этой истории мы поговорим позже.

 

 

Однако, независимо от того, насыщается ли кровь кислородом в жабрах или в легких, у замкнутых систем кровообращения есть одна общая черта – кровь всегда ограничена замкнутой петлей. Не так обстоит дело с большинством беспозвоночных, включая мечехвоста. В их открытых системах кровообращения жидкость (называемая гемолимфой, а не кровью) тоже покидает сердце через артерии. Но, вместо того чтобы течь в капилляры, гемолимфа выливается из сосудов в полости тела, называемые гемокоэлями, где она омывает органы, ткани и клетки, с которыми вступает в контакт. Там гемолимфа путем диффузии отдает питательные вещества, одновременно подбирая продукты распада. Многие открытые кровеносные системы еще и обмениваются кислородом и углекислым газом, хотя, как мы увидим в следующей главе, насекомые – существенное исключение из этого правила.
Хотя жабры навечно связаны в нашем сознании с рыбами, они стали органами дыхания многих беспозвоночных, в том числе мечехвостов. Это еще один пример конвергентной эволюции: хотя позвоночные и беспозвоночные эволюционировали отдельно, и те и другие используют диффузию, чтобы втянуть кислород в примерно одинаково расположенные жаберные мембраны, которые часто напоминают сложенные страницы книги. У членистоногих гемолимфа оттекает от жабр и головы и возвращается к сердцу с помощью системы кровообращения. А у мечехвостов к этому моменту гемолимфа претерпевает дополнительную трансформацию. Из молочно-белой она становится красивой небесно-голубой.
«Голубая кровь» мечехвостов и других беспозвоночных, таких как головоногие, моллюски, омары, скорпионы и тарантулы, приобрела свой цвет из-за присутствия белка на основе меди под названием гемоцианин. Переносимый в гемолимфе в растворенном виде, гемоцианин захватывает кислород всякий раз, когда вступает с ним в контакт. Когда медь окисляется, она становится синей – и так же, покидая жабры, синеет гемолимфа, подвергаясь той же химической реакции, которая придает покрытой медью поверхности статуи Свободы ее знаменитый сине-зеленый оттенок.
За исключением упомянутых выше голубокровных, практически у всех других существ с системой кровообращения кислород переносит молекула гемоглобина. В ней кислород связывается с атомом железа, а не с медью. И в отличие от гемоцианина, гемоглобин не плавает свободно в крови. Он переносится специализированным типом клеток – эритроцитами, которые проводят свой примерно четырехмесячный цикл жизни, собирая гемоглобин из тканей вокруг кровеносной системы. Поскольку эритроциты содержат железо, а не медь, они не синеют, окисляясь. Они становятся красного цвета. Если эти клетки кажутся вам знакомыми, то это потому, что еще одно их название – красные кровяные клетки. И если изменение цвета, связанное с кислородом, что-то напоминает – это та же самая реакция окисления, которая происходит, когда железная ограда подвергается воздействию атмосферного кислорода и становится ржаво-красной.
Так почему же, спросите вы, у людей и других позвоночных нет голубой крови? Ответ, скорее всего, связан с размером тела и эффективностью переноса кислорода. Большие тела требуют больше кислорода, и гемоглобин лучше приспособлен для обеспечения им: каждая молекула гемоглобина может нести четыре молекулы кислорода, тогда как гемоцианин – только одну. Поэтому со временем организмы, чья кровь содержала гемоглобин, смогли эволюционировать в существа с более крупными телами, чем те, которые использовали гемоцианин.
Мы прерываем эту главу для важного объявления, касающегося гемоглобина. Гемоглобин гораздо сильнее притягивается к молекулам монооксида углерода (CO), чем к кислороду (O2) – и это серьезная проблема для людей. Из-за этого даже небольшие количества СО – бесцветного газа без запаха, который выделяют автомобильные двигатели, газовые приборы (например, обогреватели) и дровяные печи, особенно опасны. На самом деле потенциальное присутствие окиси углерода опасно настолько, что если у вас или у кого-то из ваших близких в доме или квартире еще нет детектора окиси углерода, то оторвитесь от чтения этой книги и купите его.
Я подожду…

 

Ладно, на чем я остановился?
В замкнутых системах кровообращения, подобных нашей, кровь, возвращаясь из тела, поступает непосредственно в сердце через крупные вены: верхнюю и нижнюю полые вены. Это происходит во время фазы сердечного цикла под названием «диастола», когда желудочки расслабляются после того, как сократились и вытеснили содержимое из сердца во время фазы, называемой систолой. Поскольку у мечехвостов открытая система кровообращения и нет вен, насыщенная кислородом кровь, покидающая жабры, должна поступать в сердце по-другому, сначала втекая в резервуар, окружающий его, – в перикардиальную полость.
Каким же образом кровь попадает в сердце мечехвоста после того, как заполнит перикардиальную полость? Прежде всего само сердце подвешено в полости перикарда с помощью ряда эластичных лент, называемых крыловидными связками. Они тянутся к сердцу и крепят внешние его стенки к внутренней части экзоскелета, или панциря, членистоногого. Когда сердце сокращается (во время систолы), крыловидные связки растягиваются, как резиновые ленты, накапливая энергию упругости. После того как сердце выбрасывает содержимое, оно расслабляется (диастола), и энергия упругости связок тянет стенки сердца назад, возвращая его к предсократительному объему.
Одновременно с увеличением объема в сердце открываются пары схожих с клапанами отверстий, называемых «остии» (ostium). Кровь, собравшаяся в перикардиальной полости, протекает сквозь остии, наполняя пустое сердце – двигаясь от более высокого давления перикардиальной полости к более низкому давлению только что опустошенного органа. Затем процесс наполнения и опорожнения перикарда и сердца повторяется.
Система, конечно, изящная, но, как объяснил Лесли и мне эксперт по мечехвостам, профессор зоологии Университета Нью-Гэмпшира Уин Уотсон, кровообращение мечехвостов поддерживается работой другой системы органов и в манере, которая выглядит довольно знакомой. Открытие это началось с наблюдения, что так называемые листоватые жабры мечехвостов колеблются туда-сюда в ритме, который синхронизирован с движением крови в перикардиальной полости.
Когда Уотсон описывал механику процесса, я вспомнил статью о скачущих лошадях, которую читал во время подготовки докторской диссертации в Корнелле в 1990-х годах. В том исследовании функциональные морфологи Деннис Брэмбл и Дэвид Кэрриер предположили, что во время галопа (аллюр, при котором все четыре ноги одновременно отрываются от земли) сопутствующее движение печени лошади вперед-назад в брюшной полости превращает этот массивный орган в «висцеральный поршень», который помогает процессу дыхания и, следовательно, эффективному обмену кислорода и углекислого газа17.
Брэмбл и Кэрриер предположили, что, когда громоздкая печень скользит назад (см. рис. А), она тянет за собой и куполообразную диафрагму, к которой прикреплена связкой. Поскольку диафрагма составляет заднюю стенку грудной полости (герметичной камеры, окружающей легкие и сердце), объем этого пространства при движении диафрагмы увеличивается. Физика говорит нам, что, когда пространство становится больше, давление воздуха внутри его уменьшается – в данных условиях это означает, что атмосферное давление воздуха снаружи лошади внезапно становится выше, чем давление внутри грудной полости. Воздух устремляется в рот и нос, чтобы выровнять давление, таким образом помогая наполнить легкие, когда лошадь вдыхает.

 

 

Звучит знакомо? Это соотношение объема и давления – именно то, что помогает опорожнить наше сердце от крови во время желудочковой систолы, когда сокращение желудочков увеличивает давление, вытесняя кровь из сердца. Во время желудочковой диастолы происходит прямо противоположное. Когда желудочки расслабляются, давление внутри их падает, объем увеличивается, и камеры наполняются кровью, поступающей из предсердий.

 

 

Держа это в уме, легко понять, как работает висцеральный насос во время выдоха. Брэмбл и Кэрриер объяснили, что, когда передние конечности лошади выбрасываются вперед (см. рис. А и Б), печень движется в том же направлении, ударяясь о диафрагму и заставляя ее также смещаться вперед. Это уменьшает объем грудной полости и, как вы поняли, увеличивает давление внутри ее. Давление сжимает легкие лошади, как рука выжимает воду из губки. Но вместо воды сжатые легкие выдавливают в атмосферу насыщенный СО2 воздух.
Так в чем же смысл этого приспособительного механизма? Как мы уже поняли, мышечное сокращение требует энергии. Согласно Брэмблу и Кэрриеру, ключевое преимущество висцерального поршня заключается в том, что во время скачки вдох и выдох происходят с меньшими затратами энергии для лошади.
Точно так же кровь мечехвоста возвращается к сердцу благодаря листоватым жабрам, которые уже заняты тем, что обмениваются кислородом и углекислым газом с водной средой. Подобно возвратно-поступательным движениям лошадиной печени, возвратно-поступательные движения жабр мечехвоста направляют кровь к перикарду, тем самым уменьшая энергию, необходимую для ее перемещения.
Открытые системы кровообращения долгое время считались относительно простыми и поэтому в какой-то мере неэффективными. Но, как мы только что видели на примере довольно сложной работы кровеносной системы мечехвоста, это не так. На самом деле подобное мнение – всего лишь еще одно неудачное предубеждение, неспособность увидеть красоту почти в любом организме, который не носит джинсы и сотовый телефон.
Еще одна сложная и уникальная особенность кровеносной системы мечехвоста связана с иммунитетом. У беспозвоночных нет эквивалента приобретенного иммунитета млекопитающих: той части иммунной системы, в которой специализированные клетки, лимфоциты, и частицы белка, антитела, распознают чужеродных захватчиков, наподобие бактерий, грибов и других патогенов, и борются с ними. Этот иммунный ответ выключается (или «подавляется»), как только захватчики исчезают, но остаются клетки памяти, которые могут быстро запустить иммунный ответ, если снова столкнутся с тем же патогеном. Вот почему, к примеру, вы не заразитесь дважды одним и тем же штаммом гриппа – ваш уже запущенный иммунный ответ уничтожает патоген, и вы не заболеваете снова. Хотя иммунные системы беспозвоночных различны, ученые теперь понимают: по-своему они весьма впечатляющи. Например, мечехвосты развили собственную версию иммунных клеток. И хотя эти клетки не похожи ни на что, виденное у людей, они, несомненно, спасли тысячи человеческих жизней.
Впервые атлантический мечехвост приобрел медицинскую значимость в 1956 году. Именно тогда патобиолог Океанографического института Вудс-Хоул Фред Бэнг обнаружил, что определенные виды бактерий заставляют кровь мечехвостов сворачиваться в тягучие массы. Он и его коллеги предположили, что это древняя форма иммунной защиты18. В конце концов, они выявили, что за образование сгустка отвечает тип клеток крови под названием «амебоциты» 19. Как следует из названия, они напоминают амеб, каплевидных одноклеточных простейших, которые сделали столь популярными ложноножки и столь непопулярной дизентерию.
Бэнг и последующие исследователи предположили, что способность амебоцитов к свертыванию крови развилась в ответ на богатую бактериями и патогенами жижу, в которой мечехвосты ползают почти всю жизнь. Их армия кровеносных амебоцитов может отгородиться от чужеродных захватчиков, изолируя тех в тюрьмах из желатиновой слизи, прежде чем они смогут распространить инфекцию.
В результате мечехвосты не только устойчивы к болезням, но и обладают впечатляющей способностью выживать при экстремальных физических повреждениях. Самые смертоносные раны быстро закупориваются сгустками амебоцитов, что позволяет раненым экземплярам вести себя так, как будто не они только что потеряли кусок оболочки размером с кулак от винта лодочного мотора. Эта уникальная система защиты и восстановления, возможно, хотя бы отчасти ответственна за то, что мечехвосты просуществовали почти 500 миллионов лет, пережив в общей сложности пять глобальных массовых вымираний.
Теперь мы знаем, что амебоциты делают свое дело, обнаруживая потенциально смертельные химические вещества, эндотоксины. Они ассоциированы с грамотрицательными бактериями, классом микробов, который включает такие патогены, как Escherichia coli (пищевое отравление), Salmonella (брюшной тиф и пищевое отравление), Neisseria (менингит и гонорея), Haemophilus infl uenzae (сепсис и менингит), Bordetella pertussis (коклюш) и Vibrio cholerae (холера).
Как ни странно, эндотоксины сами по себе не ответственны за мириады заболеваний, связанных с этими бактериями. Это и не защитные приспособления (которые создаются, например, для борьбы с собственными врагами бактерий). На самом деле эти крупные молекулы формируют значительную часть мембраны бактериальной клетки, помогая создать структурную границу между клеткой и внешней средой. Эндотоксины также известны под названием липополисахариды, поскольку они состоят из соединения жира и углевода. Эти молекулы становятся проблемой для других организмов только после того, как бактерии оказываются убиты и расчленены – или лизированы, – что происходит, когда к борьбе с грамотрицательной бактериальной инфекцией подключается иммунная система (или антибиотик). В этот момент содержимое бактериальной клетки выливается наружу, и липополисахаридные компоненты мембраны высвобождаются в окружающую среду.
К несчастью, хотя болезнетворные бактерии уже побеждены, проблемы для хозяина не заканчиваются. Эндотоксины, присутствующие в крови, могут быстро вызвать лихорадку, одну из защитных реакций организма на инородное вторжение. Вещества, ее провоцирующие, называются пирогенами, и они могут привести к серьезным проблемам (например, к повреждению мозга), если слишком долго повышают температуру тела. Дальнейшие осложнения могут возникнуть и из-за опасно мощного иммунного ответа организма на эндотоксин – состояние, с которым медицинские работники были вынуждены иметь дело во время пандемии коронавируса. В худших случаях воздействие эндотоксинов может привести к состоянию под названием эндотоксический шок, каскаду опасных для жизни симптомов, которые варьируются от повреждения слизистой оболочки сердца и кровеносных сосудов до опасно низкого кровяного давления.
После поездки, во время которой мы искали на пляже яйца мечехвостов, мы с Лесли сопровождали Дэна Гибсона в лабораторию Вудс-Хоула, где он поместил на предметное стекло микроскопа немного свежей крови мечехвостов. Вскоре мы разглядывали живые амебоциты.
– Они все заполнены гранулами, – сказал я, заметив похожие на песок частицы внутри клеток.
– Это крошечные пачки белка коагулогена, – сказал Гибсон. Как следует из их названия, коагулогены вызывают коагуляцию, или свертывание крови. – Если амебоциты сталкиваются даже с малейшим количеством эндотоксина, они высвобождают гранулы коагулогена, который быстро превращается в желеобразный сгусток.
Поскольку эндотоксины могут вызывать у человека такую опасную реакцию, в 1940-х годах фармацевтическая промышленность начала тестировать свою продукцию на наличие этих веществ, которые могут случайно образовываться и в процессе производства лекарств. Одним из первых разработанных методов был контроль пирогенности на кроликах, который стал промышленным стандартом. Это действо смахивало на работу из серии «найди и запряги крайнего». У лабораторных кроликов, на которых проводится тестирование, замерялись исходные ректальные температуры. Затем лаборанты вводили им порцию испытуемого препарата, как правило, через легкодоступную ушную вену. Далее в течение трех часов каждые 30 минут регистрировали ректальную температуру кролика. Если она поднималась (развивалась лихорадка), это сигнализировало о потенциальном присутствии эндотоксина в конкретной партии.
Обнаружив, что кровь мечехвостов свертывается в присутствии эндотоксинов, в конце 1960-х годов коллега Фреда Бэнга, гематолог Джек Левин, разработал химический тест, который пришел на смену трудоемкому и не всегда точному для человека тестированию пирогенности на кроликах20. По сути, Левин и его коллеги разрезали амебоциты мечехвоста и собрали формирующий сгустки компонент, вещество, которое они назвали лизатом амебоцитов Limulus (LAL). Оказалось, LAL можно использовать не только для выявления эндотоксинов в партиях лекарственных препаратов и вакцин, но и для тестирования инструментов, например шприцев и катетеров, и других медицинских устройств, на которых стерилизация убивает бактерии, но может случайно образовать эндотоксины, попадающие в организм пациента, получившего медицинскую помощь.
Кроличье сообщество, по-видимому, восприняло это открытие с глубоким облегчением, но мечехвосты и их поклонники встретили его куда менее восторженно, особенно когда другой исследователь из Вудс-Хоула вскоре основал биомедицинскую компанию, которая начала извлекать кровь мечехвостов в промышленных масштабах. Вскоре на атлантическом побережье появились еще три такие компании, превратившие производство LAL в многомиллионную индустрию. В результате в наши дни ежегодно из воды вытаскивают почти 500 тысяч мечехвостов21, многих – в период нереста. Большинство животных везут в промышленные лаборатории не в танках с холодной соленой водой, а в открытых кузовах грузовых пикапов. Прибывших встречают рабочие в масках и халатах, которые протирают мечехвостов дезинфектантами, перегибают пополам их панцири (положение абдоминального сгибания) и привязывают к длинным металлическим столам наподобие конвейера. Потом непосредственно в сердца мечехвостов вводят большие шприцы. В стеклянные сосуды капает синяя кровь консистенции молока. В подобной манере, которая заставила бы позавидовать графа Дракулу, сбор продолжается, пока кровь не перестает течь – обычно после того, как удаляется 30 % от ее объема.
Теоретически мечехвосты должны пережить это испытание, и, согласно закону, отдав кровь, они должны вернуться примерно в тот же район, откуда их забрали. Но, по словам нейробиолога Криса Шабо из Государственного университета Плимута, 20–30 % мечехвостов погибают от потери крови в следующие 72 часа после ее забора.
«Не последнюю роль в этом играет то, что дышащих жабрами мечехвостов все это время держат вне воды», – сказал Шабо мне и Лесли. Мы навещали ученого и его коллегу, зоолога Уина Уотсона, в водной лаборатории Джексона Университета Н ью-Гэмпшира.
Возможно, немаловажен и тот факт, добавил Шабо, что никто не знает, страдают ли обескровленные экземпляры, возвращенные в воду, от каких-то краткосрочных или долгосрочных последствий – и выживают ли они вообще. Формально популяция мечехвостов с 1998 года находится под контролем Комиссии по морскому рыболовству в Атлантических штатах (ASMFC), но из-за различных политических вмешательств она не может получить достоверные данные о смертности среди мечехвостов, добываемых для нужд биомедицинских компаний22. Зная об этом, Шабо и его исследовательская группа пытались оценить влияние добычи крови на состояние мечехвостов после возвращения в воду. Для этого вместе со студентами он собрал несколько экземпляров и имитировал на них условия, в которых находятся мечехвосты, столкнувшиеся с биомедицинской индустрией.
Шабо и его студенты обнаружили у подопытных образцов вялость и дезориентацию, что, по их предположениям, отчасти было связано с невозможностью для организма мечехвоста получить после кровопотери необходимое количество кислорода. «Требуются недели, чтобы восполнить потерянные амебоциты и гемоцианин», – говорит исследователь.
Еще Шабо утверждает, что, поскольку большое количество амебоцитов, защищающих мечехвостов, осталось где-то в пробирках, перспективы восстановиться после ранения, вернувшись в среду, загрязненную грамотрицательными бактериями, для мечехвостов, оказавшихся дома после сбора крови, довольно мрачные.
Уотсон подтвердил: три дня, проведенные вне воды при высокой температуре в сочетании с серьезной кровопотерей могут стать смертельными для мечехвоста. Более того, добавил он, поскольку их обычно собирают во время брачного сезона и зачастую до того, как произойдет оплодотворение, любой уровень смертности потенциально влияет на количество особей в будущих поколениях – особенно учитывая, что сборщики предпочитают более крупных самок. И поскольку мечехвосты достигают половой зрелости довольно медленно, масштаб назревающих проблем может не быть очевидным для ученых или кого бы то ни было еще в течение десятилетий. По данным ASMFC, в регионах Нью-Йорка и Новой Англии уже отмечают снижение численности мечехвостов23.
Уотсон и Шабо предложили некоторые довольно простые шаги для снижения смертности, чтобы тем самым поддержать популяцию мечехвостов, не нанося ущерба производству LAL. Прежде всего следовало бы отложить сбор мечехвостов до окончания брачного сезона. Второе предложение состояло в том, чтобы перевозить образцы в биотехнологические лаборатории и обратно в резервуарах с холодной водой, а не складывать их сухими и горячими на лодочные палубы и в кузова грузовиков. Это, как объяснили специалисты, не только предотвратит тепловой стресс, но и защитит тонкие «листы» жабр мечехвостов от пересыхания.
Из разговоров с Уотсоном и Шабо мне стало ясно, что они полностью осознают важность LAL для медицины и пациентов, чьи жизни он спасает. Эти исследователи просто пытаются повысить шансы для вида, который справлялся с угрозами своему существованию задолго до того, как появились люди и добавили в список проблем загрязнение, разрушение среды обитания и варварскую добычу.
Хотя шаги, предложенные Уотсоном и Шабо, могут намного уменьшить смертность мечехвостов, есть еще один фактор риска, связанный с добычей этих существ. Дело в том, что каждый удар сердца мечехвоста вызывает и контролирует небольшая группа нейронов – она называется «ганглий», – расположенная прямо над сердцем. Задача ганглия состоит в том, чтобы каждый отдел сердца под действием мельчайших электрических импульсов сокращался в правильном порядке.
Такой нейрогенный тип сердца был обнаружен у ракообразных, например креветок, а также у кольчатых червей (например, дождевых и пиявок). Такие сердца серьезно отличаются от сердец миогенного типа, которые сокращаются без стимуляции от внешних структур – ганглиев или нервов, – встречающихся у людей и других позвоночных. У сердец миогенного типа стимул, побуждающий к сокращению, возникает в небольшом специализированном участке мышечной ткани, называемом водителем сердечного ритма.
Отсутствие этих водителей ритма в сердцах нейрогенного типа отчасти объясняет, почему на рисунках ацтеков жрец никогда не держит в руках сердце только что принесенного в жертву омара или мечехвоста. Дело в том, что нейрогенные сердца перестают биться, едва их отделяют от контролирующих ганглиев.
Человеческие сердца благодаря водителю ритма обладают способностью генерировать непрерывную последовательность электрических сигналов. Эти сигналы зарождаются в области правого предсердия, называемой «синоатриальный узел», и проходят сквозь сердце по весьма конкретным маршрутам – проводящим путям. Подобно ряби на воде от упавшего камня, сигналы перемещаются от правого предсердия к левому по расположенному вверху основанию сердца. Когда сигнал к сокращению начинает двигаться вниз, к желудочку, другой пучок клеток – водителей ритма сердца, атриовентрикулярный узел, замедляет сигнал, и небольшое расхождение во времени позволяет желудочкам наполниться кровью. Электрический сигнал от атриовентрикулярного узла продолжает двигаться вниз к острой верхушке сердца. При этом он стимулирует своевременное сокращение мышц, образующих желудочки.
Но хотя наше миогенное сердце само заставляет себя биться, пара нервов все же регулирует скорость и силу сокращений. Это блуждающий нерв, замедляющий сердцебиение, и симпатические нервы, которые… ну, вы поняли. Они функционируют как часть вегетативной нервной системы, которая выполняет множество обязанностей без вашего согласия или добровольного участия.
У вегетативной нервной системы два отдела. Первый – симпатическая нервная система – готовит вас к противодействию настоящим или воображаемым угрозам, вызывая множество реакций, в том числе учащение сердечного ритма и повышение артериального давления. Совокупность этих реакций часто называют «сражайся или беги». Когда симпатическая нервная система ускоряет сердечный ритм, она еще и усиливает приток крови к вашему мозгу и мышцам ног. Это происходит, когда сосуды, кровоснабжающие эту область, получают сигнал к вазодилатации (расширению внутреннего диаметра). Одновременно кровь оттекает от пищеварительного тракта и почек благодаря вазоконстрикции – сужению мельчайших кровеносных сосудов, которые в норме питают их. Смысл в том, что переваривание завтрака и производство мочи становятся немного неважными, когда вы внезапно оказываетесь лицом к лицу с медведем гризли или перспективой выступления перед аудиторией. Вместо этого дополнительная кровь направляется в широко раскрытые капилляры мышц ног, готовя вас к спринту. Увеличивается и приток крови к мозгу – вероятно, чтобы помочь вам сообразить, что делать, если бегство не поможет.

 

 

Второй отдел вегетативной нервной системы – парасимпатическая нервная система, которая берет на себя управление в нормальном состоянии (то есть когда рядом нет медведей гризли и публики). Этот отдел отвечает за реакцию «отдых и покой». Он замедляет сердцебиение, направляет кровоток к органам, которыми пренебрегали во время реакции «сражайся или беги», – таким как органы пищеварения или мочевыделения.
Интересно, что, если нервы вегетативной системы, контролирующие сердце, оказываются повреждены или их импульсы заблокированы (внимание поклонникам фугу), сердце не перестает биться (что могло бы быстро стать фатальным). Вместо этого синусовый узел берет на себя регуляцию сердечного ритма, устанавливая частоту сердечных сокращений около 104 ударов в минуту24.
Проблема мечехвоста, столкнувшегося с иглой Дракулы, заключается в том, что его сердце не обладает такой способностью биться самостоятельно. Его сокращения управляются исключительно расположенным над ним ганглием.
Уотсон объяснил, что ганглий активирует двигательные нейроны, которые связываются с сердечной мышцей, высвобождая нейромедиатор глутамат. Этот химический мессенджер подходит, словно ключ, к особым «замкам» на поверхности сердца, реагирующим на нейромедиатор. Эти замки называются рецепторами, и результат взаимодействия замка и ключа заставляет мышечные клетки сокращаться.
– Проблема в том, – говорит Уотсон, – что, если вы воткнете иглу в мечехвоста, чтобы собрать его кровь, и попадете по ошибке в сердечный ганглий, вы, скорее всего, убьете животное.
– То есть, – уточнил я, – работники, которые берут образцы крови в этих биомедицинских учреждениях, должны учитывать местоположение сердечного ганглия, когда вводят иглы, верно?
Уотсон покачал головой:
– Билл, я сомневаюсь, что кто-то из них вообще знает об этом.

 

Пытаясь быть насколько возможно беспристрастным, я связался с несколькими основными биомедицинскими лабораториями, которые добывают кровь мечехвоста. Представившись и перечислив свои регалии в электронном письме, я объяснил, что полностью сознаю важную роль LAL в биомедицинской промышленности и что я заинтересован представить обе стороны – как защитников природы, так и медицинской отрасли. Первым ответом была оглушительная тишина.
В конце концов мой бывший студент сумел через «знакомых знакомых» связать меня напрямую с сотрудником биомедицинского центра. Я отправил еще один запрос, убедившись, что упомянул имя моего студента. Вскоре после этого я получил очень вежливое письмо, выражающее сожаление, что правила компании не допускают проводить интервью с работниками на местах и что по соображениям конфиденциальности никто не допускается в помещения, где добывают кровь мечехвостов. Автор письма вполне недвусмысленно заверил меня, что мечехвосты поживают совершенно прекрасно – настолько, что я ждал, когда кто-нибудь из них, возможно, пришлет мне собственную сопроводительную заметку по этому вопросу, призывающую не беспокоиться, потому что все было круто.
Еще мне удалось выкопать заявление, подготовленное другой компанией с целью устранить «вводящие в заблуждение предположения» о том, что: а) американская популяция мечехвостов находится в опасности; б) производство LAL – основная причина гибели мечехвостов. Вопреки ряду рецензируемых научных работ компания делала вывод, что популяция Limulus не только стабильна, но на самом деле увеличивается. Это утверждение, вероятно, основано на данных из залива Делавэр, где усилия по сохранению действительно привели к увеличению численности мечехвостов. Но компания, судя по всему, игнорирует сообщения о том, что численность популяции в других местах атлантического побережья сокращается. Также в заявлении отмечалось, что биомедицинская промышленность лишь незначительно влияет на смертность среди мечехвостов, а прилагаемая гистограмма указывала пальцем в настоящих виновников – добычу моллюсков и угрей. Нет никаких доказательств, подтверждающих, что именно эти отрасли промышленности остаются серьезной проблемой для мечехвостов, хотя то, что из них пытаются сделать основную причину проблем, вызывает серьезное беспокойство.
Однако есть некоторые многообещающие разработки, как я узнал от биолога Джона Танакреди, директора Центра экологических исследований и мониторинга океанического побережья в колледже Моллой. Танакреди и его команда содержат единственную в США гнездовую колонию для разведения мечехвостов, созданную на месте старого инкубатора на южном берегу Лонг-Айленда. В дополнение к этим мелкомасштабным, но популярным на местном уровне усилиям он и его коллеги упорно работают над защитой Limulus polyphemus, объявив его объектом Всемирного наследия Организации Объединенных Наций. Но даже если их усилия и увенчаются успехом (а вероятность этого довольно невелика) Танакреди считает, что вымирание местной популяции мечехвостов, а то и худший исход неминуем, если: а) не прекратится их добыча для использования в качестве приманки или для нужд биомедицинской промышленности; б) их по-прежнему будут употреблять в качестве «экзотической пищи»; в) из-за строительства или загрязнения будут разрушаться жизненно важные места обитания мечехвостов, особенно места размножения.
Однако, возможно, лучший ответ на проблему мечехвостов появился благодаря работе сингапурского биолога Джик Лин Дин в 1980-х25. Дин попыталась перенести ген мечехвоста, отвечающий за мощную реакцию LAL на эндотоксин, в ДНК микроорганизма. Подобная технология рекомбинантной ДНК уже позволила фармацевтическим компаниям производить человеческий инсулин в больших чанах с дрожжами. В конце концов Дин и ее исследовательская группа смогли идентифицировать ген, регулирующий выработку «фактора С», вещества в крови мечехвостов, ответственного за образование сгустков. С помощью вирусов ученые ввели фактор С в культуру клеток кишечника насекомых (популярный тип клеток для подобного рода задач), которые превратились в крошечные фабрики, производящие сгусткообразующий реагент для LAL. Патент Дин на набор для тестирования с рекомбинантным фактором С был одобрен в 2003 году, но фармацевтическая промышленность не проявила особого интереса. В то время подобный набор производила только одна компания, и она ожидала одобрения FDA. Из-за этого биомедицинская промышленность явно сопротивлялась уходу от продукта, который успешно применялся в течение десятилетий – LAL на основе крови мечехвостов.
Однако недавно рекомбинантный фактор С начала производить вторая компания. Хотя большинство биомедицинских компаний, выпускающих LAL, еще не приняли новые тестовые наборы, одна из них начала предлагать кроме наборов, произведенных из мечехвостов, и рекомбинантные. И – отличная новость для любителей мечехвостов со всего мира – фармацевтический гигант Eli Lilly начал использовать рекомбинантный фактор С для тестирования качества своих новых препаратов. Можно только надеяться, что это лишь начало полноценного перехода к неразрушительным технологиям выявления эндотоксинов и когда-нибудь в скором времени идея протыкать мечехвостов и сливать их кровь пойдет по пути контроля пирогенности на кроликах.
Назад: 2 Размер имеет значение II
Дальше: 4 Насекомые, гидронасосы, жирафы и Мотра